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Strongly surjective maps from certain
two-complexes with trivial

top-cohomology onto the projective plane

Marcio C. Fenille and Daciberg L. Gonçalves

Abstract. For the model two-complex K of the group presentation
〈x, y |xk+1yxy〉, with k ≥ 1 odd, we describe representatives for all free
and based homotopy classes of maps from K into the projective plane.
As a result we classify the homotopy classes containing only surjective
maps. With this approach we get an answer, for maps into the real
projective plane, to a classical question in topological root theory, which
is known so far, in dimension two, only for maps into the sphere, the
torus and the Klein bottle. The answer follows by proving that for all
k ≥ 1 odd, the two-complex K has trivial second integer cohomology
group and, for k ≥ 3 odd, there exist strongly surjective maps from K
onto the real projective plane. For k = 1, there does not exist such a
strongly surjective map.
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1. Introduction and main theorem

The Hopf-Whitney Classification Theorem [10, Corollary 6.19, p. 244]
implies that, for a finite and connected n-dimensional complex X (an n-
complex, for short), the set [X;Sn] of the free homotopy classes of maps
from X into the n-sphere Sn is in a one-to-one correspondence with the
integer cohomology group Hn(X;Z). Thus, there exists a map from X onto
Sn whose free homotopy class contains only surjective maps if and only
if Hn(X;Z) 6= 0. Such a map is called a strong surjection or a strongly
surjective map.

The composition of a strong surjection from X onto Sn with the double
covering map p : Sn → RPn provides a strong surjection from X onto the
n-dimensional projective space RPn. Hence, the assumption Hn(X;Z) 6= 0
implies the existence of a strong surjection from X onto RPn. In this article,
we prove, for n = 2, that the converse implication does not hold true.
Namely, we show the existence of strongly surjective maps from K onto
RP2 for a certain two-complex K for which H2(K;Z) = 0.

This work concerns a central problem in topological root theory, namely,
to know for what closed n-manifold Y , the nullity of the top integer cohomol-
ogy group of an n-complex X forces the non-existence of strong surjections
from X into Y .

Besides the relationship with the Hopf-Whitney Classification Theorem,
the relevance of the problem lies in the fact that, by the Universal Coefficient
Theorem for Cohomology [8, Theorem 3.2, p. 195], an n-complex X with
Hn(X;Z) = 0 is (co)homologically like a (n − 1)-complex, since such a
nullity is equivalent to Hn(X;Z) = 0 and Hn−1(X;Z) torsion free; that is,
the invariant Hn( · ;Z) is not able to detect the existence of n-cells even
when the inclusion Xn−1 ↪→ X of the (n− 1)-skeleton of X into X is not a
homotopy equivalence.

As a consequence of the classification theorem for surfaces, in dimen-
sion two it is more feasible to completely solve the problem. However, the
first contributions [1, 2] were presented in dimension three. In the 2000’s,
C. Aniz answers the problem (proposed by D. L. Gonçalves) for the following
3-manifolds: the cartesian product S1 × S2, the non-orientable S1-bundle
over S2 and the orbit space of S3 with respect to the action of the Quaternion
group. He showed that only in the second case there exists a 3-complex X
with H3(X;Z) = 0 and a strong surjection from X onto the corresponding
3-manifold.

The first conclusive answer in dimension two, other than that provide
by the Hopf-Whitney Classification Theorem, was present in 2016 in [4],
in which the first author built a countable collection of two-complexes with
trivial second integer cohomology group and, from each of them, there exists
a strong surjection onto the torus S1 × S1. By composing each such strong
surjection with the double covering map from the torus onto the Klein bottle,
we get a strong surjection onto the Klein bottle.
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There is no other known conclusive answer to the problem. Therefore, in
dimension two, there are answers only for maps into the sphere, the torus
and the Klein bottle.

However, there exist partial answers for maps into the projective plane
RP2. We refer to the results presented in [5, 3]. In fact, in [5] the germ of
the conclusive answer is present: it is shown that a cohomological condition
implies the non existence of a strongly surjective map. Here, we give a more
complete answer as a consequence of our main theorem:

Theorem 1.1. Let K be the model two-complex of the group presentation
P = 〈x, y |xk+1yxy〉, with k ≥ 1 odd. Then H2(K;Z) = 0 and we have:

(1) If k = 1, then [K;RP2] ≡ [K;RP2]∗ ≡ {1} t {0̄} and both the
homotopy classes contain non-surjective maps.

(2) If k = 2p − 1 ≥ 3, then [K;RP2]∗ ≡ {1} t Zk and [K;RP2] ≡
{1}tZp. The free homotopy classes corresponding to 1 and 0̄ contain
non-surjective maps and the remaining p − 1 classes contain only
surjective maps.

The notation used in Theorem 1.1 is detailed in the text. We anticipate
that the symbol ≡ indicates bijection between sets (without preserving any
algebraic structure).

We describe the structure of this article, highlighting the steps of the proof
of Theorem 1.1. In Section 2 we introduce notations and recall some results
regarding the action of the fundamental group over based homotopy classes.
In Section 3 we describe in detail the free and the based homotopy classes of
self-maps of the projective plane and we prove that the action of π1(RP2) on
the set [RP2;RP2]∗id exchanges based homotopy classes of maps of opposite
twisted degree. In Section 4 we finally consider the model two-complex K of
the group presentation P = 〈x, y |xk+1yxy〉, with k ≥ 1 odd, and we prove
that, for the unique twisted integer coefficient system β over K, other than
the trivial one, the corresponding twisted cohomology group H2(K;βZ) is
cyclic of order k. In Section 5 we build a special map ω : K → RP2 for
which the induced homomorphism on twisted cohomology groups, namely
ω∗ : H2(RP2;%Z) → H2(K;βZ), corresponds to the natural epimorphism
Z → Z/kZ, and so ω is strongly surjective, for k 6= 1. Section 6 consists of
the proof of Theorem 1.1. The proof follows from a complete description of
representatives for all the free and based homotopy classes of maps from K
into RP2. The main step is the proof that each based map f : K → RP2

inducing the homomorphism β on fundamental groups is based homotopic
to a map fn = hn ◦ ω, in which ω is the special map built in Section 5 and
hn : RP2 → RP2 is a map of twisted degree n, where n is an odd integer
in the set {−k,−k + 1 . . . , k − 1, k}. Consequently, the action of π1(K)
on [K;RP2]∗β can be obtained from the action of π1(RP2) on [RP2;RP2]∗id
and the induced homomorphism on twisted cohomology groups by fn is not
trivial for n 6= ±k. This then forces fn to be strongly surjective.
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Throughout the text, for the sake of simplicity, we call a finite and con-
nected two-dimensional CW -complex by a two-complex. We also simplify
f is a continuous map by f is a map. Furthermore, we consider the cyclic
group Z2 = {1,−1} with its multiplicative structure and, where appropri-
ated, we identify an automorphism τ ∈ Aut(Z) with its value τ(1).

We believe that the approach developed in this article can be useful to ex-
tend Theorem 1.1 for any two-complex with trivial second integer cohomol-
ogy group. We conjecture that given a two-complex K with H2(K;Z) = 0,
the set [K;RP2] is finite and, for each α ∈ hom(Π;Z2) we have: (i) there
exists a bijection between [K;RP2]∗α and H2(K;αZ); (ii) there exists one and
only one homotopy classe in [K;RP2]∗α which is not strongly surjective (this
class corresponds to the trivial element of H2(K;αZ) under the bijection
claimed in (i)).

To finish this introduction, we would like to point out the following two
problems, which consist to study the question analyzed on this work in the
following cases: (i) maps K → RPn from an n-dimensional CW -complex
K into the n-dimensional projective space, for n > 2; (ii) maps K → RP2

where K is a CW -complex of dimension > 2.

2. Actions of π1 on based homotopy classes

Let K be a two-complex with fundamental group Π = π1(K) and take a
0-cell e0 in K to be its base-point. Consider the real projective plane RP2

with its minimal cellular structure, namely RP2 = c0 ∪ c1 ∪ c2, and take c0

to be the base-point.
In what follows, we distinguish free homotopies and based homotopies

starting at a given based map f : K → RP2. We observe that, by the Cellu-
lar Approximation Theorem, each map from K into RP2 is freely homotopic
to a based map. Hence, in order to study free or based homotopy classes,
we can assume that a homotopy class always admite a representative given
a priori by a map which is based. We define:

• [K;RP2] is the set of free homotopy classes [f ] of maps f : K → RP2.
• [K;RP2]∗ is the set of based homotopy classes [f ]∗ of based maps
f : K → RP2.
• [K;RP2]∗α is the set of based homotopy classes [f ]∗ of based maps
f : K → RP2 such that α = f# : π1(K)→ π1(RP2).

It follows that

[K;RP2]∗ =
⊔

α∈hom(Π;Z2)

[K;RP2]∗α.

We are identifying, in this description, the group hom(Π;Z2) with the
group hom(π1(K);π1(RP2)).

The fundamental group π1(RP2) acts on the set [K;RP2]∗ and, following
[10, Chapter V, Corollary 4.4], [K;RP2] corresponds to the quotient set of
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[K;RP2]∗ by this action, what we indicate by

[K;RP2] ≡ [K;RP2]∗

π1(RP2)
.

We recall, in a general context, how the action of π1(Y ) on [X;Y ]∗ is
defined. Consider based spaces (X,x0) and (Y, y0). Let f0, f1 : X → Y be
based maps and let u : I → Y be a loop in Y based at y0. Suppose there
exists a homotopy F : X × I → Y , starting at f0 and ending at f1, such
that F (x0, t) = u(t). Then we say that f0 is freely homotopic to f1 along to
u and we write f0 'u f1. If u is the constant path at the base-point y0, we
say that f0 is based homotopic to f1 and we write f0 '∗ f1. We have:

(i) Given a based map f0 : X → Y and a loop u in Y based at y0, then
f0 'u f1 for some based map f1 : X → Y .

(ii) If f0 'u f1 and f0 'v f2 and u ' v (rel.∂I), then f1 '∗ f2.
(iii) If f0 'u f1 and f1 'v f2, then f0 'uv f2.

This defines the action of π1(Y ) on [X;Y ]∗. Thus: given a based map
f0 : X → Y and an element [u] ∈ π1(Y ) represented by a loop u in Y based
at y0, there exists a based map f1 : X → Y such that f0 'u f1, and we
define the action of [u] on [f0]∗ to be [f1]∗, that is,

[u][f0]∗ = [f1]∗.

Returning to our approach, let σ : I → RP2 be the loop in RP2 based at
c0 whose trajectory encircles once the 1-cell c1. Then [σ] ∈ π1(RP2) is the
generator of π1(RP2). Furthermore, σ induces the identity automorphism

σ̂ : π1(RP2)→ π1(RP2) given by σ̂([u]) = [σ−1][u][σ] = [u].

Lemma 2.1. Each subset [K;RP2]∗α of [K;RP2]∗ is invariant by the action
of π1(RP2).

Proof. Consider the generator [σ] of π1(RP2). Given a based homotopy
class [f0]∗ ∈ [K;RP2]∗α, we take a based map f1 : K → RP2 such that f0 'σ
f1, that is, there exists a homotopy H : f0 ' f1 such that H(e0, t) = σ(t).
Then (f1)# = σ̂ ◦ (f0)# = id ◦α = α and, by definition, [σ][f0]∗ = [f1]∗. �

It follows that

[K;RP2] ≡
⊔

α∈hom(Π;Z2)

[K;RP2]∗α
π1(RP2)

.

In the case in which K is aspherical (has contractible universal covering),
Theorem 4.12 of [9] provides, for each α ∈ hom(Π;Z2), a bijection

[K;RP2]∗α ≡ H2(K;αZ),

in which H2(K;αZ) is the second cohomology group of K with the local
integer coefficient system α : Π→ Z2 ≈ Aut(Z). We explore this fact next.
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3. Self-maps of the projective plane

In this section we present an analysis of the free and based homotopy
classes of self-maps of the real projective plane. In a sense, what we present
explains certain facts that can be inferred from [6, Proposition 2.1].

Throughout the section, p : S2 → RP2 is the double covering map, a :
S2 → S2 is the antipodal map, Zodd is the set of the odd integers and Zodd+

is the set of the non-negative ones.
We consider the sphere S2 as the suspension of S1, that is, the quotient

space obtained from the cylinder S1 × [−1, 1] by collapsing S1 × {−1} to
a single point (the south pole) and S1 × {1} to another single point (the
north pole). Thus, we can write a point of S2 as a class deiθ, τe in which
(eiθ, τ) ∈ S1 × [−1, 1]. We take:

s0
1 = d1, 0e to be the base-point in S2;

s0
2 = −s0

1 = d−1, 0e to be the antipodal point of s0
1;

s1
1 = the half-equator arc deiθ, 0e, for 0 ≤ θ ≤ π, from s0

1 to s0
2.

σ = p(s1
1) to be the loop representing the generator of π1(RP2).

The orientation of a loop provides over RP2 the local integer coefficient
system

% : π1(RP2)→ Aut(Z) given by %(1) = 1 and %(−1) = −1.

Next, we consider the cohomology group H2(RP2;%Z) with the local in-
teger coefficient system %.

We stablish the following one-to-one correspondences:

[RP2;RP2]∗ ≡ Z2 t Zodd and [RP2;RP2] ≡ Z2 t Zodd+ .

All maps given a priori will be considered to be based.
Firstly, we write

[RP2;RP2]∗ = [RP2;RP2]∗0 t [RP2;RP2]∗id,

in which the subscripts 0 and id indicate that the corresponding maps in-
duce the trivial and the identity homomorphism on fundamental groups,
respectively.

It follows by Lemma 2.1 that

[RP2;RP2] ≡ [RP2;RP2]∗0
π1(RP2)

t
[RP2;RP2]∗id
π1(RP2)

.

Let h : RP2 → RP2 be a based map and take h̃ : S2 → S2 to be the based
lifting of h ◦ p through p : S2 → RP2, so that we have the commutative
diagram:
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S2 h̃ //

p

��

S2

p

��
RP2 h // RP2

We claim that h̃ is necessarily either even or odd; in fact, for each x ∈ S2,

we have either h̃(−x) = h̃(x) or h̃(−x) = −h̃(x), and so 〈h̃(x), h̃(−x)〉 = ±1.

By continuity, the map x 7→ 〈h̃(x), h̃(−x)〉 is constant equal to either 1 or

−1, and so h̃ is either even or odd.
If h : RP2 → RP2 induces the trivial homomorphism on fundamental

groups, that is, [h]∗ ∈ [RP2;RP2]∗0, then h lifts through p to a based map

h : RP2 → S2. Now,

[RP2;S2]∗ ≡ H2(RP2;Z) ≈ Z2,

and we can describe the two classes [h00]∗ and [h01]∗ by means of its repre-
senting maps, namely, h00 : RP2 → S2 is the constant map and h01 : RP2 →
S2 is the quotient map that collapses the one-skeleton S1 ⊂ RP2 to the
base-point of S2. Defining the composed maps h0i = p ◦ h0i : RP2 → RP2

for i = 0, 1, we have

[RP2;RP2]∗0 = {[h00]∗, [h01]∗} ≡ Z2.

Since h00 and h01 lift through p and obviously [RP2;S2]∗ ≡ [RP2;S2], it
follows that

[RP2;RP2]0 ≡ [RP2;RP2]∗0 ≡ Z2.

We remark that both the liftings h̃00 = h00 ◦ p (= constant) and h̃01 =

h01 ◦ p are even self-maps of S2. Now, if h̃ : S2 → S2 is even, then h̃ = h̃ ◦ a,

and so deg(h̃) = −deg(h̃), which forces deg(h̃) = 0 and, therefore, h̃ is
homotopically trivial, which does not imply that h is itself homotopically

trivial. This is what happens with the map h̃1, that is, h̃1 is homotopic to
the constant map, but the maps h1 and h1 are not.

On the other hand, it follows from Borsuk-Ulam Theorem (in its version

presented in [7, Chapter 2, § 6, p. 91]) that if h̃ : S2 → S2 is odd, then

deg(h̃) is odd. By the way, maps h̃ : S2 → S2 of arbitrary odd degree they

do exist: for, given an odd integer k, the suspension h̃k : S2 → S2 of the
map S1 3 z 7→ zk ∈ S1 is odd and has degree k.

Each such an odd map h̃k : S2 → S2 induces on the quotient a based
map hk : RP2 → RP2, and it is easy to see that hk induces the identity

homomorphism of fundamental groups, because the map p ◦ h̃k maps the
1-cell s1

1 in S2 onto k times the 1-cell c1 in RP2. Thus, for each odd k, we
have [hk]

∗ ∈ [RP2;RP2]∗id.
Since the degree classifies the homotopy classes of self-maps of S2, it

follows from the Lifting Homotopy Property that for two odd integers k 6= l,
the corresponding maps hk, hl : RP2 → RP2 are not based homotopic.
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Therefore, the function [h]∗ 7→ deg(h̃) provides a one-to-one correspon-
dence

[RP2;RP2]∗id ≡ Zodd.
Equivalently, this bijection can be written as [h]∗ 7→ d%(h), in which the

last number is the twisted degree of h, that is, the integer d%(h) such that
the homomorphism

h∗ : H2(RP2;%Z)→ H2(RP2;%Z),

induced by h on cohomology groups with the non-trivial local integer coef-
ficient system %, corresponds to the multiplication by d%(h). This will be
clearer after Section 5.

Now, for each odd k > 0, both the maps h̃−k and a ◦ h̃k have the same
degree −k, and so they are freely homotopic, but not based homotopic, since

a ◦ h̃k is not even based.
We present a special free homotopy H̃ : h̃−k ' a ◦ h̃k. We define H̃ :

S2 × I → S2 by

H̃
(
deiθ, τe, t

)
=
⌈
r(tπ)·ei(2t−1)kθ, (1− 2t)τ

⌉
,

in which z 7→ r(tπ)·z is the positive rotation under angle tπ in the complex
plane. We have:

H̃
(
deiθ, τe, 0

)
= de−ikθ, τe = h̃−k

(
deiθ, τe

)
,

H̃
(
deiθ, τe, 1

)
= d−eikθ,−τe = −h̃k

(
deiθ, τe

)
= a ◦ h̃k(deiθ, τe

)
.

Hence, H̃ is really a free homotopy starting at h̃−k and ending at a ◦
h̃k. Such a homotopy is not based, since the trajectory of the path t 7→
H̃(d1, 0e, t) is the half-equator arc s1

1.

Now, we observe that, since k is odd, H̃ is odd in the first coordinate,
that is,

H̃
(
− deiθ, τe, t

)
= −H̃

(
deiθ, τe, t

)
.

Thus, H̃ induces to quotient a free homotopy H : RP2×I → RP2 starting

at h−k and ending at hk (since hk = p(a ◦ h̃k)). Moreover, the trajectory
of the path t 7→ H(c0, t) is the loop σ whose path homotopy class is the
generator of π1(RP2).

We have proved the following proposition:

Proposition 3.1. The action of π1(RP2) on [RP2;RP2]∗id exchanges the
based homotopy classes [hk]

∗ and [h−k]
∗ and so the function [h] 7→ |d%(h)|

provides a bijection [RP2;RP2]id ≡ Zodd+ .

4. The model two-complex of P = 〈x, y |xk+1yxy〉
Let K be the model two-complex of the presentation P = 〈x, y |xk+1yxy〉,

with k ≥ 1 odd, that is, the two-complex with a single 0-cell e0, two 1-
cells e1

x ∪ e1
y and a single two-cell e2 which is attached on the one-skeleton
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K1 = e0 ∪ e1
x ∪ e1

y by spelling the word r = xk+1yxy. We take the 0-cell e0

to be the base-point of K.
The fundamental group of K is the group Π = F (x, y)/N(r) presented by

P. Let x̄ and ȳ in Π be the images of x and y, respectively, by the natural
homomorphism F (x, y)→ Π from the free group F (x, y) onto Π.

In what follows, we consider the cohomology groups of K with local inte-
ger coefficient systems, which we call twisted cohomology groups, for short.

Since the group Π has two generators, x̄ and ȳ, and in the word r =
xk+1yxy the sums of the powers of the letters x and y are respectively k+ 2
(which is odd) and 2, we have just one local integer coefficient systems over
K, other than the trivial one, namely, the system

β : Π→ Aut(Z) given by β(x̄) = 1 and β(ȳ) = −1.

Proposition 4.1. Let K be the model two-complex of the group presentation
P = 〈x, y |xk+1yxy〉, with k ≥ 1 odd. We have:

(1) H2(K;Z) = 0 and H2(K,βZ) ≈ Z/kZ.
(2) K is aspherical.

Proof. The first statement of (1) follows from a straightforward analysis
of the cellular co-chain complex of K and the second one is announciated
in [5, Example 7.3], but without details. Since next we need to identify
explicitly a generator of H2(K;βZ), we provide a detailed calculation of the
group H2(K;βZ) after this proof. Assertion (2) follows from (1) and [5,
Proposition 4.1]. �

Remark 4.2. Before proceeding to the calculations of the twisted cohomol-
ogy group H2(K,βZ), we observe that, for k 6= 0 even, the two-complex K is
also aspherical. This fact follows from [5, Section 4], in which it is remarked
that a one-relator model two-complex is aspherical if and only if the single
relator of its presentation is not freely trivial and has period one. Thus, in
order to have K non-aspherical we should take k = 0. On the other hand,
if k ≥ 1 is even, then H2(K;Z) ≈ Z2 and so K would not be an interesting
two-complex from the viewpoint of the inspiring problem of this article.

Returning to the case k ≥ 1 odd, we compute the twisted cohomology
group of H2(K,βZ). We use the procedure and the notations presented in
[5, Section 3]. Briefly:

• ξβ : Z[Π] → Z is the β-augmentation function, that is, the function
defined by ξβ(

∑
k niπi) =

∑
i niβ(πi).

• ‖ · ‖ : Z[F (x, y)] → Z[Π] is the natural extension on group rings of
the natural homomorphism F (x, y)→ Π = F (x, y)/N(r).

• ∂

∂x
,
∂

∂y
: F (x, y)→ Z[F (x, y)] are the Reidmeister-Fox derivatives.
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For the relator word r = xk+1yxy, we have:

∂r

∂x
= (1 + x+ · · ·+ xk) + xk+1y and so ξβ

(
‖∂r
∂x
‖
)

= (k + 1)− 1 = k,

∂r

∂y
= xk+1(1 + yx) and so ξβ

(
‖∂r
∂y
‖
)

= 1(1− 1) = 0.

Consider the cellular chains of K with its natural identifications and gen-
erators:

C0(K) = H0(K0) ≈ Z〈e0〉,

C1(K) = H1(K1,K0
P) ≈ Z2〈e1

x, e
1
y〉,

C2(K) = H2(K,K1) ≈ Z〈e2〉.

Let K̃ be the universal covering space of K, endowed with its natural
cellular structure. Select a 0-cell ẽ0 over e0, a 1-cell ẽ1

x over e1
x, a 1-cell ẽ1

y

over e1
y and a 2-cell ẽ2 over e2. The group Π acts on the left (via cover-

ing transformation) on the cellular chain complex Cq(K̃) = Hq(K̃
q, K̃q−1)

making it into a left Z[Π]-module, so that we have identifications

C0(K̃) = Z[Π]〈ẽ0〉,

C1(K̃) = Z[Π]2〈ẽ1
x, ẽ

1
y〉,

C2(K̃) = Z[Π]〈ẽ2〉.

Via this identifications and considering the action β : Π → Aut(Z), we
have the corresponding twisted cellular chain complex of left Z[Π]-modules

Cβ∗ (K̃) : 0→ C2(K̃)
∂̃β2−→ C1(K̃)

∂̃β1−→ C0(K̃)→ 0,

in which the boundaries operators are given by

∂̃β1 (ẽ1
x) = ξβ(1− x̄)ẽ0 = 0,

∂̃β1 (ẽ1
y) = ξβ(1− ȳ)ẽ0 = 2ẽ0,

∂̃β2 (ẽ2) = ξβ
(
‖∂r
∂x
‖
)
ẽ1
x + ξβ

(
‖∂r
∂y
‖
)
ẽ1
y = kẽ1

x.

Consider the corresponding twisted cellular co-chain complex

C∗
β(K̃) : 0← homΠ(C2(K̃);Z)

δ̃β2←− homΠ(C1(K̃);Z)
δ̃β1←− homΠ(C0(K̃);Z)← 0.

In each homΠ(Ci(K̃);Z), the integers Z is seen as a left Z[Π]-module via

the action β : Π→ Aut(Z). The co-boundaries operators δ̃β∗ are defined by
the usual dual form

δ̃β∗ (φ) = φ ◦ ∂̃β2 .
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Explicitly, a given co-chain φ ∈ homΠ(C1(K̃);Z) is defined by its values

φ(ẽ1
x) and φ(ẽ1

x), and the co-chain δ̃β2 (φ) : C2(K)→ Z is given by

δ̃β2 (φ)(ẽ2) = ξβ

(
‖∂r
∂x
‖
)
φ(ẽ1

x) + ξβ

(
‖∂r
∂y
‖
)
φ(ẽ1

y) = kφ(ẽ1
x).

Now, homΠ(C2(K̃);Z) ≈ Z is generated by the co-chain φ∗2 : C2(K̃)→ Z
given by

φ∗2(ẽ2) = 1, that is, the dual of the chain ẽ2.

Analogously, homΠ(C1(K̃);Z) ≈ Z2 is generated by the co-chains φ∗x, φ
∗
y :

C1(K̃)→ Z which are the dual of the chains ẽ1
x and ẽ1

y, that is,

φ∗x(ẽ1
x) = 1, φ∗x(ẽ1

y) = 0, and φ∗y(ẽ
1
x) = 0, φ∗y(ẽ

1
y) = 1.

Thus, the co-boundary operator δ̃β2 : homΠ(C1(K̃);Z)→ homΠ(C2(K̃);Z)
is given by

δ̃β2 (φ∗x) = kφ∗2 and δ̃β2 (φ∗y) = 0.

Therefore,

H2(K;βZ) ≈ homΠ(C2(K̃);Z)

Im(δ̃β2 )
≈ Z〈φ∗2〉
〈kφ∗2〉

≈ Z
kZ
〈
φ∗2 + 〈kφ∗2〉

〉
.

Remark 4.3. Let us point out that the group H2(K;βZ) depends on the
word r, and not only on the sums of the powers of the letters x and y. For
example, if we take r = xk+2+ny2x−n, for k ≥ 1 and n ≥ 0, it can be shown
that H2(K;βZ) ≈ Zk+2.

5. Maps from K into RP2

In this section, we continue to consider the model two-complex K of the
presentation P = 〈x, y |xk+1yxy〉, with k ≥ 1 odd. Also, we keep considering
the non-trivial local integer coefficient system % : π1(RP2)→ Aut(Z).

Let us consider the cellular map ω : K → RP2 defined naturally by
collapsing the 1-cell e1

x to the 0-cell c0 of RP2. It is possible to understand
the map ω by considering K as the identification space obtained from the
disc D2 with identifications in its boundary S1 = ∂D2 respect to the word
r = xk+1yxy. We explain: first we divide S1 into k+4 oriented arc segments,
all of the them with the counter-clockwise orientation, enumerated from a
selected point e0 by x, . . . , x, y, x, y. Then we collapse the first k + 1 arcs
indexed with the letter x to the point e0 and we collapse the other arc
indexed with the letter x to another point, we say, −e0. That way, we
obtain a new disc whose boundary are composed by two oriented arcs, both
with the counter-clockwise orientation, indexed by the letter y. Then, by
the collage of these arcs one with other, we obtain the projective plane.

We have described the map ω in such a way that it is easy to see that
the 1-cell e1

y is identified with the 1-cell c1 and the interior of the 2-cell e2

is mapped homeomorphically onto the interior of the 2-cell c2.
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Consider the induced homomorphism ω# : Π→ π1(RP2) on fundamental
groups. Of course, ω#(x̄) = 1 and ω#(ȳ) = −1. Hence, the map ω co-
induces on K the local integer coefficient system % ◦ω# : Π→ Aut(Z) given
by % ◦ ω#(x̄) = 1 and % ◦ ω#(ȳ) = −1, that is, % ◦ ω# = β. It follows that ω
induces a homomorphism

ω∗ : H2(RP2;%Z)→ H2(K;βZ).

Proposition 5.1. For each k ≥ 3 odd, ω∗ : H2(RP2;%Z) → H2(K;βZ)
corresponds to the natural epimorphism Z→ Z/kZ.

The twisted cohomology group H2(RP2;%Z) is well known to be infinite
cyclic. However, we present the computation in order to identify an explicit
generator. After that, we proceed to the proof of Proposition 5.1 itself.

Let us consider the projective plane RP2 as the model two complex of the
group presentation 〈z | z2〉, so that, RP2 is endowed with its natural cellular
structure RP2 = c0 ∪ c1 ∪ c2.

Let p : S2 → RP2 be the universal covering map and consider the sphere
S2 with its cellular structure co-induced by p, so that, S2 = s0

1∪s0
2∪s1

1∪s1
2∪

s2
1∪s2

2, with p(sij) = ci, for 1 ≤ i, j ≤ 2. As before, we choose the numeration

of the cells so that the 1-cell s1
1 starts at s0

1 and ends at s0
2 = −s0

1, and s2
1 is

the 2-cell whose orientation makes ∂̃2(s2
1) = s1

1 + s1
2.

So, we take s0
1, s1

1 and s2
1 to be the favourite cells of S2, so that we have

the following identifications of Z[π1(RP2)] = Z[Z2]-module:

C0(R̃P2) = C0(S2) = Z[Z2]〈s0
1〉,

C1(R̃P2) = C1(S2) = Z[Z2]〈s1
1〉,

C2(R̃P2) = C2(S2) = Z[Z2]〈s2
1〉.

Via this identifications and considering the action % : Z2 → Aut(Z), we
have the corresponding twisted cellular chain complex of left Z[Z2]-modules

C%∗ (S
2) : 0→ C2(S2)

∂̃%2−→ C1(S2)
∂̃%1−→ C0(S2)→ 0,

in which the boundaries operators are given by

∂̃%1(s1
1) = ξ%(1− z̄)s0

1 = 2s0
1,

∂̃%2(s2
1) = ξ%

(
‖∂z

2

∂z
‖
)
s1

1 = ξ%
(
‖1 + z‖

)
s1

1 = 0.

Consider the corresponding twisted cellular co-chain complex

C∗
%(S2) : 0← homZ2(C2(S2);Z)

δ̃%2←− homZ2(C1(S2);Z)
δ̃%1←− homZ2(C0(S2);Z)← 0.

In each homZ2(Ci(S
2);Z), the integers Z is seen as a left Z[Z2]-module

via the action % : Z2 → Aut(Z). The co-boundaries operators δ̃%∗ are defined

by the dual form δ̃%∗(φ) = φ ◦ ∂̃%2 .
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Particularly, since ∂̃%2 = 0, also δ̃%∗ = 0. Therefore,

H2(RP2;%Z) = homZ2(C2(S2);Z) ≈ Z〈ϕ∗2〉,
in which the generator is the co-chain ϕ∗2 : C2(S2)→ Z defined by ϕ∗2(s2

1) =
1, that is, ϕ∗2 is the dual of the chain s2

1.

Proof of Proposition 5.1. Let q : K̃ → K be the universal covering map
and let ω̃ : K̃ → S2 be the unique cellular map satisfying ω̃(ẽ0) = s0

1 and
p ◦ ω̃ = ω ◦ q, that is, ω̃ is the lifting of ω to universal coverings, starting at
e0

1. Then ω̃ collapses ẽ1
x to s0

1 and maps the interior of the cells ẽ1
y and ẽ2

homeomorphically onto the interior of s1
1 and s2

1, respectively.
Let consider the following commutative diagram, in which the vertical

arrows are the homomorphisms induced by ω̃ in level of chains:

0 // C2(K̃)

ω̃2
#

��

∂̃β2 // C1(K̃)

ω̃1
#

��

∂̃β1 // C0(K̃)

ω̃0
#

��

// 0

0 // C2(S2)
∂̃%2=0

// C1(S2)
∂̃
%
1 // C0(S2) // 0

By the definition of the map ω̃, the homomorphism ω̃0
#, ω̃1

# and ω̃2
# are

given, in terms of its values on the generators of its domains, by:

ω̃0
#(ẽ0) = s0

1 and ω̃1
#(ẽ1

x) = 0, ω̃1
#(ẽ1

y) = s1
1 and ω̃2

#(ẽ2) = s2
1.

Now, we consider the corresponding commutative diagram in level of co-
chains. To shorten, we denote Ci(X) = HomG(Ci(X);Z), for (X,G) =

(K̃,Π) and (X,G) = (S2,Z2).

0 C2(K̃)oo C1(K̃)
δ̃β2oo C0(K̃)

δ̃β1oo 0oo

0 C2(S2)oo

ω̃#
2

OO

C1(S2)
δ̃%2=0
oo

ω̃#
1

OO

C0(S2)
δ̃%1oo

ω̃#
0

OO

0oo

By duality, the homomorphisms ω̃#
0 , ω̃#

1 and ω̃#
2 are given, in terms of its

values in the generators of its domains, by:

ω̃0
#(ϕ∗0) = φ∗0 and ω̃#

1 (ϕ∗1) = φ∗y and ω̃#
2 (ϕ∗2) = φ∗2.

It follows that ω∗ : H2(RP2;%Z)→ H2(K;βZ) is given by:

C2(S2)

Im(δ̃%2)
3 ϕ∗2 + 0 7→ ω̃#

2 (ϕ∗2) + Im(δ̃β2 ) = ϕ∗2 + 〈kϕ∗2〉 ∈
C2(K̃)

Im(δ̃β2 )
.

Therefore, ω∗ corresponds to the natural epimorphism Z→ Z/kZ. �

Obviously, we present more calculations than necessary to prove Proposi-
tion 5.1. We do this in order to make more clear the induced homomorphisms
by the maps involved.
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6. Proof of the main theorem

This entire section is the proof of the main theorem of the article.

Proof of Theorem 1.1. Via the natural identification Aut(Z) ≈ Z2, we
have hom(Π;Z2) = {1, β}, in which 1 denotes the trivial homomorphism
and β is the homomorphism given at the beginning of Section 4. Thus,

[K;RP2]∗ = [K;RP2]∗1 t [K;RP2]∗β.

Since K is aspherical, we have the following bijections given in [9, Theo-
rem 4.2]:

[K;RP2]∗1 ≡ H2(K;Z) = 0 and [K;RP2]∗β ≡ H2(K;βZ) ≈ Z/kZ,

Hence, the sets [K;RP2]1 ≡ [K;RP2]∗1 have only one element, namely, the
(free or based) homotopy class of the constant map at the 0-cell c0. In the
assertions (1) and (2) of Theorem 1.1, this element corresponds to 1 and the
component [K;RP2]∗1 of [K;RP2]∗, as well as the component [K;RP2]1 of
[K;RP2], corresponds to {1}. This proves a part of the assertions (1) and
(2) of Theorem 1.1.

On the other hand, the set [K;RP2]∗β has k elements, and we describe

them and also the elements of the set [K;RP2]β ≡ [K;RP2]∗β/π1(RP2).

If k = 1, then [K;RP2]∗β has only one element and so [K;RP2]β ≡
[K;RP2]∗β. In the statement of Theorem 1.1, assertion (1), this element cor-

responds to 0̄ and the component [K;RP2]∗β of [K;RP2]∗, as well as the com-

ponent [K;RP2]β of [K;RP2], corresponds to {0̄}. Now, if [f ]∗ ∈ [K;RP2]∗β,

then f# = β and, since H2(K;βZ) = 0, it follows from [5, Theorem 1.1] that
f is homotopic to a non-surjective map.

We have completed the proof of the assertion (1) of Theorem 1.1.
To prove what is missing from assertion (2), we take k = 2p− 1 ≥ 3.
Let Odd(k) be the set of the odd integers in the set {2 − k, . . . , k − 2}.

Then Odd(k) has k− 1 = 2p− 2 elements, being p− 1 of them positive and
p− 1 of them negative.

For each n ∈ Odd(k) we define the map

fn = hn ◦ ω : K → RP2,

in which ω : K → RP2 is the map built in Section 5 and hn : RP2 → RP2 is
the based map whose twisted degree is d%(hn) = n, as presented in Section
3. Additionally, define

f0 = hk ◦ ω : K → RP2.

For each n ∈ Odd(k) ∪ {0}, the homomorphism (fn)# : Π → π1(RP2)
is equal to β and the homomorphism f∗n : H2(RP2;%Z) → H2(K;βZ) cor-
responds to µn : Z → Z/kZ given by µn(1) = n + kZ. It follows that,
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for each n ∈ Odd(k), the map fn is strongly surjective and, for m 6= n in
Odd(k) ∪ {0}, the maps fm and fn are not based homotopic. Therefore,

[K;RP2]∗β =
{

[fn]∗ : n ∈ Odd(k) ∪ {0}
}
≡ Zk.

However, since the maps hn and h−n are freely homotopic, also the maps
fn and f−n are freely homotopic, for each n ∈ Odd(k), that is, the based
homotopy classes [fn]∗ and [f−n]∗ are exchanged by the action of π1(RP2)
over [K;RP2]∗β. On the other hand, since k is odd, it is obvious that the

remaining class [f0]∗ is fixed by the action of π1(RP2).
Therefore, taking Odd+(k) to be the set of the positive integers in Odd(k),

we have
[K;RP2]∗β
π1(RP2)

≡
{

[fn] : n ∈ Odd+(k) ∪ {0}} ≡ Zp.

Since we have proved that each fn, for n ∈ Odd+(k), is strongly surjective,
in order to finish the proof of Theorem 1.1 it remains to prove that f0 is not
strongly surjective. For this, consider the cellular map g1 : K1 = S1

x ∨S1
y →

S1 which maps S1
x encircling 2 times into S1, in the positive orientation,

and maps S1
y encircling k + 2 times in S1, in the opposite orientation. The

homomorphism g1
# : F (x, y) ≈ π1(K1)→ π1(S1) ≈ Z is given by g1

#(x) = 2

and g1
#(y) = −(k + 2). It follows that g1

#(r) = 0, and so g1 extends to a

map g : K → S1. Composing g with the skeleton inclusion l : S1 ↪→ RP2

we obtain a map g : K → RP2 such that g# : Π → π1(RP2) is equal to β
and g∗ : H2(RP2;%Z)→ H2(K;βZ) is trivial. It follows from the one-to-one
correspondence [K;RP2]∗β ≡ H2(K;βZ) ≈ Z/kZ that the based homotopy

classes [g]∗ and [f0]∗ are equal, since both correspond to the zero class in
H2(K;βZ). Therefore, f0 is homotopic to the non-surjective map g. �
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