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On the maximal function associated to the
spherical means on the Heisenberg group
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Dedicated to the memory of Eli Stein

Abstract. In this paper we deal with lacunary and full versions of
the spherical maximal function on the Heisenberg group Hn, for n ≥ 2.
By suitable adaptation of an approach developed by M. Lacey in the
Euclidean case, we obtain sparse bounds for these maximal functions,
which lead to new unweighted and weighted estimates. In particular, we
deduce the Lp boundedness, for 1 < p < ∞, of the lacunary maximal
function associated to the spherical means on the Heisenberg group. In
order to prove the sparse bounds, we establish Lp − Lq estimates for
local (single scale) variants of the spherical means.
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1. Introduction and main results

A celebrated theorem of Stein [20] proved in 1976 says that the spherical
maximal function M defined by

MEuc
full f(x) = sup

r>0
|f ∗ σr(x)| = sup

r>0

∣∣∣ ∫
|y|=r

f(x− y)dσr(y)
∣∣∣

is bounded on Lp(Rn), n ≥ 3, if and only if p > n/(n − 1). Here σr stands
for the normalised surface measure on the sphere Sr = {x ∈ Rn : |x| = r}
in Rn. The case n = 2 was proved later by Bourgain [4]. As opposed to
this, in 1979, C. P. Calderón [5] proved that the lacunary spherical maximal
function

MEuc
lac f(x) := sup

j∈Z

∣∣∣ ∫
|y|=2j

f(x− y)dσ2j (y)
∣∣∣

is bounded on Lp(Rn) for all 1 < p <∞ for n ≥ 2.
In a recent article, Lacey [12] revisited the spherical maximal function.

Using a new approach, he managed to prove certain sparse bounds for these
maximal functions which led him to obtain new weighted norm inequalities.
One of the goals in this paper is to adapt the method of Lacey to obtain
sparse bounds for certain spherical means on the Heisenberg group. As
consequences, unweighted and weighted analogues of Calderón’s theorem
follow in this context. Up to our knowledge, these results are new.

Let Hn = Cn ×R be the (2n+ 1)-dimensional Heisenberg group with the
group law

(z, t)(w, s) =
(
z + w, t+ s+

1

2
Im z · w

)
.

Given a function f on Hn, consider the spherical means

Arf(z, t) := f ∗ µr(z, t) =

∫
|w|=r

f
(
z − w, t− 1

2
Im z · w

)
dµr(w) (1.1)

where µr is the normalised surface measure on the sphere Sr = {(z, 0) : |z| =
r} in Hn. The maximal function associated to these spherical means was first
studied by Nevo and Thangavelu in [17]. Later, improving the results in [17],
Narayanan and Thangavelu [16], and Müller and Seeger [15], independently,
proved the following sharp maximal theorem: the full maximal function

Mfullf(z, t) := sup
r>0
|Arf(z, t)|

is bounded on Lp(Hn), n ≥ 2 if and only if p > (2n)/(2n− 1).
In this work we first consider the lacunary maximal function associated

to the spherical means

Mlacf(z, t) := sup
j∈Z
|A2jf(z, t)|,

and prove the following result.

Theorem 1.1. Assume that n ≥ 2. Then the associated lacunary maximal
funcion Mlac is bounded on Lp(Hn) for any 1 < p <∞.
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We remark that another kind of spherical maximal function on the Heisen-
berg group has been considered by Cowling. In [6] he studied the maxi-
mal function associated to the spherical means taken over genuine Heisen-
berg spheres, i.e., averages over spheres defined in terms of a homogeneous
norm on Hn, and proved that it is bounded on Lp(Hn) for p > Q−1

Q−2 , where

Q = (2n+2) is the homogeneous dimension of Hn. Recently, in [9], lacunary
maximal functions associated with these spherical means have been studied
and it has been shown that they are bounded on Lp(Hn) for all p > 1. We
remark in passing that the spherical means (1.1) are more singular, being
supported on codimension two submanifolds as opposed to the one studied
in [6], which are supported on codimension one submanifolds. Even more
singular spherical means have been studied in the literature, see e.g. [28].

Theorem 1.1, as well as certain weighted versions that are stated in Section
5, are standard consequences of the sparse bound in Theorem 1.2. Before
stating the result let us set up the notation. As in the case of Rn, there is
a notion of dyadic grids on Hn, the members of which are called (dyadic)
cubes. A collection of cubes S in Hn is said to be η-sparse if there are sets
{ES ⊂ S : S ∈ S} which are pairwise disjoint and satisfy |ES | > η|S| for all
S ∈ S. For any cube Q and 1 < p <∞, we define

〈f〉Q,p :=

(
1

|Q|

∫
Q
|f(x)|pdx

)1/p

, 〈f〉Q :=
1

|Q|

∫
Q
|f(x)|dx.

In the above, x = (z, t) ∈ Hn and dx = dz dt is the Lebesgue measure on
Cn × R, which incidentally is the Haar measure on the Heisenberg group.
By the term (p, q)-sparse form we mean the following:

ΛS,p,q(f1, f2) =
∑
S∈S
|S|〈f1〉S,p〈f2〉S,q.

Theorem 1.2. Assume n ≥ 2. Let 1 < p, q <∞ be such that (1
p ,

1
q ) belongs

to the interior of the triangle joining the points (0, 1), (1, 0) and (3n+1
3n+4 ,

3n+1
3n+4).

Then for any pair of compactly supported bounded functions (f1, f2) there
exists a (p, q)-sparse form such that 〈Mlacf1, f2〉 ≤ CΛS,p,q(f1, f2).

We do not know whether Theorem 1.2 delivers the optimal range of (p, q).
We will return to the study of the sharpness somewhere else.

With a similar procedure, and using the results obtained for the lacunary
case, we can also prove a sparse domination for the full maximal operator
and deduce weighted norm inequalities, see Theorem 6.1 in Subsection 6.3.
Nevertheless, since these results are subordinated to the results for Mlac,
the bounds obtained are expected to be far from optimal. Indeed, as in the
Euclidean case, the bounds are expected to hold in a quadrangle, rather
than in a triangle, and better estimates along the anti-diagonal should be
achieved.

In proving the corresponding sparse bounds for the spherical maximal
functions on Rn, Lacey [12] made use of two features of the spherical means.
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The first one is the Lp−Lq estimate, also referred as Lp improving estimate,
of the operator Srf = f ∗σr for a fixed r, in the case of the lacunary spherical
averages, and for a local (single scale) variant of the maximal function, in
the case of the full averages. The second feature is a continuity property
of the difference Srf − τySrf , where τyf(x) = f(x − y) is the translation
operator. By this we mean a rescaled version of an estimate of the form
‖S1 − τyS1‖Lp→Lq ≤ C|y|η for some η > 0. Thus this is essentially a slight
improvement of the Lp−Lq estimate, which turns out to be preserved under
small translations, with a gain in y. In the Euclidean case, the Lp improving
property of Sr already existed in the literature, and the continuity property
could be deduced almost immediately from the well-known estimates for the
Fourier multiplier associated to these spherical means and the Lp improving
property.

In our case, Lp improving estimates, which are the heart of the matter,
are new and addressed in Section 2 for Ar. Our approach to develop the
program and get the Lp−Lq estimates is based on spectral methods attached
to the spherical means on the Heisenberg group. The continuity condition,
even though it is a technical estimate that follows from the Lp−Lq bounds,
is more difficult to obtain than in the Euclidean case and it is shown in
Section 3. The corresponding results concerning the full case are addressed
in Section 6.

Remark 1.3. As mentioned above, we do not know whether our results are
optimal or not but actually we believe that they are most probably subop-
timal. In particular, for the full spherical maximal function, it is reasonable
to expect the bounds to hold for a range of (p, q) contained in a larger quad-
rangle, analogously as in the Euclidean case. Nevertheless, as it will be clear
from the proofs, the procedure to obtain sparse bounds is independent of the
numerology, so the suboptimality of the results are due to the suboptimal
Lp − Lq bounds for the single scale operators. The better input Lp − Lq
estimates would yield better sparse bounds.

The results in this paper are restricted to dimension n ≥ 2. Recently,
in [2], the authors proved that Mfull, acting on a class of Heisenberg radial
functions (i.e., f : H1 → C such that f(Rz, t) = f(z, t) for all R ∈ SO(2)), is
bounded on Lp(H1) for 2 < p ≤ ∞. Up to our knowledge, the boundedness
of the full spherical maximal function on the Heisenberg group in the case
n = 1 is still open.

Outline of the proofs. We closely follow the strategy of Lacey in
proving Theorem 1.2, but in our case we do not have all the necessary
ingredients at our disposal. Consequently, we have to first prove the Lp −
Lq estimates of the operator Ar on Hn and then use them to prove the
corresponding continuity property of the difference A1f −A1τyf where now
τyf(x) = f(xy−1) is the right translation by y−1 on the Heisenberg group.
We observe that, in the case of the Heisenberg group, the Fourier multipliers
are not scalars but operators and hence the proofs become more involved.
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These results are new and have their own interest. Finally, we will prove the
sparse bounds. We will have to modify appropriately the approach of Lacey,
since we are in a non-commutative setting. This implies, in particular, that
a metric has to be suitably chosen to make the Heisenberg group a space
of homogeneous type. In order to keep the paper self-contained, we present
a full detailed proof of the sparse domination. Along the paper, we will be
assuming that the functions f, f1, and f2 arising are non-negative, which we
can always do without loss of generality.

Structure of the paper. In Section 2 we give definitions and facts
concerning the group Fourier transform on Hn, the spectral description of the
spherical means Ar, and we establish Lp−Lq estimates for these operators.
In Section 3 we prove the continuity property of Arf −Arτyf. In Section 4
we establish the sparse bound and prove Theorem 1.2 and in Section 5 we
deduce unweighted (Theorem 1.1) and weighted boundedness properties of
the lacunary maximal function. Finally, Section 6 is devoted to present the
results for the full maximal function.

2. Lp − Lq estimates for the spherical means

The observation that the spherical mean value operator Srf := f ∗ σr on
Rn is a Fourier multiplier plays an important role in every work dealing with
the spherical maximal function. In fact, we know that

f ∗ σr(x) = (2π)−n/2
∫
Rn
eix·ξ f̂(ξ)

Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

dξ (2.1)

where Jn/2−1 is the Bessel function of order n/2 − 1. As Bessel functions
Jα are defined even for complex values of α, the above allows one to embed
Srf into an analytic family of operators and Stein’s analytic interpolation
theorem comes in handy in studying the spherical maximal function. In-
deed, this was the technique employed by Strichartz [22] in order to study
Lp improving properties of Sr. We will use the same strategy to get the Lp

improving property of Ar on Hn. Actually, for the spherical means on the
Heisenberg group, there is available in the literature a representation anal-
ogous to (2.1) if we replace the Euclidean Fourier transform by the group
Fourier transform on Hn, see (2.7).

The present section will be organised as follows. In Subsection 2.1 we
will introduce some preliminaries on the group Fourier transform on Hn. In
Subsection 2.2 we will give the spectral description of the spherical averages
Ar, which will involve special Hermite and Laguerre expansions. Sharp
estimates for certain Laguerre functions will be shown in Subsection 2.4.
Then in Subsection 2.5 we will obtain the Lp improving property of Ar.

2.1. The group Fourier transform on the Heisenberg group. For
the group Hn we have a family of irreducible unitary representations πλ
indexed by non-zero reals λ and realised on L2(Rn). The action of πλ(z, t)
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on L2(Rn) is explicitly given by

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2
x·y)ϕ(ξ + y) (2.2)

where ϕ ∈ L2(Rn) and z = x + iy. By the theorem of Stone and von
Neumann, which classifies all the irreducible unitary representations of Hn,
combined with the fact that the Plancherel measure for Hn is supported
only on the infinite dimensional representations, it is enough to consider the
following operator valued function known as the group Fourier transform of
a given function f on Hn:

f̂(λ) =

∫
Hn
f(z, t)πλ(z, t) dz dt. (2.3)

The above is well defined, e.g., when f ∈ L1(Hn) and for each λ 6= 0, f̂(λ) is a
bounded linear operator on L2(Rn). The irreducible unitary representations
πλ admit the factorisation πλ(z, t) = eiλtπλ(z, 0) and hence we can write the
Fourier transform as

f̂(λ) =

∫
Cn
fλ(z)πλ(z, 0) dz,

where for a function f on Hn, fλ(z) stands for the partial inverse Fourier
transform

fλ(z) =

∫ ∞
−∞

eiλtf(z, t) dt.

When f ∈ L1 ∩ L2(Hn) it can be easily verified that f̂(λ) is a Hilbert-
Schmidt operator and we have∫

Hn
|f(z, t)|2 dz dt = (2π)−n−1

∫ ∞
−∞
‖f̂(λ)‖2HS|λ|n dλ.

The above equality of norms allows us to extend the definition of the Fourier
transform to all L2 functions. It then follows that we have Plancherel the-
orem: f → f̂ is a unitary operator from L2(Hn) onto L2(R∗, S2, dµ) where
S2 stands for the space of all Hilbert-Schmidt operators on L2(Rn) and
dµ(x) = (2π)−n−1|λ|n dλ is the Plancherel measure for the group Hn. We
refer to [27] for more details.

2.2. Spectral theory of the spherical means on the Heisenberg
group. As pointed out above, a spectral definition of Ar = f ∗ µr was
already given in [16, 17]. For the convenience of the readers we will briefly
recall it in this subsection after providing some necessary definitions that
will be useful in the next sections.

Observe that the definition (2.3) makes sense even if we replace f by a
finite Borel measure µ. In particular, µ̂r(λ) are well defined bounded op-
erators on L2(Rn) which can be described explicitly. Combined with the

fact that f̂ ∗ g(λ) = f̂(λ)ĝ(λ) we obtain Ârf(λ) = f̂(λ)µ̂r(λ). The opera-
tors µ̂r(λ) turn out to be diagonalisable in the Hermite basis. Indeed, if we
let Φλ

α, α ∈ Nn, stand for the normalised Hermite functions on Rn, then
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µ̂r(λ)Φλ
α = ψn−1

k (
√
|λ|r)Φλ

α where k = |α|. Here, for any δ > −1, ψδk stand
for the normalised Laguerre functions defined by

ψδk(r) =
Γ(k + 1)Γ(δ + 1)

Γ(k + δ + 1)
Lδk

(1

2
r2
)
e−

1
4
r2 , (2.4)

where Lδk(r) are the Laguerre polynomials of type δ. The Hermite functions

Φλ
α are eigenfunctions of the Hermite operator H(λ) = −∆ + λ2|x|2. More

precisely, H(λ)Φλ
α = (2|α| + n)|λ| and the spectral decomposition of H(λ)

is then written as

H(λ) =
∞∑
k=0

(2k + n)|λ|Pk(λ) (2.5)

where Pk(λ) are the Hermite projection operators. It is well known (see [25,
Proposition 4.1]) that

µ̂r(λ) =

∞∑
k=0

ψn−1
k (

√
|λ|r)Pk(λ),

Hence we have the relation

Ârf(λ) = f̂(λ)

∞∑
k=0

ψn−1
k (

√
|λ|r)Pk(λ), (2.6)

which is the analogue of (2.1) in our situation. Thus, as in the Euclidean
case, the spherical mean value operators Ar are (right) Fourier multipliers
on the Heisenberg group.

However, in order to define an analytic family of operators containing the
spherical means, it is more suitable to rewrite (2.6) in terms of Laguerre
expansions. For that purpose, we will make use of the special Hermite
expansion of the function fλ, which can be put in a compact form as follows.

Let ϕλk(z) = Ln−1
k

(
1
2 |λ||z|

2
)
e−

1
4
|λ||z|2 stand for the Laguerre functions of type

(n− 1) on Cn. The λ-twisted convolution fλ ∗λ ϕλk(z) is then defined by

fλ ∗λ ϕλk(z) =

∫
Cn
fλ(z − w)ϕλk(w)ei

λ
2

Im z·w dw.

It is well known that one has the expansion (see [27, Chapter 3, proof of
Theorem 3.5.6])

fλ(z) = (2π)−n|λ|n
∞∑
k=0

fλ ∗λ ϕλk(z),

which leads to the formula (see [27, Theorem 2.1.1])

f(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt
( ∞∑
k=0

fλ ∗λ ϕλk(z)
)
|λ|ndλ.
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Applying this to f ∗ µr we have

f ∗ µr(z, t) =
1

2π

∫ ∞
−∞

e−iλtfλ ∗λ µr(z) dλ

where we used the fact that (f ∗ µr)λ(z) = fλ ∗λ µr(z). It has been also
shown that (see [25, Theorem 4.1] and [17, Proof of Proposition 6.1])

fλ ∗λ µr(z) = (2π)−n|λ|n
∞∑
k=0

k!(n− 1)!

(k + n− 1)!
ϕλk(r)fλ ∗λ ϕλk(z),

leading to the expansion (see [16, 17])

Arf(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt
( ∞∑
k=0

ψn−1
k (

√
|λ|r)fλ ∗λ ϕλk(z)

)
|λ|n dλ.

(2.7)
By replacing ψn−1

k by ψδk we get the family of operators taking f into

(2π)−n−1
∞∑
k=0

∫ ∞
−∞

e−iλtψδk(
√
|λ|r)fλ ∗λ ϕλk(z)|λ|n dλ. (2.8)

We will consider these operators when studying the Lp−Lq estimates of the
spherical mean value operator.

2.3. An analytic family of operators. The Laguerre functions ψδk can
be defined for all values of δ > −1, even for complex δ with Re δ > −1. We
define

Aβf(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt
( ∞∑
k=0

ψβ+n−1
k (

√
|λ|)fλ ∗λ ϕλk(z)

)
|λ|n dλ,

(2.9)
for Re(β + n− 1) > −1. Note that for β = 0 we recover A1, thus A1 = A0.
We will use the following relation between Laguerre polynomials of different
types in order to express Aβ in terms of A1 (see [18, (2.19.2.2)])

Lµ+ν
k (r) =

Γ(k + µ+ ν + 1)

Γ(ν)Γ(k + µ+ 1)

∫ 1

0
tµ(1− t)ν−1Lµk(rt) dt, (2.10)

valid for Reµ > −1 and Re ν > 0. We define, for s > 0,

Psf(z, t) =
1

2π

∫ ∞
−∞

e−iλte−
1
4
|λ|sfλ(z) dλ (2.11)

to be the Poisson integral of f in the t-variable. We see that, for Reβ > 0,
Aβ is given by the following representation.

Lemma 2.1. Let Reβ > 0. The operator Aβ is given by the formula

Aβf(z, t) = 2
Γ(β + n)

Γ(β)Γ(n)

∫ 1

0
s2n−1(1− s2)β−1P1−s2f ∗ µs(z, t) ds. (2.12)
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Proof. In view of (2.9), it is enough to verify

2
Γ(β + n)

Γ(β)Γ(n)

∫ 1

0
s2n−1(1− s2)β−1P1−s2f ∗ µs(z, t) ds

= (2π)−n−1

∫ ∞
−∞

e−iλt
( ∞∑
k=0

ψβ+n−1
k (

√
|λ|)fλ ∗λ ϕλk(z)

)
|λ|n dλ.

Note that the left hand side of the above equation is well defined only for
Reβ > 0 whereas the right hand side makes sense for all Reβ > −n. We
can thus think of the right hand side as an analytic continuation of the left
hand side. In view of (2.11), the Fourier transform of the Poisson integral
Psf in the t-variable can be written as

(Psf)λ(z) = e−
1
4
|λ|sfλ(z).

Then, by (2.7) the spherical averages of the Poisson integral P1−s2f are
given by

P1−s2f ∗ µs(z, t) =

(2π)−n−1
∞∑
k=0

∫ ∞
−∞

e−iλtψn−1
k (

√
|λ|s)e−

1
4
|λ|(1−s2)fλ ∗λ ϕλk(z)|λ|n dλ.

Integrating the above equation against s2n−1(1− s2)β−1 ds, we obtain∫ 1

0
s2n−1(1− s2)β−1P1−s2f ∗ µs(z, t) ds

= (2π)−n−1
∞∑
k=0

∫ ∞
−∞

e−iλtρk(
√
|λ|)fλ ∗λ ϕλk(z)|λ|n dλ,

where

ρk(
√
|λ|) =

∫ 1

0
s2n−1(1− s2)β−1ψn−1

k (
√
|λ|s)e−

1
4
|λ|(1−s2) ds. (2.13)

Recalling the definition of ψn−1
k given in (2.4) we have

ρk(
√
|λ|) =

Γ(k + 1)Γ(n)

Γ(k + n)

∫ 1

0
s2n−1(1− s2)β−1Ln−1

k

(1

2
s2|λ|

)
e−

1
4
|λ| ds.

We now use the formula (2.10). First we make a change of variables t→ s2

and then choose µ = n− 1 and ν = β, so that

ρk(
√
|λ|) =

Γ(k + 1)Γ(n)

Γ(k + n)

1

2

Γ(β)Γ(k + n)

Γ(k + n+ β)
e−

1
4
|λ|Ln+β−1

k

( |λ|
2

)
=

1

2

Γ(β)Γ(n)

Γ(β + n)
ψβ+n−1
k (

√
|λ|). (2.14)

The proof follows readily. �
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In particular, from (2.13) and (2.14) (after a change of variable), in the
proof of Lemma 2.1, we infer the following identity.

Corollary 2.2. Let Reβ > 0 and α > −1. Then, for r > 0,

ψα+β
k (r) = 2

Γ(β + α+ 1)

Γ(β)Γ(α+ 1)

∫ 1

0
uα(1− u)β−1ψαk (r

√
u)e−

1
4
r2(1−u) du.

Observe that even for large β, the operator Aβ is a convolution operator
with a distribution supported on Cn × {0}. This is in sharp contrast with
the Euclidean case, see [22], and prevents us to have some Lp improving
property for large values of β. In order to overcome this, we slightly modify
the family in Lemma 2.1 and define a new family Tβ. As we will see below
the modified family of operators Tβ has a better behaviour for β ≥ 1.

For Reβ > 0, let

kβ(t) =
1

Γ(β)
tβ−1
+ e−t, (2.15)

where tβ−1
+ = tβ−1χ(0,∞)(t), which defines a family of distributions on R and

limβ→0 kβ(t) = δ0, the Dirac distribution at 0. Given a function f on Hn

and ϕ on R we use the notation f ∗3 ϕ to stand for the convolution in the
central variable:

f ∗3 ϕ(z, t) =

∫ ∞
−∞

f(z, t− u)ϕ(u) du.

Thus we note that P1−s2f(z, t) = f ∗3 p1−s2(z, t) where p1−s2 is the usual
Poisson kernel in the one dimensional variable t, associated to P1−s2 . In fact,

ps(t) is defined by the relation
∫∞
−∞ e

iλtps(t)dt = e−
1
4
s|λ| and it is explicitly

known: ps(t) = cs(s2 + 16t2)−1 for some constant c > 0, see for example
[21]. With the above notation we define the new family by

Tβf(z, t) =
Γ(β + n)

Γ(β)Γ(n)

∫ 1

0
s2n−1(1−s2)β−1P1−s2(f ∗3kβ)∗µs(z, t) ds. (2.16)

In other words

Tβf = Aβ(f ∗3 kβ).

Lemma 2.3. For Reβ > 0, the operator Tβf has the explicit expansion

Tβf(z, t)

= (2π)−n−1

∫ ∞
−∞

e−iλt(1− iλ)−β
( ∞∑
k=0

ψβ+n−1
k (

√
|λ|)fλ ∗λ ϕλk(z)

)
|λ|n dλ.

Proof. The statement follows from Lemma 2.1, (2.9), and from the fact∫ ∞
−∞

eiλtkβ(t) dt =
1

Γ(β)

∫ ∞
0

eiλttβ−1e−t dt = (1− iλ)−β.
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This can be verified by considering the function

F (β, ζ) =
1

Γ(β)

∫ ∞
0

tβ−1e−tζ dt

defined and holomorphic for Reβ > 0, Re ζ > 0. Indeed, when ζ is fixed,
with Re ζ > 0, we have the relation F (β, ζ) = ζF (β + 1, ζ) which allows us
to holomorphically extend F (β, ζ) in the β variable. It is clear that when
ζ > 0, F (β, ζ) = ζ−β, which allows us to conclude that the Fourier transform
of kβ at λ is given by (1− iλ)−β, as claimed. �

2.4. Spectral estimates. In this subsection we will state and prove sharp
estimates on the normalised Laguerre functions given in (2.4). These es-
timates will be needed to get the L2 boundedness of the analytic family
operators that we introduced in the previous subsection.

We begin by expressing ψδk(r) more conveniently in terms of the standard
Laguerre functions

Lδk(r) =
(Γ(k + 1)Γ(δ + 1)

Γ(k + δ + 1)

) 1
2
Lδk(r)e

− 1
2
rrδ/2

which form an orthonormal system in L2((0,∞), dr). In terms of Lδk(r), we
have

ψδk(r) = 2δ
(Γ(k + 1)Γ(δ + 1)

Γ(k + δ + 1)

) 1
2
r−δLδk

(1

2
r2
)
.

Asymptotic properties of Lδk(r) are well known in the literature and we have
the following result, see [26, Lemma 1.5.3] (actually, the estimates in Lemma
2.4 below are sharp, see [13, Section 2] and [14, Section 7]).

Lemma 2.4 ([26]). For k ∈ N, let us set ν := (4k + 2δ + 1). Then for
δ > −1, we have the following:

|Lδk(r)| ≤ C


(νr)δ/2, 0 ≤ r ≤ 1

ν

(νr)−
1
4 , 1

ν ≤ r ≤
ν
2

ν−
1
4 (ν

1
3 + |ν − r|)−

1
4 , ν

2 ≤ r ≤
3ν
2

e−γr, r ≥ 3ν
2 ,

where γ > 0 is a fixed constant.

From the above estimates of Lδk we can obtain the following estimates for

the normalised Laguerre functions ψδk.

Lemma 2.5. For k ∈ N, let us set ν := (4k+ 2δ+ 1). Then, for α ≥ 0 and
δ > −1 such that δ + 1

3 − 2α ≥ 0, we have the uniform estimates

sup
k

(ν|λ|)α|ψδk(
√
|λ|)| ≤ C

{
1, if |λ| ≤ 1

ν ,

|λ|2α−δ−
1
3 , if |λ| > 1

ν .
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Proof. Since
Γ(k + 1)Γ(δ + 1)

Γ(k + δ + 1)
≤ C(4k + 2δ + 1)−δ,

we need to bound

(ν|λ|)α(ν|λ|)−δ/2Lδk
(1

2
|λ|
)
.

When 1
ν ≤

1
2 |λ| ≤

ν
2 we have the estimate

(ν|λ|)α|ψδk(
√
|λ|)| ≤ C(ν|λ|)α−δ/2−1/4.

From here, since −2α+ δ + 1
2 ≥ 0, λ2 ≤ ν|λ|, we get

(ν|λ|)α|ψδk(
√
|λ|)| ≤ C|λ|2α−δ−1/2.

When ν
2 ≤

1
2 |λ| ≤

3ν
2 , |λ| is comparable to ν and hence we have

(ν|λ|)α|ψδk(
√
|λ|)| ≤ C(ν|λ|)α(ν|λ|)−δ/2ν−

1
4 ν−

1
12 ≤ C|λ|2α−δ−

1
3 .

On the region |λ| ≥ 3ν
2 we have exponential decay. Finally, the estimate

supk(ν|λ|)α|ψδk(
√
|λ|)| ≤ C for 0 ≤ |λ| ≤ 1

ν is immediate, in view of Lemma
2.4. With this we prove the lemma. �

2.5. Lp − Lq estimates. After the preparations in the previous subsec-
tions, we will proceed to prove the Lp − Lq estimates of the operator A1.

We will show that when β = 1 + iγ, the operator Tβ defined in (2.16)
is bounded from Lp(Hn) into L∞(Hn) for any p > 1, and that for certain
negative values of β, Tβ is bounded on L2(Hn). We can then use analytic
interpolation to obtain a result for T0 = A0 = A1. We shall use the following
definition: A function Φ(z) analytic in the open strip 0 < Re(z) < 1, and
continuous in the closed strip, will be called of admissible growth (cf. [19])
if

sup
|y|≤r

sup
0≤x≤1

log |Φ(x+ iy)| ≤ Aear, a < π.

Proposition 2.6. Assume that n ≥ 1. Then for any δ > 0, γ ∈ R,

‖T1+iγf‖∞ ≤ C1(γ)‖f‖1+δ,

where C1(γ) is of admissible growth.

Proof. For β = 1 + iγ it follows that

|T1+iγf(z, t)| ≤ |Γ(1 + iγ + n)|
|Γ(1 + iγ)|2Γ(n)

∫ 1

0
s2n−1P1−s2(f ∗3 ϕ) ∗ µs(z, t) ds

where ϕ(t) = e−tχ(0,∞)(t). Since ϕ ≥ 0 it follows that

P1−s2(f ∗3 ϕ) = ϕ ∗3 p1−s2 ∗3 f ≤ ϕ ∗3 M0
HLf

where M0
HLf is the Hardy-Littlewood maximal function in the t-variable (we

will use the notation MHLf for the Hardy-Littlewood maximal functions in
all the variables in Section 6). Here we have used the following well known
fact: Let ψ be a non-negative, integrable and radially decreasing function
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on R and set ψs(t) = s−1ψ(t/s). Then sups>0 |g ∗ ψs(t)| ≤ CMg(t) for any
locally integrable function g on R where Mg stands for the Hardy-Littlewood
maximal function on R. Thus we have the estimate

|T1+iγf(z, t)| ≤ C1(γ)

∫ 1

0
(M0

HLf ∗3 ϕ) ∗ µs(z, t)s2n−1 ds.

Now we make the following observation: suppose K(z, t) = k(|z|)ϕ(t), where
k is a non-negative function on [0,∞). Then

f ∗K(z, t) =

∫ ∞
0

(f ∗3 ϕ) ∗ µs(z, t)k(s)s2n−1 ds,

which can be verified by recalling the definition of the spherical means f ∗
µs(z, t) in (1.1) and integrating in polar coordinates. This gives us

|T1+iγf(z, t)| ≤ C1(γ)M0
HLf ∗K(z, t)

where K(z, t) = χ|z|≤1(z)ϕ(t). As M0
HLf ∈ L1+δ(Hn) and K ∈ Lq(Hn) for

any q ≥ 1, by Hölder we get

‖T1+iγf‖∞ ≤ C1(γ)‖M0
HLf‖1+δ ≤ C1(γ)‖f‖1+δ.

�

In the next proposition we show that Tβ is bounded on L2(Hn) even for
some values of β < 0.

Proposition 2.7. Assume that n ≥ 1 and β > −n
2 + 1

3 . Then for any γ ∈ R
‖Tβ+iγf‖2 ≤ C2(γ)‖f‖2.

Proof. In view of Lemma 2.3 and Plancherel theorem for the Fourier trans-
form on R and special Hermite expansions on Cn, we only have to check
(observe that |(1− iλ)| = (1 + λ2)1/2),

|(1−iλ)−(β+iγ)||ψβ+iγ+n−1
k (

√
|λ|)| = (1+λ2)−β/2|ψβ+iγ+n−1

k (
√
|λ|)| ≤ C2(γ)

where C2(γ) is independent of k and λ. When γ = 0, it follows from the
estimates of Lemma 2.5 (with α = 0) that

(1 + λ2)−β/2|ψβ+n−1
k (

√
|λ|)| ≤ C|λ|−β|λ|−β−(n−1)− 1

3

for |λ| ≥ 1 (actually, for |λ| ≥ 1
ν ), which is bounded for β ≥ −n

2 + 1
3 . For

γ 6= 0 we can express ψβ+iγ+n−1
k (

√
|λ|) in terms of ψβ−ε+n−1

k (
√
|λ|) for a

small enough ε > 0 and obtain the same estimate. Indeed, by Corollary 2.2
with α = β − ε + n − 1 and β = ε + iγ, and using the asymptotic formula
|Γ(µ + iv)| ∼

√
2π|v|µ−1/2e−π|v|/2, as v → ∞ (see for instance [21, p. 281

bottom note]), we get

|ψβ+iγ+n−1
k (

√
|λ|)| =

∣∣∣2 Γ(β + iγ + n)

Γ(ε+ iγ)Γ(β − ε+ n)

×
∫ 1

0
sβ−ε+n−1(1− s)ε+iγ−1ψβ−ε+n−1

k (
√
|λ|s)e−

1
4
|λ|(1−s) ds

∣∣∣
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.
|γ|β+n−1/2

|γ|ε−1/2

∣∣∣ ∫ 1

0
sβ−ε+n−1(1− s)ε+iγ−1ψβ−ε+n−1

k (
√
|λ|s)e−

1
4
|λ|(1−s) ds

∣∣∣,
where the constant depends on β. Now, by the estimate for ψδk in Lemma

2.5 (for α = 0) and the integrability of the function sβ−ε+n−1(1− s)ε+iγ−1,
we have

(1 + λ2)−β/2|ψβ+iγ+n−1
k (

√
|λ|)| ≤ C|λ|−β|γ|β+n−1−ε|λ|−(β+n−1−ε)−1/3.

For |λ| ≥ 1, the above is bounded for β − ε ≥ −n
2 + 1

3 with ε small enough.
The proof is complete. �

Theorem 2.8. Assume that n ≥ 1 and ε > 0. Then A1 : Lp(Hn)→ Lq(Hn)
for any p, q such that

3

3n+ 4− 6ε
<

1

p
<

3n+ 1− 6ε

3n+ 4− 6ε
,

1

q
=

3

3n+ 4− 6ε
.

Proof. Let us consider the following holomorphic function α(z) on the strip
{z : 0 ≤ Re z ≤ 1}, given by α(z) =

(
n
2 −

1
3 − ε

)
(z − 1) + z. We have

α(0) = −n
2 + 1

3 + ε and α(1) = 1. Then, Tα(z) is an analytic family of linear

operators and it was already shown that T1+iγ is bounded from L1+δ(Hn)
to L∞(Hn). Therefore, we can apply Stein’s interpolation theorem. Letting
z = u+ iv, we have

α(z) = 0⇐⇒
(n

2
− 1

3
− ε
)

(u− 1) + u = 0⇐⇒ u =
3n− 2− 6ε

3n+ 4− 6ε
.

Since ε > 0 is arbitrary, we obtain

Tα(u) : Lpu(Hn)→ Lqu(Hn)

where

3

3n+ 4− 6ε
<

1

pu
<

3n+ 1− 6ε

3n+ 4− 6ε
,

1

qu
=

3

3n+ 4− 6ε
,

and this leads to the result. �

Corollary 2.9. Assume that n ≥ 1. Then

A1 : Lp(Hn)→ Lq(Hn)

whenever
(

1
p ,

1
q

)
lies in the interior of the triangle joining the points (0, 0), (1, 1)

and
(

3n+1
3n+4 ,

3
3n+4

)
, as well as the straight line segment joining the points

(0, 0), (1, 1), see S′n in Figure 1.

Proof. The result follows from Theorem 2.8 after applying Marcinkiewicz
interpolation theorem with the obvious estimates

‖A1f‖1 ≤ ‖f‖1, ‖A1f‖∞ ≤ ‖f‖∞.

�
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(0, 1)

(1, 0)

( 3n+1
3n+4 ,

3n+1
3n+4 )

1
p

1
q

Sn

(0, 0)

(1, 1)

( 3n+1
3n+4 ,

3
3n+4 )

1
1
p

1
q

S′
n

Figure 1. Triangle S′n shows the region for Lp−Lq estimates
for A1. The dual triangle Sn is on the top.

Remark 2.10. Observe that the results in this section are valid for dimensions
n ≥ 1. The restriction n ≥ 2 will arise in Proposition 3.1 as a consequence of
the restriction of the parameter δ on the available estimates for the Laguerre
functions in Lemmas 2.4 and 2.5, which are sharp. Consequently, the rest
of results from Proposition 3.1 on, and in particular the main results in
this paper (Theorems 1.1 and 1.2), are restricted to dimensions n = 2 and
higher.



646 S. BAGCHI, S. HAIT, L. RONCAL AND S. THANGAVELU

3. The continuity property of the spherical means

In the work of Lacey [12] dealing with the spherical maximal function on
Rn, the continuity property of the spherical mean value operator, described
in the Introduction, played a crucial role in getting the sparse bounds for
the spherical maximal function. It was obtained by combining the Lp − Lq
estimates and L2 estimates that were easily deduced from the known decay
estimates of the Fourier multiplier associated to the spherical means. In
the case of the Heisenberg group, the analogous property for Ar is stated in
Corollary 3.5 below. In order to achieve Corollary 3.5, we will appeal to the
Lp improving estimates in Corollary 2.9 along with suitable L2 estimates.
But in our setting, these L2 estimates are not that immediate to obtain, since
the associated multiplier is an operator-valued function. This means that
we are led to prove good decay estimates on the norm of an operator-valued
function, which is nontrivial.

In what follows, for x = (z, t) ∈ Hn, we will denote by |x| = |(z, t)| =

(|z|4 + t2)1/4 the Koranyi norm on Hn.

Proposition 3.1. Assume that n ≥ 2. Then for y ∈ Hn, |y| ≤ 1, we have

‖A1 −A1τy‖L2→L2 ≤ C|y|
where τyf(x) = f(xy−1) is the right translation operator.

Proof. For f ∈ L2(Hn) we estimate the L2 norm of A1f − A1(τyf) using
Plancherel theorem for the Fourier transform on Hn. Recall that A1f(x) =

f ∗ µ1(x) so that Â1f(λ) = f̂(λ)µ̂1(λ), where µ̂1(λ) is explicitly given by

µ̂1(λ) =
∞∑
k=0

ψn−1
k (

√
|λ|)Pk(λ).

We also have

τ̂yf(λ) =

∫
Hn
f(xy−1)πλ(x)dx = f̂(λ)πλ(y).

Thus by the Plancherel theorem for the Fourier transform we have

‖A1f −A1(τyf)‖22 = cn

∫ ∞
−∞
‖f̂(λ)(I − πλ(y))µ̂1(λ)‖2HS|λ|ndλ.

Since the space of all Hilbert-Schmidt operators is a two sided ideal in the
space of all bounded linear operators, it is enough to estimate the operator
norm of (I − πλ(y))µ̂1(λ) (for more about Hilbert-Schmidt operators see
[23]). Again, µ̂1(λ) is self adjoint and πλ(y)∗ = πλ(y−1) and so we will
estimate µ̂1(λ)(I − πλ(y)).

We make use of the fact that for every σ ∈ U(n) there is a unitary
operator µλ(σ) acting on L2(Rn) such that πλ(σz, t) = µλ(σ)∗πλ(z, t)µλ(σ)
for all (z, t) ∈ Hn. Indeed, this follows from the well known Stone–von
Neumann theorem which says that any irreducible unitary representation
of the Heisenberg group which acts like eiλtI when restricted to the center
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is unitarily equivalent to πλ. Moreover, µλ has an extension to a double
cover of the symplectic group as a unitary representation and is called the
metaplectic representation, see [8, Chapter 4, Section 2].

Given y = (z, t) ∈ Hn we can choose σ ∈ U(n) such that y = (|z|σe1, t)
where e1 = (1, 0, ...., 0). Thus

πλ(y) = µλ(σ)∗πλ(|z|e1, t)µλ(σ).

Also, it is well known that µλ(σ) commutes with functions of the Hermite
operator H(λ) given in (2.5). Since µ̂1(λ) is a function of H(λ) it follows
that

µ̂1(λ)(I − πλ(z, t)) = µλ(σ)∗µ̂1(λ)(I − πλ(|z|e1, t))µλ(σ).

Thus it is enough to estimate the operator norm of µ̂1(λ)(I − πλ(|z|e1, t)).
In view of the factorisation πλ(|z|e1, t) = πλ(|z|e1, 0)πλ(0, t) we have that

I − πλ(|z|e1, t)

= I − πλ(|z|e1, 0)πλ(0, t) = (I − πλ(0, t)) + (I − πλ(|z|e1, 0))πλ(0, t)

so it suffices to estimate the norms of µ̂1(λ)(I − πλ(0, t)) and µ̂1(λ)(I −
πλ(|z|e1, 0))πλ(0, t) separately. Moreover, we only have to estimate them for
|λ| ≥ 1 as they are uniformly bounded for |λ| ≤ 1.

Assuming |λ| ≥ 1 we have, in view of (2.2),

µ̂1(λ)(I − πλ(0, t))ϕ(ξ) = (1− eiλt)µ̂1(λ)ϕ(ξ), ϕ ∈ L2(Rn).

By mean value theorem, the operator norm of (1− eiλt)µ̂1(λ) is bounded by

C|t||λ| sup
k
|ψn−1
k (

√
|λ|)| ≤ C|t||λ|−(n−1)+2/3

where we have used the estimate in Lemma 2.5 (for α = 1). Thus for n ≥ 2,

‖µ̂1(λ)(I − πλ(0, t))‖L2→L2 ≤ C|t| ≤ C|(z, t)|2.

In order to estimate µ̂1(λ)(I − πλ(|z|e1, 0)) we recall that

πλ(|z|e1, 0)ϕ(ξ) = eiλ|z|ξ1ϕ(ξ), ϕ ∈ L2(Rn).

Since we can write

(1− eiλ|z|ξ1) = −iλ|z|ξ1

∫ 1

0
eitλ|z|ξ1dt = λ|z|ξ1mλ(|z|, ξ)

with a bounded function mλ(|z|, ξ), it is enough to estimate the norm of the
operator |z|µ̂1(λ)Mλ where Mλϕ(ξ) = λξ1ϕ(ξ).

Let A(λ) = ∂
∂ξ1

+ |λ|ξ1 and A(λ)∗ = − ∂
∂ξ1

+ |λ|ξ1 be the annihilation and

creation operators, so that we can express Mλ as Mλ = 1
2(A(λ) + A(λ)∗).

Thus it is enough to consider |z|µ̂1(λ)A(λ) and |z|µ̂1(λ)A(λ)∗. Moreover,

as the Riesz transforms H(λ)−1/2A(λ) and H(λ)−1/2A(λ)∗ are bounded on

L2(Rn) we only need to consider |z|µ̂1(λ)H(λ)1/2. But the operator norm of

µ̂1(λ)H(λ)1/2 is given by supk((2k+n)|λ|)1/2|ψn−1
k (

√
|λ|)| which, in view of
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Lemma 2.5 (for α = 1/2), is bounded by C|λ|−(n−1)+2/3. Thus for n ≥ 2 we
obtain

‖µ̂1(λ)(I − πλ(|z|e1, 0))‖L2→L2 ≤ C|z| ≤ C|(z, t)|.
This completes the proof of the proposition. �

Remark 3.2. Observe that the result above is restricted to the case n ≥ 2,
and this is due to the restriction on the available sharp estimates for the
Laguerre functions, see Lemmas 2.4 and 2.5 (in particular, we are using
Lemma 2.5 with δ = n − 1). We do not know whether there is a way to
reach n = 1 with our approach.

Corollary 3.3. Assume that n ≥ 2. Then for y ∈ Hn, |y| ≤ 1, and
for

(
1
p ,

1
q

)
in the interior of the triangle joining the points (0, 0), (1, 1) and(

3n+1
3n+4 ,

3
3n+4

)
, there exists 0 < ν < 1 such that we have the inequality

‖A1 −A1τy‖Lp→Lq ≤ C|y|ν ,

where τyf(x) = f(xy−1) is the right translation operator.

Proof. The result follows by Riesz-Thorin interpolation theorem, taking
into account Corollary 2.9 and Proposition 3.1. �

We need a version of the inequality in Corollary 3.3 when A1 is replaced
by Ar. This can be easily achieved by making use of the following lemma
which expresses Ar in terms of A1. Let δrϕ(w, t) = ϕ(rw, r2t) stand for the
non-isotropic dilation on Hn.

Lemma 3.4. For any r > 0 we have Arf = δ−1
r A1δrf.

Proof. This is just an easy verification. Since

A1δrf(z, t) =

∫
|ω|=1

f(rz − rω, r2t− 1

2
r2 Im(z · ω̄))dµ1(ω)

it follows immediately

(δ−1
r A1δrf)(z, t) =

∫
|ω|=1

f(z − rω, t− 1

2
r Im(z · ω̄))dµ1(ω) = Arf(z, t).

�

Corollary 3.5. Assume that n ≥ 2. Then for y ∈ Hn, |y| ≤ r, and
for

(
1
p ,

1
q

)
in the interior of the triangle joining the points (0, 0), (1, 1) and(

3n+1
3n+4 ,

3
3n+4

)
, there exists 0 < ν < 1 such that we have the inequality

‖Ar −Arτy‖Lp→Lq ≤ Cr−ν |y|νr(2n+2)( 1
q
− 1
p

)
.

Proof. Observe that δr(τyf) = τδ−1
r y(δrf), which follows from the fact that

δr : Hn → Hn is an automorphism. The corollary follows from Corollary

3.3, Lemma 3.4, and the fact that ‖δrf‖p = r
− (2n+2)

p for any 1 ≤ p <∞. �
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4. Sparse bounds for the lacunary spherical maximal
function

Our aim in this section is to prove the sparse bounds for the lacunary
spherical maximal function stated in Theorem 1.2. In doing so we closely
follow [12] with suitable modifications that are necessary since we are dealing
with a non-commutative set up. We can equip Hn with a metric induced by
the Koranyi norm which makes it a space of homogeneous type. On such
spaces there is a well defined notion of dyadic cubes and grids with properties
similar to their counter parts in the Euclidean setting. However, we need to
be careful with the metric we choose since the group is non-commutative.

Recall that the Koranyi norm on Hn is defined by |x| = |(z, t)| = (|z|4 +

t2)1/4, which is homogeneous of degree one with respect to the non-isotropic
dilations. Since we are considering f ∗ µr it is necessary to work with the
left invariant metric dL(x, y) = |x−1y| = dL(0, x−1y) instead of the standard
metric d(x, y) = |xy−1| = d(0, xy−1), which is right invariant. The balls and
cubes are then defined using dL. Thus B(a, r) = {x ∈ Hn : |a−1x| < r}.
With this definition we note that B(a, r) = a·B(0, r), a fact which is crucial.
This allows us to conclude that when f is supported in B(a, r) then f ∗µs is
supported in B(a, r+s). Indeed, as the support of µs is contained in B(0, s)
we see that f ∗ µs is supported in B(a, r) · B(0, s) ⊂ a · B(0, r) · B(0, s) ⊂
B(a, r + s).

Theorem 4.1. Let η ∈ (0, 1) with η ≤ 1/96. Then there exists a countable

set of points {zk,αν : ν ∈ Ak}, k ∈ Z, α = 1, 2, . . . , N and a finite number of

dyadic systems Dα := ∪k∈ZDαk , Dαk := {Qk,αν : ν ∈ Ak} such that

(1) For every α ∈ {1, 2, . . . , N} and k ∈ Z we have
i) Hn = ∪Q∈DαkQ (disjoint union).

ii) Q,P ∈ Dα ⇒ Q ∩ P ∈ {∅, P,Q}.
iii) Qk,αν ∈ Dα ⇒ B

(
zk,αν , 1

12η
k
)
⊆ Qk,αν ⊆ B

(
zk,αν , 4ηk

)
. In this

situation zk,αν is called the center of the cube and the side length

`(Qk,αν ) is defined to be ηk.
(2) For every ball B = B(x, r), there exists a cube QB ∈ ∪αDα such that

B ⊆ QB and `(QB) = ηk−1, where k is the unique integer such that
ηk+1 < r ≤ ηk.

Proof. It follows from Theorem 4.1, the proof of Lemma 4.12, Remark
4.13 and Theorem 2.2 in [11], where the choices c0 = 1/4 and C0 = 2 in
[11, Theorem 2.2] are made so that the property (2) holds (see [11, Lemma
4.10]). �

We will first prove a lemma that is the analogue of [12, Lemma 2.3].

Lemma 4.2. Let f1 and f2 be supported on a cube Q and let `(Q) = r.
For

(
1
p ,

1
q

)
in the interior of the triangle joining the points (0, 1), (1, 0) and
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(3n+1
3n+4 ,

3n+1
3n+4), there holds

|〈Arf1 −Arτyf1, f2〉| . |y/r|ν |Q|〈f1〉Q,p〈f2〉Q,q, |y| < r

for some ν > 0.

Proof. By Hölder’s inequality and Corollary 3.5 for the pair
(

1
p ,

1
q′

)
we have,

for |y| < r,

|〈Arf1 −Arτyf1, f2〉| ≤ ‖Arf1 −Arτyf1‖q′‖f2‖q

≤ Cr(2n+2)( 1
q′−

1
p

)
r−ν |y|ν‖f1‖p‖f2‖q

= Cr
(2n+2)( 1

q′−
1
p

)
r−ν |y|ν |Q|

1
p

+ 1
q 〈f1〉Q,p〈f2〉Q,q

. |Q|
1
q′−

1
p |Q|

1
p

+ 1
q r−ν |y|ν〈f1〉Q,p〈f2〉Q,q

. |Q|r−ν |y|ν〈f1〉Q,p〈f2〉Q,q,

as |Q| is comparable to r2n+2. �

Lemma 4.3. Let 0 < η < 1
96 . For Q with `(Q) = ηk, k ∈ Z, we consider

VQ = {P ∈ D1
k+3 : B(zP , η

k+1) ⊆ Q}
and define

AQf := Aηk+2(f1VQ)

where VQ = ∪P∈VQP. Then, for any f supported in Q, the support of AQf
is also contained in Q. Moreover,

Aηk+2f ≤
N∑
α=1

∑
Q∈Dαk

AQ(f).

Proof. Observe that for any x ∈ Hn there exists P ∈ D1
k+3 such that

x ∈ P ⊆ B(zP , 4η
k+3). Then P ⊆ B(zP , η

k+1) ⊆ Q for some Q in Dαk ,
for some α. Therefore P ∈ VQ and hence x ∈ VQ. This proves that

Hn =
⋃N
α=1

⋃
Q∈Dαk

VQ, hence we have f ≤
∑N

α=1

∑
Q∈Dαk

f1VQ , and conse-

quently Aηk+2f ≤
∑N

α=1

∑
Q∈Dαk

AQf . It remains to be proved that AQf

is supported in Q. Now assume that supp f ⊆ Q and recall Aηk+2f(x) =

f ∗µηk+2(x). Then it is enough to show that suppAηk+2(f1P ) ⊆ B(zP , η
k+1)

for every P ∈ VQ. Indeed,

supp(f1P )∗µηk+2 ⊆ (supp(f1P )) · (suppµηk+2) ⊆ zP ·B(0, ηk+2) ·B(0, δk+2)

which is contained in B(zP , η
k+1) ⊆ Q by the definition of VQ. Observe

that the above argument fails if we use balls defined by the standard right
invariant metric. The lemma is proved. �

Remark 4.4. Actually we can take any η > 0 when considering Aηk+2(f1VQ)
in Lemma 4.3 (and in Theorems 1.1 and 1.2), in particular we could consider
the means A2−m(f1VQ), m ∈ Z, or even more general Aδm(f1VQ), for any
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δ > 0. In that case we have to do some modifications in defining AQf , where

one has to use the fact that if η < 1
96 then the number of points of the form

δm, m ∈ Z, lying between ηj and ηj+1, j ∈ Z, does not depend on j.
Indeed, let 0 < η < 1

96 , that is fixed due to the fact that we are dealing

with a space of homogeneous type. For Q with `(Q) = ηk we consider

VQ = {P ∈ D1
k+3 : B(zP , η

k+1) ⊆ Q}.

Let, for any ζ > 0,

Θζ
k = {m ∈ Z : ηk+3 < ζm ≤ ηk+2 or ηk+2 < ζm ≤ ηk+3}

and define

AQf :=
∑
m∈Θζk

Aζm(f1VQ)

where VQ = ∪P∈VQP. Suppose f is supported in Q. Since the support of
each Aζm(f1VQ) is contained in Q, then the support of AQf is also contained
in Q. Moreover,

sup
m∈Θζk

Aζmf ≤
N∑
α=1

∑
Q∈Dαk

AQ(f).

Now, as the number of terms in Θζ
k does not depend on k, AQf satisfies

Lemma 4.2 with constant independent of k.
Observe also that in particular, we can choose ζ = 1/2 in the reasoning

above, which is the standard lacunary case. In order to avoid additional
notation, we just chose ζ = η in Lemma 4.3. Nevertheless, for the main
results, we will keep the standard lacunary notation.

In view of Lemma 4.3 it suffices to prove the sparse bound for each
MDαf = supQ∈Dα AQf for α = 1, 2, . . . , N . To see this, recall that, by The-
orem 4.1, for each fixed α and k we have Hn = ∪Q∈DαkQ (disjoint union).
Since the support of AQf is contained in Q it follows that∑

Q∈Dαk

AQ(f) ≤MDαf.

Let us fix then D = Dα. We will linearise the supremum. Let us assume
that f is supported in a cube Q0 ∈ D, and let D(Q0) be the collection of all
dyadic subcubes of Q0. We define

EQ :=
{
x ∈ Q : AQf(x) ≥ 1

2
sup

P∈D(Q0)
AP f(x)

}
for Q ∈ D(Q0). Note that for any x ∈ Hn there exists a Q ∈ Q such that

AQf(x) ≥ 1

2
sup

P∈D(Q0)
AP f(x)
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and hence x ∈ EQ. If we define BQ = EQ \ ∪Q′⊇QEQ′ , then {BQ : Q ∈
D(Q0)} are disjoint and also, ∪Q∈D(Q0)BQ = ∪Q∈D(Q0)EQ. For f1, f2 > 0 it
then follows that

〈 sup
P∈D(Q0)

AP f1, f2〉 =
∑
Q∈Q

∫
EQ

sup
P∈D(Q0)

AP f1(x)f2(x) dx

≤ 2
∑

Q∈D(Q0)

∫
BQ

AQf1(x)f2(x) dx

≤ 2
∑

Q∈D(Q0)

∫
Hn
AQf1(x)f2(x)1BQ(x) dx

≤ 2
∑

Q∈D(Q0)

〈AQf1, f21BQ〉.

Defining (f2)Q := f21BQ we will deal with
∑

Q∈D(Q0)〈AQf1, (f2)Q〉.

Lemma 4.5. Let 1 < p, q < ∞ be such that
(

1
p ,

1
q

)
in the interior of the

triangle joining the points (0, 1), (1, 0) and (3n+1
3n+4 ,

3n+1
3n+4). Let f1 = 1F and let

f2 be any bounded function supported in Q0. Let C0 > 1 be a constant and
let Q be a collection of dyadic subcubes of Q0 ∈ D for which the following
holds

sup
Q′∈Q

sup
Q:Q′⊂Q⊂Q0

〈f1〉Q,p
〈f1〉Q0,p

< C0. (4.1)

Then there holds ∑
Q∈Q
〈AQf1, (f2)Q〉 . 〈f1〉Q0,p〈f2〉Q0,q|Q0|.

Proof. We perform a Calderón–Zygmund decomposition of f1 at height
2C0〈f1〉Q0,p. Let us denote by B the resulting collection of (maximal) dyadic
subcubes of Q0 so that

〈f1〉Q,p > 2C0〈f1〉Q0,p. (4.2)

Set f1 = g1 + b1, where ‖g1‖L∞ . 〈f1〉Q0,p and

b1 =
∑
P∈B

(f1−〈f1〉P )1P =

∞∑
j=s0+1

∑
P∈B(j)

(f1−〈f1〉P )1P =:

∞∑
j=s0+1

B1,j , (4.3)

where `(Q0) = ηs0 and B(j) = {P ∈ B : `(P ) = ηj}. Now∣∣ ∑
Q∈Q
〈AQf1, (f2)Q〉

∣∣ ≤ ∑
Q∈Q
|〈AQg1, (f2)Q〉|+

∑
Q∈Q
|〈AQb1, (f2)Q〉|.

Hence∑
Q∈Q
|〈AQg1, (f2)Q〉| .

∑
Q∈Q
‖AQg1‖∞‖f21BQ‖1

. 〈f1〉Q0,p〈f2〉Q0,1|Q0| . 〈f1〉Q0,p〈f2〉Q0,q|Q0|.
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We now make the following useful observation. For all Q ∈ Q and P ∈ B, if
P ∩Q 6= ∅ then P is properly contained in Q. For otherwise, Q ⊆ P and by
the assumption on Q, we get 〈f1〉P,p < C0〈f1〉Q0,p. But this contradicts the
Calderón–Zygmund decomposition since 〈f1〉P,p > 2C0〈f1〉Q0,p. Therefore,
for any Q ∈ Q with `(Q) = ηs we have

〈AQb1, (f2)Q〉 =
∑
j>s

〈AQB1,j , (f2)Q〉 =
∞∑
j=1

〈AQB1,s+j , (f2)Q〉

and so ∣∣ ∑
Q∈Q
〈AQb1, (f2)Q〉

∣∣ ≤ ∞∑
j=1

∑
Q∈Q
|〈AQB1,s+j , (f2)Q〉|.

By making use of the mean zero property of b1, we see that

|〈AQB1,s+j , (f2)Q〉| = |〈B1,s+j , A
∗
Q(f2)Q〉|

≤
∑

P∈B(s+j)

∣∣ ∫
P
A∗Q(f2)Q(x)B1,s+j(x) dx

∣∣
=

∑
P∈B(s+j)

1

|P |

∣∣∣ ∫
P

∫
P

[
A∗Q(f2)Q(x)−A∗Q(f2)Q(x′)

]
B1,s+j(x) dx dx′

∣∣∣.
In the integral with respect to x′ we make the change of variables x′ = xy−1

and note that P−1x ⊂ P−1P (here we have used the standard notation: for
subsets A,B ⊂ Hn we have AB = {ab : a ∈ A, b ∈ B} and also A−1 =
{a−1 : a ∈ A}). Since P ⊂ B(zP , 4η

s+j) = zP · B(0, 4ηs+j) it follows that
P−1 ⊂ B(0, 4ηs+j)z−1

P and hence P−1P ⊂ P0 = B(0, 8ηs+j) ⊂ B(0, ηs+j−1)
(observe that for the above argument it is important that the balls are
defined using the left invariant metric). Thus we have

|〈AQB1,s+j , (f2)Q〉|

≤
∑

P∈B(s+j)

1

|P |

∣∣∣ ∫
P−1P

∫
P

[
A∗Q(f2)Q(x)− τyA∗Q(f2)Q(x)

]
B1,s+j(x) dx dy

∣∣∣
.

1

|P0|

∫
P0

∫
Q

∣∣(f2)Q(x)(AQ −AQτy−1)B1,s+j(x)
∣∣ dx dy

.
1

|P0|

∫
P0

∣∣∣ y

`(Q)

∣∣∣ν |Q|〈B1,s+j1Q〉Q,p〈(f2)Q〉Q,q dy

.
η(s+j−1)ν

ηsν
|Q|〈B1,s+j1Q〉Q,p〈(f2)Q〉Q,q

= η(j−1)ν |Q|〈B1,s+k1Q〉Q,p〈(f2)Q〉Q,q,
where we used Lemma 4.2 in the third inequality.

Now we will prove∑
Q∈Q
|Q|〈B1,s+j1Q〉Q,p〈f21BQ〉Q,q . |Q0|〈f1〉Q0,p〈f2〉Q0,q, (4.4)
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for all j ≥ 1 and for all 1 < p, q <∞ such that
(

1
p ,

1
q

)
are in the interior of

the triangle joining the points (0, 1), (1, 0) and (1, 1) (including the segment
joining (0, 1) and (1, 0), excluding the endpoints).

Let us fix the integer j. From the definition and (4.1) it follows that we
can dominate

|B1,s+j | . 〈f1〉Q0,p1Es + 1Fs ,

where Es = Es,j are pairwise disjoint sets in Q0 as s varies, and Fs = Fs,j
are pairwise disjoint sets in F . This produces two terms to control. For the
first one, we will show that

〈f1〉Q0,p

∑
Q∈Q
|Q|〈1Es〉Q,p〈f21BQ〉Q,q . |Q0|〈f1〉Q0,p〈f2〉Q0,q. (4.5)

First we consider the case when 1/p+ 1/q = 1, i.e. p = q′, for 1 < p <∞.∑
Q∈Q
|Q|〈1Es〉Q,p〈f21BQ〉Q,p′ =

∑
Q∈Q

(∫
Q
1Es dx

)1/p(∫
Q
|f2(x)|p′1BQ dx

)1/p′

≤
( ∑
Q∈Q

∫
Q
1Es dx

)1/p( ∑
Q∈Q

∫
Q
|f2(x)|p′1BQ dx

)1/p′

.

On the one hand, from the disjointness of BQ,∑
Q∈Q

∫
Q
|f2(x)|p′1BQ dx =

∫
∪BQ
|f2(x)|p′ dx ≤

( 1

|Q0|

∫
Q0

|f2(x)|p′ dx
)
|Q0|

= |Q0|〈f2〉p
′

Q0,p′
.

On the other hand, as Es ∩Q are disjoint subsets of Q0 we finally obtain∑
Q∈Q

∫
Q
1Es dx =

∑
Q∈Q
|Es ∩Q| ≤ |Q0|.

Thus the required inequality (4.4) is proved for the first term in the case
1/p+ 1/q = 1. In the case 1/p+ 1/q = 1 + τ > 1, set 1/p̃ = 1/p− τ . Then,
1/p̃+ 1/q = 1, and p < p̃, so that

〈1Es〉Q,p〈f21BQ〉Q,q . 〈1Es〉Q,p̃〈f21BQ〉Q,q.

Then, (4.5) follows from the previous case since 1/p̃+ 1/q′ = 1.
Concerning the second term, we will show that∑

Q∈Q
|Q|〈1F1,s〉Q,p〈f21BQ〉Q,q . |Q0|〈f1〉Q0,p〈f2〉Q0,q. (4.6)

Again, the inequality holds in the case of 1/p + 1/q = 1. For 1/p + 1/q =
1 + τ > 1, we define p̃ as above. By using the stopping condition (4.2) we
have then

〈1F1,s〉Q,p〈f21BQ〉Q,q . 〈1F1〉τQ0
〈1F1,s〉Q,p̃〈f21BQ〉Q,q.
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From this and by using the previous case, since 1/p̃ + 1/q = 1, we can
conclude (4.6), and therefore (4.4). The proof is complete. �

Let us proceed to prove Theorem 1.2. We will state it also here, for the
sake of the reading.

Theorem 4.6. Assume n ≥ 2. Let 1 < p, q <∞ be such that (1
p ,

1
q ) belongs

to the interior of the triangle joining the points (0, 1), (1, 0) and (3n+1
3n+4 ,

3n+1
3n+4).

Then for any pair of compactly supported bounded functions (f1, f2) there
exists a (p, q)-sparse form such that 〈Mlacf1, f2〉 ≤ CΛS,p,q(f1, f2).

Proof. Fix a dyadic grid D and consider the maximal function

MDf1(x) = sup
Q∈D
|AQf1(x)|.

We can assume that f1 is supported in Q0 so that AQf1 = 0 for all large
enough cubes. According to this, we will therefore prove the sparse bound
for the maximal function

MD∩Q0f1(x) = sup
Q∈D
|AQf1(x)|.

From this, it follows that Mlac is bounded by the sum of a finite number
of sparse forms. By the definition of supremum, given f1, f2, there is a
sparse family of dyadic cubes S0 so that supS ΛS,p,q(f1, f2) ≤ 2ΛS0,p,q(f1, f2).
Therefore, the claimed sparse bound holds.

As explained above, by linearising the supremum it is enough to prove
the sparse bound for the sum∑

Q∈D∩Q0

〈AQf1, f21BQ〉 (4.7)

for the collection of pairwise disjoint BQ ⊂ Q described just before Lemma
4.5.

Given 1 < p, q < ∞ so that Corollaries 2.9 and 3.5 hold for
(

1
p ,

1
q′

)
, we

have to produce a sparse family S of subcubes of Q0 such that

〈MD∩Q0f1, f2〉 ≤ 2
∑

Q∈D∩Q0

〈AQf1, f21BQ〉 ≤ C
∑
S∈S
|S|〈f1〉S,p〈f2〉S,q

where for each S ∈ S, there exists FS ⊂ S with |FS | ≥ 1
2 |S|.

We first prove (4.7) when f1 is the characteristic function of a set F ⊂ Q0.
Consider the collection EQ0 of maximal children P ⊂ Q0 for which

〈f1〉P,p > 2〈f1〉Q0,p.

Let EQ0 = ∪P∈EQ0
. For a suitable choice of cn > 1 we can arrange |EQ0 | <

1
2 |Q0|. We let FQ0 = Q0 \ EQ0 so that |FQ0 | ≥ 1

2 |Q0|. We define

Q0 = {Q ∈ D ∩Q0 : Q ∩ EQ0 = ∅}. (4.8)
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Note that when Q ∈ Q0 then 〈f1〉Q,p ≤ 2〈f1〉Q0,p. For otherwise, if 〈f1〉Q,p >
2〈f1〉Q0,p then there exists P ∈ EQ0 such that P ⊃ Q, which is a con-
tradiction. For the same reason, if Q′ ∈ Q0 and Q′ ⊂ Q ⊂ Q0 then
〈f1〉Q,p ≤ 2〈f1〉Q0,p. Thus

sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈f1〉Q,p ≤ 2〈f1〉Q0,p.

Note that for any Q ∈ D ∩Q0, either Q ∈ Q0 or Q ⊂ P for some P ∈ EQ0 .
Thus∑
Q∈D∩Q0

〈AQf1, f21BQ〉 =
∑
Q∈Q0

〈AQf1, f21BQ〉+
∑

P∈EQ0

∑
Q⊂P
〈AQf1, f21BQ〉

for any Q ∈ Q0, Q ⊂ FQ0 and hence∑
Q∈Q0

〈AQf1, f21BQ〉 =
∑
Q∈Q0

〈AQf1, f21FQ0
1BQ〉.

Applying Lemma 4.5 we obtain∑
Q∈Q0

〈AQf1, f21BQ〉 ≤ C|Q0|〈f1〉Q0,p〈f21FQ0
〉Q0,q.

Let {Pj} be an enumeration of the cubes in EQ0 . Then the second sum
above is given by

∞∑
j=1

∑
Q∈Pj∩D

〈AQf1, f21BQ〉.

For each j we can repeat the above argument recursively. Putting everything
together we get a sparse collection S for which∑

Q∈D∩Q0

〈AQf1, f21BQ〉 ≤ C
∑
S∈S
|S||〈f1〉S,p〈f21FS 〉S,q. (4.9)

This proves the result when f1 = 1F . We pause for a moment to remark
that we have actually proved a sparse domination stronger than the one
stated in the theorem. However, we are not able to prove such a result for
general f1.

Now we prove the theorem for any bounded f1 ≥ 0 supported in Q0.
We start as in the case of f1 = 1F but now we define Q0 using stopping
conditions on both f1 and f2. Thus we let EQ0 stand for the collection of
maximal subcubes P of Q0 for which either 〈f1〉P,p > 2〈f1〉Q0,p or 〈f2〉P,q >
2〈f2〉Q0,q. As before, we define EQ0 = ∪P∈EQ0

and FQ0 = Q0 \ EQ0 so that

|FQ0 | ≥ 1
2 |Q0|. We let

Q0 = {Q ∈ D ∩Q0 : Q ∩ EQ0 = ∅}.

Then it follows that

sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈f1〉Q,p ≤ 2〈f1〉Q0,p
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and

sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈f2〉Q,q ≤ 2〈f2〉Q0,q.

If we can show that∑
Q∈Q0

〈AQf1, f21BQ〉 ≤ C|Q0|〈f1〉Q0,ρ〈f2〉Q0,q (4.10)

for some ρ > p, then we can proceed as in the case of f1 = 1F to get the
sparse domination

〈MDf1〉 ≤ C
∑
S∈S
|S||〈f1〉S,ρ〈f2〉S,q.

In order to prove (4.10) we make use of the sparse domination already
proved for f1 = 1F . Defining Em := {x ∈ Q0 : 2m ≤ f1(x) ≤ 2m+1}
and f1,m := f11Em , we have the decomposition f1 =

∑
m f1,m (since f1 is

bounded it follows that Em = ∅ for all m ≥ m0 for some m0 ∈ Z). By
applying the sparse domination (4.9) to 1Em we obtain the following:∑

Q∈Q0

〈AQf1,m, f21BQ〉 ≤ 2m+1
∑
Q∈Q0

〈AQ1Em , f21BQ〉

= 2m+1
∑
Q∈Q0

〈AQ1Em , f21FQ0
1BQ〉

≤ 2m+1
∑

Q∈Q0∩D
〈AQ1Em , f21FQ0

1BQ〉

≤ C2m+1
∑
S∈Sm

|S|〈1Em〉S,p〈f21FQ0
〉S,q,

where in the last three lines we used that for any Q ∈ Q0, Q ⊂ FQ0 , (4.8)
and (4.9). In the above sum, 〈f21FQ0

〉S,q = 0 unless S∩FQ0 6= ∅. If S ⊂ FQ0

then by the definition of Q0 in (4.8) it follows that S ∈ Q0 and

〈f21FQ0
〉S,q ≤ 〈f2〉S,q ≤ cn〈f2〉Q0,q.

If S ∩ FQ0 6= ∅ as well as S ∩ EQ0 6= ∅, then for some P ∈ EQ0 , P ⊂ S. But
then by the maximality of P we have

〈f21FQ0
〉S,q ≤ 〈f2〉S,q ≤ 2〈f2〉Q0,q.

Using this we obtain∑
Q∈Q0

〈AQf1,m, f21BQ〉 ≤ C2m+1〈f2〉Q0,q

∑
S∈Sm

|S|〈1Em〉S,p.

By Lemma 4.9 we get∑
Q∈Q0

〈AQf1,m, f21BQ〉 ≤ C2m+1〈f2〉Q0,q〈1Em〉Q0,ρ1 |Q0|
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for some ρ1 > p. As f1 =
∑

m f1,m it follows that∑
Q∈Q0

〈AQf1,m, f21BQ〉 ≤ C〈f2〉Q0,q|Q0|
∑
m

2m〈1Em〉Q0,ρ1 .

We now claim that (see Lemma 4.8 below)∑
m

2m〈1Em〉Q0,ρ1 ≤ C‖f1‖Lρ1,1(Q0,dµ) (4.11)

where Lρ1,1(Q0, dµ) stands for the Lorentz space defined on the measure
space (Q0, dµ), dµ = 1

|Q0|dx. We also know that on a probability space, the

Lρ1,1(Q0, dµ) norm is dominated by the Lρ(Q0, dµ) norm for any ρ > ρ1

(Lemma 4.7). Using these two results we see that∑
Q∈Q0

〈AQf1, f21BQ〉 ≤ C〈f2〉Q0,q|Q0|〈f1〉Q0,ρ.

Hence (4.10) is proved and thus completes the proof of Theorem 4.6. �

It remains to prove Lemma 4.7 and the claim (4.11). The first one is a
well known fact which we include here for the sake of completeness.

Lemma 4.7. On any probability space (X, dµ), Lp(X, dµ) ⊂ Lr,1(X, dµ) for
p > r.

Proof. Recall that the Lorentz spaces Lp,q(X, dµ) are defined in terms of
the Lorentz norms (see [10])

‖f‖p,q =


(∫∞

0

(
t
1
p f∗(t)

)q dt
t

) 1
q

if q <∞,

supt>0 t
1
p f∗(t) if q =∞,

where f∗(t) stands for the non-decreasing rearrangement of f. When f ∈
Lp(X, dµ), as dµ is a probability measure, we know that the distribution
function df(s) of f is bounded by 1 and hence f∗(t) = 0 for t ≥ 1. Now

‖f‖Lr,1(X,dµ) =

∫ ∞
0

t
1
r
−1f∗(t) dt =

∫ 1

0
t−

1
r′ f∗(t) dt.

By Hölder’s inequality

‖f‖Lr,1(X,dµ) ≤
(∫ 1

0
t−

p′
r′ dt

)1/p′(∫ 1

0
f∗(t)p dt

)1/p
= Cr,p

(∫ 1

0
f∗(t)p dt

)1/p

where Cr,p <∞ since p′ < r′. This proves the claim since(∫ 1

0
f∗(t)p dt

) 1
p

= ‖f‖Lp(X,dµ).

�

The claim (4.11) is the content of the next lemma.
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Lemma 4.8. Let f =
∑

m fm, fm = f1Em where Em = {x ∈ Q0 : 2m ≤
|f(x)| ≤ 2m+1}. We consider the probability measure dµ = |Q0|−1dx on
X = Q0. Then for any r > 1 we have∑

m

2m〈1Em〉Q0,r ≤ C‖f‖Lr,1(Q0,dµ).

Proof. We recall the following definition of the Lorentz norm in terms of
df(s):

‖f‖Lr,1(X,dµ) =

∫ ∞
0

df(s)
1
r ds.

As df(s) is a decreasing function of s we have

‖f‖Lr,1(X,dµ) =
∑
m

∫ 2m+1

2m
df(s)

1
r ds

≥
∑
m

df(2m)
1
r (2m+1 − 2m)

=
1

2

∑
m

df(2m)
1
r 2m.

On the other hand, as fm = f1Em , it follows that

µ(Em) = df(2m)− df(2m+1) ≤ df(2m),

and consequently,∑
m

µ(Em)
1
r 2m ≤

∑
m

df(2m)
1
r 2m ≤ 2‖f‖Lr,1(X,dµ).

This proves the lemma. �

In proving Theorem 4.6 we have made use of the following lemma, which is
proved in [12, Proposition 2.19]. We include a proof here for the convenience
of the reader.

Lemma 4.9 ([12]). Let S be a collection of sparse subcubes of a fixed dyadic
cube Q0 and let 1 ≤ s < t <∞. Then, for a bounded function φ,∑

Q∈S
〈φ〉Q,s|Q| . 〈φ〉Q0,t|Q0|.

Proof. By sparsity,∑
Q∈S
〈φ〉Q,s|Q| =

∑
Q∈S
〈φ〉Q,s|Q|1/t+1/t′

≤
(∑
Q∈S
〈φ〉tQ,s|Q|

)1/t(∑
Q∈S
|Q|
)1/t′

.
(∑
Q∈S
〈|φ|s〉t/sQ |Q|

)1/t
|Q0|1/t

′
. ‖φ1Q0‖t|Q0|1/t

′
.

�
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5. Boundedness properties for the lacunary spherical
maximal function

Consequences inferred from sparse domination are well-known and have
been studied in the literature. We refer to [1, Section 4] for an account of the
same. In particular, sparse domination provides unweighted and weighted
inequalities for the operators under consideration.

The strong boundedness is a result by now standard, see [7], also [12,
Proposition 6.1]. Our Theorem 1.1 follows from Theorem 1.2 and Proposi-
tion 5.1.

Proposition 5.1 ([7]). Let 1 ≤ r < s′ ≤ ∞. Then,

Λr,s(f1, f2) . ‖f1‖Lp‖f2‖Lp′ , r < p < s′.

For the sake of completeness we reproduce the proof, which is quite simple:
as the collection S is sparse, we have

Λr,s(f1, f2) ≤ C
∑
S∈S

∫
ES

〈f1〉S,r〈f2〉S,s1ESdx

where ES ⊂ S are disjoint with the property that |ES | ≥ η|S|. The above
leads to the estimate

Λr,s(f1, f2) ≤ C
∫
Hn

(
MHL|f1|r(x)

)1/r(
MHL|f2|s(x)

)1/s
dx

where MHLh stands for the Hardy-Littlewood maximal function of h. In view
of the boundedness of MHL, an application of Hölder’s inequality completes
the proof of the proposition.

A weight w is a non-negative locally integrable function defined on Hn.
Given 1 < p < ∞, the Muckhenhoupt class of weights Ap consists of all w
satisfying

[w]Ap := sup
Q
〈w〉Q〈σ〉p−1

Q <∞, σ := w1−p′

where the supremum is taken over all cubes Q in Hn. On the other hand, a
weight w is in the reverse Hölder class RHp, 1 ≤ p <∞, if

[w]RHp = sup
Q
〈w〉−1

Q 〈w〉Q,p <∞,

again the supremum taken over all cubes in Hn.
The following theorem was shown in [3, Section 6].

Theorem 5.2 ([3]). Let 1 ≤ p0 < q′0 ≤ ∞. Then,

Λp0,q0(f1, f2) ≤ {[w]Ap/p0 · [w]RH(q′0/p)
′}α‖f1‖Lp(w)‖f2‖Lp′ (σ), p0 < p < q′0,

with α = max
{

1
p−1 ,

q′0−1
q′0−p

}
.
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In view of Theorem 5.2 and Theorem 1.2 we can obtain the following
corollary: it provides unprecedented weighted estimates for the lacunary
maximal spherical means in Hn. We only state a qualitative result in order
to simplify the presentation.

Corollary 5.3. Let n ≥ 2 and define

1

φ(1/p0)
=

{
1− 1

p0
3

3n+1 , 0 < 1
p0
≤ 3n+1

3n+4 ,

3n+1
3

(
1− 1

p0

)
, 3n+1

3n+4 <
1
p0
< 1.

Then Mlac is bounded on Lp(w) for w ∈ Ap/p0 ∩ RH(φ(1/p0)′/p)′ and all 1 <
p0 < p < (φ(1/p0))′.

6. The full maximal function

As in the case of the lacunary spherical maximal function we can also
deduce sparse bounds for the full maximal function.

Theorem 6.1. Assume n ≥ 2. Let 1 < p, q < ∞ be such that (1
p ,

1
q )

belongs to the interior of the triangle joining the points (0, 1), (2n−1
2n , 1

2n) and

(3n+1
3n+7 ,

3n+1
3n+7). Then for any pair of compactly supported bounded functions

(f1, f2) there exists a (p, q)-sparse form such that

〈Mfullf1, f2〉 ≤ CΛS,p,q(f1, f2).

Weighted norm inequalities for the full maximal function are implied from
the sparse domination result, see Subsection 6.3. As explained in the Intro-
duction, we expect that the range will not be sharp.

We will make use of the fixed time estimates for the operator Ar from
Section 2 trivially integrating in the r-variable and the known Lp estimates
for Mfull to show the following theorem for the local (full) maximal operator.
This theorem will be later used to prove Theorem 6.1. Let us define, for
some 0 < δ < 1,

Mδf(z, t) := sup
1≤r≤δ−1

|Arf(z, t)|.

Theorem 6.2. Assume that n ≥ 2 and 0 < δ < 1. Then

Mδ : Lp(Hn)→ Lq(Hn)

whenever
(

1
p ,

1
q

)
lies in the interior of the triangle joining the points (0, 0),(

2n−1
2n , 2n−1

2n

)
and

(
3n+1
3n+7 ,

6
3n+7

)
, as well as the straight line segment joining

the points (0, 0),
(

2n−1
2n , 2n−1

2n

)
.

Let 0 < δ < 1. Observe that, for f ≥ 0, by Fundamental Theorem of
Calculus we obtain

sup
1≤r≤δ−1

|Arf |q = |A1f |q +

∫ δ−1

1
q|Arf |q−1

( d
dr
Arf

)
dr.
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Hölder’s inequality twice gives, for any q ≥ 1,

‖Mδf‖Lq(Hn) ≤ ‖A1f‖Lq(Hn) + ‖Arf‖1−1/q
Lq(Hn×[1,δ−1])

∥∥∥ d
dr
Arf

∥∥∥1/q

Lq(Hn×[1,δ−1])
.

(6.1)
Since we already have Lp − Lq estimates for A1f (see Corollary 2.9), we
will only deal with Brf := d

drArf to get the Lp − Lq estimates for Mδf in
Theorem 6.2.

We will also use Corollary 3.5 in order to prove a continuity condition
of Mδf . The program is completely analogous to the lacunary case, only
requiring more technical effort. We will omit the details in many instances.

6.1. Lp − Lq estimates for the derivatives of the spherical means.
Recall the expansion of Arf in (2.7). Now using the fact that Brf = d

drArf ,
we get the following expression for Brf

Brf(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt

[ ∞∑
k=0

(
− |λ|r

2
ψn−1
k (

√
|λ|r)

−k|λ|r
n

ψnk−1(
√
|λ|r)

)
fλ ∗λ ϕλk(z)

]
|λ|n dλ. (6.2)

where we have used the fact that d
drL

α
k (r) = −Lα+1

k−1 , see [24, Chapter V].
For u > 0, we define

Bβuf(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt
( ∞∑
k=0

(
− |λ|u

2
ψ2β+n−1
k (

√
|λ|u)

− k|λ|u
n

ψ2β+n
k (

√
|λ|u)

)
fλ ∗λ ϕλk(z)

)
|λ|n dλ, (6.3)

for Re(2β + n− 1) > −1. If β = 0 we have B0
u = Bu.

Let us consider also a rescaling of the formula (2.12) namely, the operator
(Aβ)u given by

(Aβ)uf(z, t) = 2
Γ(β + n)

Γ(β)Γ(n)

∫ 1

0
s2n−1(1− s2)β−1Pu2(1−s2)f ∗ µus(z, t) ds.

Next we use the above expression along with the fact that

Bβuf(z, t) =
d

du
(A2β)uf(z, t)

to get the following expression for Bβuf .

Lemma 6.3.

Bβuf(z, t) = 2
Γ(2β + n)

Γ(2β)Γ(n)u

×
∫ 1

0
s2n−1(1− s2)2β−1

(
cn +

2s(2β − 1)

1− s2

)
Pu2(1−s2)f ∗ µus(z, t) ds
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− 2
Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1Qu2(1−s2)f ∗ µus(z, t) ds

+ 2
Γ(2β + n)

Γ(2β)Γ(n)u

∫ 1

0
s2n(1− s2)2β−1 d

ds
Pu2(1−s2)f ∗ µus(z, t) ds,

where Qsf := f ∗ qs and qs(t) = c s3

(s2+16t2)2
for some positive constant c.

Proof. From Lemma 2.1 we get

Bβuf(z, t) = 2
Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1 d

du
Pu2(1−s2)f ∗ µus(z, t) ds

+ 2
Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1Pu2(1−s2)f ∗

d

du
µus(z, t) ds.

Define

B1,β
u f(z, t) = 2

Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1 d

du
Pu2(1−s2)f ∗ µus(z, t) ds.

and

B2,β
u f(z, t) = 2

Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1Pu2(1−s2)f ∗

d

du
µus(z, t) ds.

Now d
duPu2(1−s2) = f ∗ d

dupu2(1−s2). Hence

d

du
Pu2(1−s2) = f ∗ 1

u
(pu2(1−s2) − qu2(1−s2)).

Thus

B1,β
u f(z, t)

= 2
Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1−s2)2β−1 1

u
(Pu2(1−s2)−Qu2(1−s2))f∗µus(z, t) ds.

Also we have

B2,β
u f(z, t) = 2

Γ(2β + n)

Γ(2β)Γ(n)

∫ 1

0
s2n−1(1− s2)2β−1Pu2(1−s2)f ∗

s

u

d

ds
µus(z, t) ds

= −2
Γ(2β + n)

uΓ(2β)Γ(n)

∫ 1

0
2ns2n−1(1− s2)2β−1Pu2(1−s2)f ∗ µus(z, t) ds

+ 2
Γ(2β + n)

uΓ(2β)Γ(n)

∫ 1

0
s2n(2β − 1)(2s)(1− s2)2β−2Pu2(1−s2)f ∗ µus(z, t) ds

− 2
Γ(2β + n)

uΓ(2β)Γ(n)

∫ 1

0
r2n(1− s2)2β−1 d

ds
Pu2(1−s2)f ∗ µus(z, t) ds.

Adding B1,β
u f and B2,β

u f , we get the required result. �

We define a new family by

Tβf = Bβ1 (f ∗3 k2β)



664 S. BAGCHI, S. HAIT, L. RONCAL AND S. THANGAVELU

where kβ is as in (2.15). For β = 0, we have Tβ = B0
1 = B1. Analogously as

in Lemma 2.3 we can prove the following.

Lemma 6.4. The operator Tβf has the explicit expansion

Tβf(z, t) = (2π)−n−1

∫ ∞
−∞

e−iλt(1− iλ)−2β
( ∞∑
k=0

(
− |λ|

2
ψ2β+n−1
k (

√
|λ|)

− k

n
(|λ|)ψ2β+n

k−1 (
√
|λ|)
)
fλ ∗λ ϕλk(z)

)
|λ|n dλ.

The next step is to show that when β = 1+iγ, Tβ is bounded from Lp(Hn)
into L∞(Hn) for any p > 1, and that for certain negative values of β, Tβ is
bounded on L2(Hn).

Proposition 6.5. Let n ≥ 1. For any δ > 0, γ ∈ R,

‖T1+iγf‖∞ ≤ C1(γ)‖f‖1+δ,

where C1(γ) is of admissible growth.

Proof. Let ψ(t) = te−tχ(0,∞)(t). For β = 1 + iγ it follows that

|T1+iγf | = |B1+iγ
1 (f ∗3 k2(1+iγ))(z, t)|

≤ 2cn,γ
|Γ(2 + 2iγ + n)|
|Γ(2 + 2iγ)|2Γ(n)

∫ 1

0
s2n−1P(1−s2)(f ∗3 ψ) ∗ µs(z, t) ds

+ 2
|Γ(2 + 2iγ + n)|
|Γ(2 + 2iγ)|2Γ(n)

∫ 1

0
s2n−1Q(1−s2)(f ∗3 ψ) ∗ µs(z, t) ds

+ 2
|Γ(2 + 2iγ + n)|
|Γ(2 + 2iγ)|2Γ(n)

∫ 1

0
s2n(1− s2)| d

ds
P(1−s2)(f ∗3 ψ)| ∗ µs(z, t) ds.

Let us denote the right hand side of the above equation as I1 +I2 +I3. Since
ψ ≥ 0, we get

P1−r2(f ∗3 ψ) = ψ ∗3 p1−r2 ∗3 f ≤ ψ ∗3 M0
HLf

and

Q1−r2(f ∗3 ψ) = ψ ∗3 q1−r2 ∗3 f ≤ ψ ∗3 M0
HLf.

Thus we have the estimate

|I1 + I2| ≤ C1(γ)

∫ 1

0
(M0

HLf ∗3 ψ) ∗ µs(z, t)s2n−1 ds.

Analogously as in the proof of Proposition 2.6 we deduce

|I1 + I2| ≤ C1(γ)M0
HLf ∗K(z, t)

where K(z, t) = χ|z|≤1(z)ψ(t). As M0
HLf ∈ L1+δ(Hn) and K ∈ Lq(Hn) for

any q ≥ 1, by Hölder we get

‖I1 + I2‖∞ ≤ C1(γ)‖M0
HLf‖1+δ ≤ C1(γ)‖f‖1+δ.
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Also we have

|I3| ≤ 2
|Γ(2 + 2iγ) + n)|
|Γ(2 + 2iγ)|2Γ(n)

∫ 1

0
s2n+1(P(1−s2) +Q1−s2)(f ∗3 ψ) ∗ µs(z, t) ds,

where we have used that (1−s2) ddsp(1−s2) = −sp(1−s2) +sq(1−s2). Reasoning
in the same way as above, we get

|I3| ≤ C1(γ)M0
HLf ∗K(z, t),

and by Hölder

‖I3‖∞ ≤ C1(γ)‖M0
HLf‖1+δ ≤ C1(γ)‖f‖1+δ.

Finally
‖T1+iγf‖∞ ≤ ‖I1 + I2‖∞ + ‖I3‖∞ ≤ C1(γ)‖f‖1+δ.

�

With an argument analogous to Proposition 2.7, it can be shown that Tβ
is bounded on L2(Hn) for some β < 0.

Proposition 6.6. Assume that n ≥ 2 and β ≥ −n
4 + 5

12 . Then for any
γ ∈ R,

‖Tβ+iγf‖2 ≤ C2(γ)‖f‖2.

Proof. We have to check that

(1 + λ2)−β
∣∣∣ |λ|

2
ψ2β+iγ+n−1
k (

√
|λ|) +

k|λ|
n
ψ2β+iγ+n
k−1 (

√
|λ|)
∣∣∣ ≤ C2(γ)

where C2(γ) is independent of k and λ. When γ = 0, it follows from the
estimates of Lemma 2.5 (with α = 0, 1) that

(1 + λ2)−β
∣∣∣ |λ|

2
ψ2β+n−1
k (

√
|λ|) +

k|λ|
n
ψ2β+n
k−1 (

√
|λ|)
∣∣∣

≤ |λ|−2β
(
|λ|−2β−(n−1)+ 2

3 + |λ|−2β−n+ 5
3
)

≤ C|λ|−4β−n+ 5
3 ,

for |λ| ≥ 1, which is bounded for β ≥ −n
4 + 5

12 . For γ 6= 0 we can express

ψ2β+iγ+n−1
k (

√
|λ|) in terms of ψ2β−ε+n−1

k (
√
|λ|) for small enough ε > 0 and

obtain the same estimate. The proof is complete. �

Let us consider the following holomorphic function α(z) on the strip {z :
0 ≤ Re z ≤ 1}, given by α(z) =

(
n
4 −

5
12 −ε

)
(z−1)+z for a small ε > 0. We

have α(0) = −n
4 + 5

12 + ε and α(1) = 1. Then, Tα(z) is an analytic family of
linear operators. In view of Propositions 6.5 and 6.6, we can apply Stein’s
interpolation theorem. Letting z = u+ iv, we have

α(z) = 0⇐⇒
(n

4
− 5

12
− ε
)

(u− 1) + u = 0⇐⇒ u =
3n− 5− 12ε

3n+ 7 + ε
.

Since ε > 0 is arbitrary, we obtain

Tα(u) : Lpu(Hn)→ Lqu(Hn)
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where

6

3n+ 7− 12ε
<

1

pu
<

3n+ 1− 12ε

3n+ 7− 12ε
,

1

qu
=

6

3n+ 7− 12ε
.

This leads to the following result.

Theorem 6.7. Assume that n ≥ 2 and ε > 0. Then B1 : Lp(Hn)→ Lq(Hn)
for any p, q such that

6

3n+ 7− 12ε
<

1

p
<

3n+ 1− 12ε

3n+ 7− 12ε
,

1

q
=

6

3n+ 7− 12ε
.

A version of the inequality in Theorem 6.7 when B1 is replaced by Br can
be accomplished easily. First we have the scaling lemma below, we omit the
details.

Lemma 6.8. For any r > 0 we have Brf = 1
r δ
−1
r B1δrf .

From Theorem 6.7 and Lemma 6.8 we can prove

Corollary 6.9. Assume that n ≥ 2. Then

‖Brf‖ 3n+7
6
≤ c

r
r

(2n+2)( 6
3n+7

− 1
p

)‖f‖p

for any 3n+7
3n+1 < p < 3n+7

6 .

We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. Let us denote by Fn the triangle with vertices
(0, 1),

(
2n−1

2n , 1
2n

)
and

(
3n+1
3n+7 ,

3n+1
3n+7

)
, and its dual F′n, the triangle with ver-

tices (0, 0),
(

2n−1
2n , 2n−1

2n

)
and

(
3n+1
3n+7 ,

6
3n+7

)
.

The triangle F′n is contained in the triangle S′n, see Figure 2. Hence
‖A1f‖q ≤ c‖f‖p for all (1

p ,
1
q ) ∈ F′n. Using this and Corollary 6.9 we get,

in view of (6.1), the estimate ‖Mδf‖ 3n+7
6
≤ c‖f‖p for 3n+7

3n+1 < p < 3n+7
6 .

On the other hand, we also have ‖Mδf‖p ≤ c‖f‖p for all p > 2n
2n−1 , by

[15] or [16]. After applying Marcinkiewicz interpolation theorem we get the
required result. �

Remark 6.10. Actually, a scaling argument allows to state a result for the
local maximal function taken over δk+1 ≤ t ≤ δk, for any k ∈ Z.

6.2. The continuity property of a local variant of the maximal
function. We start with the following proposition.

Proposition 6.11. For all (1
p ,

1
q ) in the interior of the triangle F′n, there

exists ν > 0 so that for all 0 < ε < 1
2 , we have∥∥ sup

s,r∈[1,δ−1]
|s−r|<ε

|Arf −Asf |
∥∥
q
. εν‖f‖p. (6.4)
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( 2n−1
2n , 1

2n )

( 3n+1
3n+7 ,

3n+1
3n+7 )

(0, 1)

(1, 0)
1
p

1
q

Fn

( 3n+1
3n+7 ,

6
3n+7 )

(1, 1)

(0, 0)

( 2n−12n , 2n−12n )

1
1
p

1
q

F′n

Figure 2. Triangle F′n shows the region for Lp − Lq esti-
mates for Mδ. The dual triangle Fn is on the top. The outer
(dashed) triangles correspond to the lacunary triangles S′n
(bottom) and Sn (top).

Proof. It suffices to prove a version of statement at the point (1
2 ,

1
2), and

then interpolate to the other points in the interior of F′n. First we have, by
Fundamental Theorem of Calculus and Hölder inequality,

|Arf −Asf | ≤ c|r − s|1/2
∥∥∥ d
dr
Arf

∥∥∥
L2(R)

,
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This gives us∥∥ sup
s,r∈[1,δ−1]
|s−r|<ε

|Arf −Asf |
∥∥

2
≤ cε

1
2 ‖∂rArf‖L2(Hn×[1,δ−1]) . ε

1
2 ‖f‖2.

Moreover, from Theorem 6.2,

‖ sup
r∈[1,δ−1]

Arf‖q0 ≤ ‖f‖p0 , for
( 1

p0
,

1

q0

)
∈ F′n

which gives∥∥ sup
s,r∈[1,δ−1]
|s−r|<ε

|Arf −Asf |
∥∥
q0
. ‖f‖p0 , for

( 1

p0
,

1

q0

)
∈ F′n. (6.5)

Then the proposition follows immediately by using interpolation. �

Theorem 6.12. For all (1
p ,

1
q ) in the interior of F′n, we have for some

ν = ν(n, p, q) > 0,

‖ sup
1≤r≤δ−1

|Arf −Arτyf |‖q . |y|ν‖f‖p, |y| < 1.

Proof. For (1
p ,

1
q ) in the interior of the triangle S′n we have, by Corollary

3.5,

‖Ar −Arτy‖Lp 7→Lq . |y|ν , |y| < 1, (6.6)

for a choice of ν = ν(n, q, s) > 0. The triangle F′n is contained in the
triangle S′n. Thus, if T ⊂ [1, δ−1] is a finite set, it follows from the previous
statement that

‖ sup
r∈T
|Arf −Arτyf |‖p2 . ](T )1/p2 · |y|ν‖f‖p1 ,

( 1

p1
,

1

p2

)
∈ F′n. (6.7)

Take T to be a |y|ν-net in [1, δ−1]. Then for any r ∈ [1, δ−1] there exists
r0 ∈ T such that |r− r0| < |y|ν . Moreover, by triangular inequality we have

|Arf − τyArf | ≤ |Arf −Ar0f |+ |Ar0f − τyAr0f |+ |τyAr0f − τyArf |

which gives

‖ sup
r∈[1,δ−1]

|Arf−τyArf |‖q ≤
∥∥ sup
s,r∈[1,δ−1]
|s−r|<ε

|Arf−Asf |
∥∥
q
+‖ sup

t∈T

∥∥|Arf−τyArf |∥∥q.
The final result follows by using Proposition 6.11 and the inequality (6.7).

�

We need a different version of the inequality in Theorem 6.12 when the
interval 1 ≤ r ≤ δ−1 is replaced by δk+1 ≤ r ≤ δk. First we have a slight
generalisation of Lemma 3.4.

Lemma 6.13. Let r = `r′ for some fixed `. Then we have Arf = δ`−1Ar′δ`f .
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Proof.

Arf(z, t) =

∫
|w|=r

f
(
z − w, t− 1

2
Im z · w

)
dµr(w)

=

∫
|w|=1

f
(
z − rw, t− 1

2
Im rz · w

)
dµ1(w)

=

∫
|w|=1

f
(
z − `r′w, t− 1

2
Im `r′z · w

)
dµ1(w)

=

∫
|w|=1

δ`f
(
`−1z − r′w, `−2t− 1

2
Im `−1r′z · w

)
dµ1(w)

= δ−`Ar′δ`f(z, t).

�

Finally, we can deduce the following.

Corollary 6.14. Assume that n ≥ 2. For all
(

1
p ,

1
q

)
in the interior of the

triangle joining the points (0, 0),
(

2n−1
2n , 2n−1

2n

)
and

(
3n+1
3n+7 ,

6
3n+7

)
, we have for

some ν = ν(n, p, q) > 0 and
∣∣ y
δk+1

∣∣ < 1,

‖ sup
δk+1≤r≤δk

|Arf −Arτyf |‖q .
∣∣ y

δk+1

∣∣νδ(k+1)(2n+2)( 1
q
− 1
p

)‖f‖p.

Proof. Let r ∈ [δk+1, δk]. We have r = δk+1r′ for some r′ ∈ [1, δ−1]. To
avoid confusion in the notations, we denote ` = δk+1. From Lemma 6.13 we
get

Arf −Arτy = δ`−1Ar′δ`f − δ`−1Ar′δ`(τyf).

Also we observe that δ`(τyf) = τ`−1y(δ`f). Hence

Arf −Arτy = δ`−1Ar′δ`f − δ`−1Ar′τ`−1y(δ`f).

This gives, for
(

1
p ,

1
q

)
∈ F′n,

‖ sup
δk+1≤r≤δk

|Arf −Arτy|‖q = `
(2n+2) 1

q ‖ sup
1≤r′≤δ−1

|Ar′δ`f −Ar′τ`−1yδ`f |‖q

. `(2n+2) 1
q
∣∣y
`

∣∣ν‖δ`f‖p
. `(2n+2)( 1

q
− 1
p

)∣∣y
`

∣∣ν‖f‖p.
Above, the first inequality follows from Theorem 6.12 and for the second

inequality we have used the fact that ‖δ`f‖p = `
− 2n+2

p ‖f‖p. The corollary
is proved.

�
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6.3. Sparse bounds and boundedness properties. The strategy to get
Theorem 6.1 is the same as in the lacunary case, now making use of Corollary
6.14. We only provide the details of the main differences. First, a lemma
analogous to Lemma 4.3 holds, and the proof is exactly the same.

Lemma 6.15. Let 0 < δ < 1
96 . For Q with `(Q) = δk, k ∈ Z, we consider

VQ = {P ∈ D1
k+3 : B(zP , δ

k+1) ⊆ Q}

and define

M̃Qf := sup
δk+3≤r<δk+2

Ar(f1VQ)

where VQ = ∪P∈VQP. Then

sup
δk+3≤r<δk+2

Arf ≤
N∑
α=1

∑
Q∈Dαk

M̃Qf.

It suffices to prove the sparse bound for each of the maximal operators

MDαf := sup
Q∈Dα

M̃Qf, 1 ≤ α ≤ N. (6.8)

We fix a grid, and write D = Dα. With the same linearisation argument
as in Section 4, by denoting D(Q0) the collection of all dyadic subcubes of
Q0 ∈ D, we define

EQ :=
{
x ∈ Q : M̃Qf(x) ≥ 1

2
sup

P∈D(Q0)
M̃P f(x)

}
for Q ∈ D(Q0). Note that for any x ∈ Hn there exists a Q ∈ D(Q0) such
that

M̃Qf(x) ≥ 1

2
sup

P∈D(Q0)
M̃P f(x)

and hence x ∈ EQ. Now we define BQ = EQ \ ∪Q′⊇QEQ′ , so that {BQ :
Q ∈ D(Q0)} are disjoint and moreover ∪Q∈D(Q0)BQ = ∪Q∈D(Q0)EQ. Then
it follows that

〈 sup
Q∈D(Q0)

M̃Qf, g〉 ≤ 2
∑

Q∈D(Q0)

〈M̃Qf1, f21BQ〉.

Thus, defining (f2)Q := f21BQ we deal with
∑

Q∈D(Q0)〈M̃Qf1, (f2)Q〉.

Lemma 6.16. Let 1 < p, q < ∞ be such that
(

1
p ,

1
q

)
in the interior of the

triangle joining the points (0, 1),
(

2n−1
2n , 1

2n

)
and

(
3n+1
3n+7 ,

3n+1
3n+7

)
. Let f1 = 1F

and let f2 be any bounded function supported in Q0. Let C0 > 1 be a constant
and let Q be a collection of dyadic subcubes of Q0 ∈ D for which the following
holds

sup
Q′∈Q

sup
Q:Q′⊂Q⊂Q0

〈f1〉Q,p
〈f1〉Q0,p

< C0. (6.9)
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Then there holds ∑
Q∈Q
〈M̃Qf1, (f2)Q〉 . |Q0|〈f1〉Q0,p〈f2〉Q0,q.

Proof. We perform a Calderón–Zygmund decomposition of f1 = g1 + b1
at height 2C0〈f1〉Q0,p as in (4.3), where the bad cubes B result from the
collection of (maximal) dyadic subcubes of Q0 so that

〈f1〉Q,p > 2C0〈f1〉Q0,p. (6.10)

We aim to bound the bilinear form∣∣ ∑
Q∈Q
〈M̃Qf1, (f2)Q〉

∣∣
The term carrying the good function g1 is bounded analogously as in Lemma
4.5. For the term involving b1, we have, for any Q ∈ Q with `(Q) = δs,∣∣ ∑

Q∈Q
〈M̃Qb1, (f2)Q〉

∣∣ ≤ ∞∑
k=1

∑
Q∈Q
|〈M̃QB1,s+k, (f2)Q〉|.

As shown in [12, Lemma 3.4], we can replace M̃Qφ(x) by

LQφ(x) := ArQ(x)φ(x)1VQ(x)

where rQ : Q 7→ [δs+3, δs+2] is a measurable function.
By making use of the mean zero property of b1, we see that

|〈LQB1,s+j , (f2)Q〉| = |〈B1,s+j , L
∗
Q(f2)Q〉|

≤
∑

P∈B(s+j)

∣∣ ∫
P
L∗Q(f2)Q(x)B1,s+j(x) dx

∣∣
=

∑
P∈B(s+j)

1

|P |

∣∣∣ ∫
P

∫
P

[
L∗Q(f2)Q(x)− L∗Q(f2)Q(x′)

]
B1,s+j(x) dx dx′

∣∣∣
=

∑
P∈B(s+j)

1

|P |

∣∣∣ ∫
P−1P

∫
P

[
L∗Q(f2)Q(x)− τyL∗Q(f2)Q(x)

]
B1,s+j(x) dx dy

∣∣∣
.

1

|P0|

∫
P0

∫
Q
|(f2)Q(x)(LQ − LQτ−y)B1,s+j(x)| dx dy,

where P0 = B(0, δs+j−1) and we used that P−1x ⊂ P−1P ⊂ P0. Now

|LQf(x)− LQτ−yf(x)| ≤ sup
δs+3≤r≤δs+2

|Arf(x)−Arτ−yf(x)|.

Then, under the assumptions of (1/p, 1/q) in Corollary 6.14, it follows

‖LQf − LQτ−yf‖q′ ≤
∣∣∣ y

δs+3

∣∣∣νδ(j+2)(n+2)( 1
q′−

1
p

)‖f‖p for all
(1

p
,

1

q′

)
∈ F ′n.

So for all (1
p ,

1
q ) ∈ Fn,

|〈LQB1,q−j , (f2)Q〉|
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.
1

|P0|

∫
P0

∣∣∣ y

δs+3

∣∣∣νδ(j+2)(n+2)( 1
q′−

1
p

)‖B1,q−j1Q‖p‖(f2)Q‖q dy

= δjν |Q|〈B1,q−j1Q〉Q,p〈(f2)Q〉Q,q.
Finally, recall the inequality (4.4)∑

Q∈Q
|Q|〈B1,s+j1Q〉Q,p〈f21BQ〉Q,q . |Q0|〈f1〉Q0,p〈f2〉Q0,q,

for all j ≥ 1 and for all 1 < p, q < ∞ such that
(

1
p ,

1
q

)
are in the inte-

rior of the triangle joining the points (0, 1), (1, 0) and (1, 1), including the
segment joining (0, 1) and (1, 0), excluding the endpoints (observe that this
triangle contains the triangle given by the assumptions of the lemma). This
concludes the proof of the lemma. �

The proof of Theorem 6.1 now follows the same steps of the proof of

Theorem 1.2 with AQf replaced by M̃Qf . We omit the details.
From the sparse domination results, analogously as in the lacunary case,

a number of weighted estimates can be immediately deduced.

Corollary 6.17. Let n ≥ 2 and define

1

φ(1/p0)
=

{
1− 1

p0
6

3n+1 , 0 < 1
p0
≤ 3n+1

3n+7 ,

6n2−n−7
9n−7

(
2n−1

2n −
1
p0

)
+ 1

2n ,
3n+1
3n+7 <

1
p0
< 2n−1

2n .

Then Mfull is bounded on Lp(w) for w ∈ Ap/p0 ∩ RH(φ(1/p0)′/p)′ and all
1 < p0 < p < (φ(1/p0))′.
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