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Solutions of diophantine equations as
periodic points of p-adic algebraic

functions, III

Patrick Morton

Abstract. All the periodic points of a certain algebraic function re-
lated to the Rogers-Ramanujan continued fraction r(τ) are determined.

They turn out to be 0, −1±
√
5

2
, and the conjugates over Q of the values

r(wd/5), where wd is one of a specific set of algebraic integers, divisible

by the square of a prime divisor of 5, in the field Kd = Q(
√
−d), as −d

ranges over all negative quadratic discriminants for which
(−d

5

)
= +1.

This yields a new class number formula for orders in the fields Kd. Con-
jecture 1 of Part I is proved for the prime p = 5, showing that the ring
class fields over fields of type Kd whose conductors are relatively prime
to 5 coincide with the fields generated over Q by the periodic points
(excluding -1) of a fixed 5-adic algebraic function.
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1. Introduction

In Part I a periodic point of an algebraic function w = g(z), with minimal
polynomial g(z, w) over F (z), F a given field (often algebraically closed), was
defined to be an element a of F , for which numbers ai ∈ F exist satisfying
the simultaneous equations

g(a, a1) = g(a1, a2) = · · · = g(an−1, a) = 0,
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for some n ≥ 1. The numbers ai = g(ai−1) in this definition are to be
thought of as suitable values of the multi-valued function g(z), determined
by possibly different branches of g(z) (when considered over F = C). Note
that if the coefficients of g(x, y) lie in a subfield k of F , over which F is
algebraic, then the set of periodic points of g(z) in F is invariant under the
action of Gal(F/k). In this part the main focus will be on the multi-valued
function g(z), whose minimal polynomial is the polynomial

g(x, y) = (y4 + 2y3 + 4y2 + 3y + 1)x5 − y(y4 − 3y3 + 4y2 − 2y + 1)

considered in Part II, related to the Rogers-Ramanujan continued fraction
r(τ) (in the notation of [7]). Recall that the function r(τ) satisfies the
modular equation

g(r(τ), r(5τ)) = 0, τ ∈ H,
where H is the upper half-plane. (See [1], [2], [7].)

I will show, that when transported to the p-adic domain – specifically to
K5(
√

5), where K5 is the maximal unramified algebraic extension of the 5-
adic field Q5 – the “multi-valued-ness” disappears, in that the ai = T i5(a) ∈
K5(
√

5) become values of a single-valued algebraic function T5(x), defined
on a suitable domain D5 ⊂ K5(

√
5). Thus, 5-adically, a and its companions

ai are periodic points of T5(x) in the usual sense. Setting ε = −1+
√

5
2 , this

single-valued algebraic function is given by the 5-adically convergent series

T5(x) = x5 + 5 +
√

5
∞∑
k=2

ak

(
5
√

5

x5 − ε5

)k−1

, ak =
4∑
j=1

(
j/5

k

)
, (1.1)

for x in the domain

D5 = {x ∈ K5(
√

5) : |x|5 ≤ 1 ∧ x 6≡ 2 (mod
√

5)}.

More precisely, half of the periodic points of g(z) lie in D5; namely, those
which lie in the unramified extension K5. The other half are periodic points
of the function T ◦ T−1

5 ◦ T and lie in T (D5), where

T (x) =
−(1 +

√
5)x+ 2

2x+ 1 +
√

5
.

The function T5(x) has the property that y = T5(x) is the unique solution
in K5(

√
5) of the equation g(x, y) = 0, for any x ∈ K5(

√
5) for which x 6≡ 2

(mod
√

5). Thus, T5(x) is one of the values of g(x), for x ∈ D5.
In Part II [14] it was shown that the conjugates over Q of the values

η = r(w/5) of the Rogers-Ramanujan continued fraction are periodic points
of the algebraic function g(z), for specific elements w in the imaginary qua-
dratic field K = Q(

√
−d). In this part it will be shown that these values

are, together with 0 and −1±
√

5
2 , the only periodic points of g(z). Let dK

denote the discriminant of K = Q(
√
−d), where

(−d
5

)
= +1, and let ℘5

denote a prime divisor of (5) = ℘5℘
′
5 in K. Recall that pd(x) is the minimal
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polynomial over Q of the value r(wd/5), where wd is given by equation (2)
below.

Theorem 1.1. (a) The set of periodic points in Q (or Q5 or C) of the
multi-valued algebraic function g(z) defined by the equation g(z, g(z)) = 0

consists of 0, −1±
√

5
2 , and the roots of the polynomials pd(x), for negative

quadratic discriminants −d = dKf
2 satisfying

(−d
5

)
= +1.

(b) Over C the latter values coincide with the values η = r(wd/5) and their
conjugates over Q, where r(τ) is the Rogers-Ramanujan continued fraction
and the argument wd ∈ K = Q(

√
−d) satisfies

wd =
v +
√
−d

2
∈ RK , ℘2

5 | wd, and (N(wd), f) = 1. (1.2)

(c) Over Q5, all the periodic points of g(z) lie in K5(
√

5). Moreover, the
periodic points of g(z) in K5 are periodic points in D5 of the single-valued
5-adic function T5(x).

From this theorem and the results of Part II we can assert the following.
Let Fd denote the abelian extension Fd = Σ5Ωf (d 6= 4f2) or Fd = Σ5Ω5f

(d = 4f2 > 4) of K = Q(
√
−d), where Σ5 is the ray class field of conductor

f = (5) over K and Ωf is the ring class field of conductor f over K. Since
(f, 5) = 1 and Ω5f = Ω5Ωf when d 6= 4f2 (see [9, Satz 3]), then Fd =
Σ5Ω5f in either case. Furthermore, Fd coincides with what Cox [4] calls the
extended ring class field LO,5 for the order O = R−d of discriminant −d
in K. Cox refers to Cho [3], who denotes this field by K(5),O, but these
fields are already discussed in Söhngen [20, see p. 318], who shows they are
generated by division values of the τ -function, together with suitable values
of the j-function. See also Stevenhagen [21] and the monograph of Schertz
[19, p. 108].

Theorem 1.2. Let K = Q(
√
−d), with

(−d
5

)
= +1 and −d = dKf

2, as
above. If O = R−d is the order of discriminant −d in K, the extended
ring class field Fd = Σ5Ω5f over K is generated over Q by a periodic point
η = r(wd/5) of the function g(z) (wd is as in ( 1.2)), together with a primitive
5-th root of unity ζ5:

Fd = Σ5Ω5f = Q(η, ζ5). (1.3)

Conversely, if η 6= 0, −1±
√

5
2 is any periodic point of g(z), then for some

−d = dKf
2 for which

(−d
5

)
= +1, the field Q(η, ζ5) = Fd. Furthermore, the

field Q(η) generated by η alone is the inertia field for the prime divisor ℘5

or for its conjugate ℘′5 in the field Fd.

This theorem provides explicit examples of Satz 22 in Hasse’s Zahlbericht
[8], according to which any abelian extension of K is obtained from Σ =
Ωf (ζn), for some integer f ≥ 1 and some n-th root of unity ζn, by adjoining
square-roots of elements of Σ. This holds because η = r(wd/5) satisfies a
quadratic equation over Ωf (ζ5). See [14, Prop. 4.3, Cor. 4.7, Thm. 4.8].
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Here the method of Part I [13] and [16], which yielded an interpreta-
tion and alternate derivation of special cases of a class number formula of
Deuring, leads to the following new class number formula.

Theorem 1.3. Let Dn,5 be the set of discriminants −d = dKf
2 ≡ ±1

(mod 5) of orders in imaginary quadratic fields K = Q(
√
−d) for which the

automorphism τ5 =
(
Fd,5/K
℘5

)
has order n in the Galois group Gal(Fd,5/K),

where Fd,5 is the inertia field for ℘5 in the abelian extension Fd/K. If h(−d)
is the class number of the order R−d ⊂ K, then for n > 1,

∑
−d∈Dn,5

h(−d) =
1

2

∑
k|n

µ(n/k)5k. (1.4)

Based on this theorem and numerical calculations, I make the following

Conjecture 1. Let q > 5 be a prime number. Let LO,q = LR−d,q be the

extended ring class field over K = Kd = Q(
√
−d) for the order O = R−d

of discriminant −d = dKf
2 in K, and let h(−d) denote the class number

of the order O. Also, let Fd,q be the inertia field for the prime divisor ℘q
(dividing q in Kd) in the abelian extension LO,q of Kd. Then the following
class number formula holds:

∑
−d∈Dn,q

h(−d) =
2

q − 1

∑
k|n

µ(n/k)qk, n > 1,

where Dn,q is the set of discriminants −d = dKf
2 for which

(
−d
q

)
= +1

and the Frobenius automorphism τq =
(
Fd,q/Kd
℘q

)
has order n.

As was shown in [14] for the prime q = 5, the extension LR−d,q is equal to

ΣqΩf/K, if d 6= 3f2 or 4f2; and is equal to ΣqΩqf/K, if q ≡ 1 (mod 4) and
d = 4f2; or q ≡ 1 (mod 3) and d = 3f2. The field Fd,q has degree (q − 1)/2
and is cyclic over the ring class field Ωf of conductor f over K.

One naturally expects that this conjecture describes an aspect of a much
more general phenomenon. For example, one could consider families of
quadratic fields K = Q(

√
−d) for which the prime divisors q of a given

fixed integer Q all split in K. These are the Q-admissible quadratic fields.
Analogous formulas should hold for certain sets of class fields over the family
of (imaginary?) abelian extensions of a fixed degree over Q, whose Galois
groups belong to a fixed isomorphism type, and in which a given rational
prime q splits.
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In Section 6 I show that a similar situation exists for the algebraic function
w = f(z) whose minimal polynomial over Q(z) is h(z, w), where

h(z, w) = w5 − (6 + 5z + 5z3 + z5)w4 + (21 + 5z + 5z3 + z5)w3

− (56 + 30z + 30z3 + 6z5)w2 + (71 + 30z + 30z3 + 6z5)w

− 120− 55z − 55z3 − 11z5.

I showed in Part II (Theorem 5.4) that any ring class field Ωf over the
imaginary quadratic field K, whose conductor is relatively prime to 5, is
generated over K by a periodic point υ of f(z), which satisfies υ = η − 1

η ,

for a certain periodic point η of g(z). In Theorem 6.2 of this paper I show
that any periodic point υ 6= −1 of f(z) is related to a periodic point of g(z)
by υ = η − 1

η = φ(η), and that the 5-adic function

T5(x) = φ ◦ T5 ◦ φ−1(x), x ∈ D̃5 = φ(D5 ∩ {z ∈ K5 : |z|5 = 1}),

plays the same role for f(z) that T5(x) plays for g(z). In particular, Theorems
6.2 and 6.3 show that Conjecture 1 of Part I is true for the prime p = 5.
This leads to a proof of Deuring’s formula for the prime 5 in Theorem 6.5
and its corollary, analogous to the proof given in Part I and in [16] for the
prime 2 and in [12] for the prime 3.

2. Iterated resultants

Set

g(X,Y ) = (Y 4+2Y 3+4Y 2+3Y +1)X5−Y (Y 4−3Y 3+4Y 2−2Y +1). (2.1)

In Part II [14] it was shown that (X,Y ) = (η, ητ5), with η = r(wd/5) and wd

given by (1.2), is a point on the curve g(X,Y ) = 0. Here τ5 =
(
Q(η)/K
℘5

)
is

the Frobenius automorphism for the prime divisor ℘5 of K = Q(
√
−d). This

fact implies that r(wd/5) and its conjugates over Q are periodic points of the
function g(z) defined by g(z, g(z)) = 0. (See Part II, Theorem 5.3.) In this
section and Sections 3-4 it will be shown that these values, together with

the fixed points 0, −1±
√

5
2 , represent all the periodic points of the algebraic

function g(z). To do this we begin by considering a sequence of iterated
resultants defined using the polynomial g(x, y), as in Part I, Section 3.

We start by defining R(1)(x, x1) := g(x, x1), and note that

R(1)(x, x1) ≡ (x1 + 3)4(x5 − x1) (mod 5).

Then we define the polynomial R(n)(x, xn) inductively by

R(n)(x, xn) := Resultantxn−1(R(n−1)(x, xn−1), g(xn−1, xn)), n ≥ 2.

It is easily seen using induction that

R(n)(x, xn) ≡ (−1)n−1(xn + 3)5n−1(x5n − xn) (mod 5),
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so that the polynomial Rn(x) := R(n)(x, x) satisfies

Rn(x) ≡ (−1)n−1(x+ 3)5n−1(x5n − x) (mod 5), n ≥ 1. (2.2)

The roots of Rn(x) are all the periodic points of the multi-valued function
g(z) in any algebraically closed field containing Q, whose periods are divisors
of the integer n. (See Part I, p. 727.)

From this we deduce, by a similar argument as in the Lemma of Part I
(pp. 727-728), that

deg(Rn(x)) = 2 · 5n − 1, n ≥ 1.

As in Part I, we define the expression Pn(x) by

Pn(x) =
∏
k|n

Rk(x)µ(n/k), (2.3)

and show that Pn(x) ∈ Z[x]. From (2.2) it is clear that Rn(x), for n > 1, is
divisible (mod 5) by the N irreducible (monic) polynomials f̄i(x) of degree
n over F5, where

N =
1

n

∑
k|n

µ(n/k)5k,

and that these polynomials are simple factors of Rn(x) (mod 5). It follows
from Hensel’s Lemma that Rn(x) is divisible by distinct irreducible polyno-
mials fi(x) of degree n over Z5, the ring of integers in Q5, for 1 ≤ i ≤ N ,
with fi(x) ≡ f̄i(x) (mod 5). In addition, all the roots of fi(x) are periodic
of minimal period n and lie in the unramified extension K5. Furthermore, n
is the smallest index for which fi(x) | Rn(x).

Now we make use of the following identity for g(x, y):(
x+

1 +
√

5

2

)5(
y +

1 +
√

5

2

)5

g(T (x), T (y)) =

(
5 +
√

5

2

)5

g(y, x),

where

T (x) =
−(1 +

√
5)x+ 2

2x+ 1 +
√

5
.

We have

T (x)− 2 = −

(
5 +
√

5

2

)
2x− 1 +

√
5

2x+ 1 +
√

5
.

If the periodic point a of g(z), with minimal period n > 1, is a root of one
of the polynomials fi(x), then a is a unit in K5, and for some a1, . . . , an−1

we have
g(a, a1) = g(a1, a2) = · · · = g(an−1, a) = 0. (2.4)

Furthermore a 6≡ 2 (mod
√

5), since otherwise a ≡ 2 (mod 5) would have
degree 1 over F5 (using that K5 is unramified over Q5). Hence, 2a+ 1 +

√
5

is a unit and b = T (a) ≡ 2 (mod
√

5). All the ai satisfy ai 6≡ 2 (mod
√

5),
as well, since the congruence g(2, y) ≡ 4(y + 3)5 (mod 5) has only y ≡ 2 as
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a solution. Hence, if some ai ≡ 2, then aj ≡ 2 for j > i, which would imply

that a ≡ 2, as well. The elements bi = T (ai) are distinct and lie in K5(
√

5),
and the above identity implies that

g(b, bn−1) = g(bn−1, bn−2) = · · · = g(b1, b) = 0 (2.5)

in K5(
√

5). Thus, all the bi ≡ 2 (mod
√

5), and the orbit {b, bn−1, . . . , b1} is
distinct from all the orbits in (2.4). Now the map T (x) has order 2, so it is
clear that b = T (a) has minimal period n in (2.5), since otherwise a = T (b)
would have period smaller than n. It follows that there are at least 2N
periodic orbits of minimal period n > 1. Noting that

R1(x) = g(x, x) = x(x2 + 1)(x2 + x− 1)(x4 + x3 + 3x2 − x+ 1),

these distinct orbits and factors account for at least

2 · 5− 1 +
∑

d|n,d>1

(2
∑
k|d

µ(d/k)5k) = −1 + 2
∑
d|n

(
∑
k|d

µ(d/k)5k) = 2 · 5n − 1

roots, and therefore all the roots, of Rn(x). This shows that the roots of
Rn(x) are distinct and the expressions Pn(x) are polynomials. Furthermore,
over K5(

√
5) we have the factorization

Pn(x) = ±
∏

1≤i≤N
fi(x)f̃i(x), n > 1, (2.6)

where f̃i(x) = ci(2x + 1 +
√

5)deg(fi)fi(T (x)), and the constant ci is chosen

to make f̃i(x) monic. Finally, the periodic points of g(z) of minimal period
n are the roots of Pn(x) and

deg(Pn(x)) = 2
∑
k|n

µ(n/k)5k, n > 1. (2.7)

This discussion proves the following.

Theorem 2.1. All the periodic points of g(z) in Q5 lie in K5(
√

5). The
periodic points of minimal period n coincide with the roots of the polynomial
Pn(x) defined by ( 2.3), and have degree n over Q5(

√
5). For n > 1, exactly

half of the periodic points of g(z) of minimal period n lie in K5.

The last assertion in this theorem follows from the fact that T (x) is a
linear fractional expression in the quantity

√
5:

T (x) =
−x
√

5− x+ 2√
5 + 2x+ 1

,

with determinant −2(x2 +1). If it were the case that a ∈ K5 and T (a) ∈ K5,
for n > 1, then the last fact would imply that

√
5 ∈ K5, which is not the

case. Therefore, for n > 1, the only roots of Pn(x) which lie in K5 are the
roots of the factors fi(x), in the above notation. Furthermore, the factors
fi(x) are irreducible over Q5(

√
5), since this field is purely ramified over Q5,

which implies that the factors f̃i(x) are irreducible over Q5(
√

5), as well.
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3. A 5-adic function

Lemma 3.1. Any root η′ of the polynomial pd(x) which is conjugate to
η = r(wd/5) over K = Q(

√
−d) satisfies η′ 6≡ 2 (mod p), for any prime

divisor p of ℘5 in F1 = Q(η).

Proof. It suffices to prove this for η′ = η. Assume η ≡ 2 (mod p), where
p | ℘5 in F1. Then the element z = η5− 1

η5
satisfies z ≡ 25−2−5 ≡ −1 (mod

p). Hence the proof of [14, Theorem 4.6] implies that d can only be one of
the values d = 11, 16, 19. In these three cases h(−d) = 1, so η satisfies a
quadratic polynomial over K = Q(

√
−d). We have

p11(x) = x4 − x3 + x2 + x+ 1

=

(
x2 +

−1 +
√
−11

2
x− 1

)(
x2 +

−1−
√
−11

2
x− 1

)
;

p16(x) = x4 − 2x3 + 2x+ 1

= (x2 + (−1− i)x− 1)(x2 + (−1 + i)x− 1);

p19(x) = x4 + x3 + 3x2 − x+ 1

=

(
x2 +

1 +
√
−19

2
x− 1

)(
x2 +

1−
√
−19

2
x− 1

)
.

In each case η = r(wd/5), where, respectively:

w11 =
33 +

√
−11

2
, N(w11) = 52 · 11,

w16 = 11 + 2i, N(w16) = 53,

w19 =
41 +

√
−19

2
, N(w19) = 52 · 17.

Since F1 = K(η) is unramified over ℘5 and ramified over ℘′5, the minimal
polynomial md(x) over K of η in each case is the first factor listed above.
Since ℘2

5 | wd, we conclude that
√
−11 ≡ 2, i ≡ 2,

√
−19 ≡ 4

modulo ℘5 in RK . Then

m11(x) ≡ x2 + 3x+ 4, m16(x) ≡ x2 + 2x+ 4, m19(x) ≡ (x+ 1)(x+ 4)

modulo ℘5, where the first two polynomials are irreducible mod 5. It follows
that η cannot be congruent to 2 modulo any prime divisor of ℘5. In each
case we also have md(x) ≡ (x+ 3)2 (mod ℘′5). �

Computing the partial derivative

∂g(x, y)

∂y
= (4y3 + 6y2 + 8y + 3)x5 − 5y4 + 12y3 − 12y2 + 4y − 1

≡ 4(x+ 3)5(y + 3)3 (mod 5),
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we see that the points (x, y) = (η, ητ5) on the curve g(x, y) = 0 satisfy the
condition

∂g(x, y)

∂y
|(x,y)=(η,ητ5 ) 6≡ 0 mod p,

for any prime divisor p of ℘5. Hence, the p-adic implicit function theorem
implies that ητ5 can be written as a single-valued function of η in a suitable
neighborhood of x = η. (See [18, p. 334].) We shall now derive an explicit
expression for this single-valued function.

To do this, we consider g(X,Y ) = 0 as a quintic equation in Y . Us-
ing Watson’s method of solving a quintic equation from the paper [10] of
Lavallee, Spearman and Williams, we find that the roots Y of g(X,Y ) = 0
are

Y =
Z + 3

5
+

ζ

10
(2Z + 11 + 5

√
5)4/5(2Z + 11− 5

√
5)1/5

+
ζ2

10
(2Z + 11 + 5

√
5)3/5(2Z + 11− 5

√
5)2/5

+
ζ3

10
(2Z + 11 + 5

√
5)2/5(2Z + 11− 5

√
5)3/5

+
ζ4

10
(2Z + 11 + 5

√
5)1/5(2Z + 11− 5

√
5)4/5,

where ζ is any fifth root of unity and Z = X5. This can also be written in
the form

Y =
Z + 3

5
+
ζ

5
(Z − ε̄5)4/5(Z − ε5)1/5 +

ζ2

5
(Z − ε̄5)3/5(Z − ε5)2/5

+
ζ3

5
(Z − ε̄5)2/5(Z − ε5)3/5 +

ζ4

5
(Z − ε̄5)1/5(Z − ε5)4/5,

=
Z + 3

5
+

1

5
(Z − ε5)(U4 + U3 + U2 + U), U = ζ−1

(
Z − ε̄5

Z − ε5

)1/5

.

Now, ε5 = −11+5
√

5
2 ≡ −1

2 ≡ 2 (mod 5), so for ζ = 1 and Z 6≡ 2 (mod 5),

the functions U j can be expanded into a convergent series:

U j =

(
Z − ε̄5

Z − ε5

)j/5
=

(
1 +

ε5 − ε̄5

Z − ε5

)j/5
=

∞∑
k=0

( j
5

k

)(
5
√

5

Z − ε5

)k
.

This series converges for all Z 6≡ 2 (mod
√

5) in the field K5(
√

5). The terms
in this series tend to 0 in the 5-adic valuation, because

5k
( j

5

k

)
=
j(j − 5)(j − 10) · · · (j − 5(k − 1))

k!

and because the additive 5-adic valuation of k! satisfies

v5(k!) =
k − sk

4
≤ k

4
,
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where sk is the sum of the 5-adic digits of k. Thus, for all x 6≡ 2 (mod
√

5)
in K5(

√
5) the expression

y = T5(x) =
x5 + 3

5
+

1

5
(x5− ε5)

∞∑
k=0

ak

(
5
√

5

x5 − ε5

)k
, ak =

4∑
j=1

( j
5

k

)
, (3.1)

represents a root of the equation g(x, y) = 0 in the field K5(
√

5). This
formula for T5(x) simplifies to:

T5(x) = x5 + 5 +
√

5
∞∑
k=2

ak

(
5
√

5

x5 − ε5

)k−1

. (3.2)

Note that

T5(x) ≡ x5 (mod 5), |x|5 ≤ 1. (3.3)

This follows from the fact that 5 divides the individual terms

bk = 5kak(
√

5)k−2

(ignoring the unit denominators) in the series (3.2), for 2 ≤ k ≤ 7, as can be
checked by direct computation, and from the following estimate for v5(bk),
the normalized additive valuation of bk in K5(

√
5):

v5(5kak(
√

5)k−2) ≥ k

2
− 1− k

4
=
k

4
− 1 ≥ 1, for k ≥ 8.

It follows from this that the function T5(x) can be iterated on the set

D5 = {x ∈ K5(
√

5) : |x|5 ≤ 1 ∧ x 6≡ 2 (mod
√

5)}. (3.4)

I claim now that (3.1) (or (3.2)) gives the only root of g(x, y) = 0 in
the field K5(

√
5), for a fixed x 6≡ 2 (mod

√
5). From the above formulas, a

second root of this equation must have the form

y1 =
x5 + 3

5
+

1

5
(x5 − ε5)(U4 + U3 + U2 + U),

where

U = ζ−1

(
x5 − ε̄5

x5 − ε5

)1/5

,

for some fifth root of unity ζ 6= 1. But then

U4 + U3 + U2 + U =
U5 − 1

U − 1
− 1 ∈ K5(

√
5),

so U ∈ K5(
√

5); and since ζU is also in K5(
√

5), it follows that ζ ∈ K5(
√

5).
This is impossible, since the ramification index of 5 in K5(ζ) is e = 4, while
the ramification index of 5 in K5(

√
5) is only e = 2.
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Proposition 3.2. If x ∈ D5, the subset of K5(
√

5) defined by ( 3.4), then
the series

y = T5(x) = x5 + 5 +
√

5
∞∑
k=2

ak

(
5
√

5

x5 − ε5

)k−1

, ak =
4∑
j=1

( j
5

k

)
, (3.5)

gives the unique solution of the equation g(x, y) = 0 in the field K5(
√

5).
Moreover, the image T5(x) also lies in D5, so the map T5 can be iterated on
this set.

Corollary 3.3. The function T5(x) satisfies T5(D5 ∩ K5) ⊆ D5 ∩ K5.

Proof. Let σ denote the non-trivial automorphism of K5(
√

5)/K5. If x ∈
D5∩K5, then g(x, T5(x)) = 0 and T5(x) ∈ K5(

√
5) imply that g(xσ, T5(x)σ) =

g(x, T5(x)σ) = 0. The theorem gives that T5(x)σ = T5(x), implying that
T5(x) ∈ K5. �

Now the completion (F1)p of the field F1 = Q(η) with respect to a prime

divisor p of RF1 dividing ℘5 is a subfield of K5(
√

5). This is because F1 is
unramified at the prime p and is abelian over K, so that (F1)p is unramified
and abelian over K℘5 = Q5.

By Lemma 3.1, we can substitute x = η in (3.5), and since ητ5 is a
solution of g(η, Y ) = 0 in K5, we conclude that ητ5 = T5(η). Letting ζ = 1
and U = −u gives

ητ5 =
η5 + 3

5
+

1

5
(η5−ε5)(u4−u3 +u2−u), u = −

(
η5 − ε̄5

η5 − ε5

)1/5

=
1

εξ
∈ F ;

which agrees with the result of [14, Theorem 3.3] (see the second line in the
proof of that theorem). The automorphism τ5 is canonically defined on the
unramified extension Q5(η); defining τ5 to be trivial on Q5(

√
5), we have

that T5(ητ5) = T5(η)τ5 , and hence that

ητ
n
5 = Tn5 (η), n ≥ 1. (3.6)

This also follows inductively from

g(ητ
n−1
5 , ητ

n
5 ) = g(ητ

n−1
5 , T5(ητ

n−1
5 )) = g(ητ

n−1
5 , Tn5 (η)) = 0.

Therefore, η = r(w/5) is a periodic point of T5 in D5, and the minimal
period of η with respect to T5 is equal to the order of the automorphism

τ5 =
(
F1/K
℘5

)
.

By Theorem 2.1, the periodic points of g(z) lie in K5(
√

5). In particular,
the minimal period of η = r(wd/5) with respect to g(z) is the order n of the
automorphism τ5. This is because any values ηi, for which

g(η, η1) = g(η1, η2) = · · · = g(ηm−1, η) = 0,

must themselves be periodic points with ηi 6≡ 2 (mod
√

5). This implies that
ηi ∈ D5, and then ηi = T i5(η) follows from Proposition 3.2, so that m must
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be a multiple of n. Hence, η = r(wd/5) must be a root of the polynomial
Pn(x).

Theorem 3.4. For any discriminant −d ≡ ±1 (mod 5), for which the

automorphism τ5 =
(
F1/K
℘5

)
has order n, the polynomial pd(x) divides Pn(x).

4. Identifying the factors of Pn(x)

We will now show that the polynomials pd(x) in Theorem 3.4 are the only
irreducible factors of Pn(x) over Q. The argument is similar to the argument
in [12, pp. 877-878], with added complexity due to the nontrivial nature of
the points in E5[5]−〈(0, 0)〉, plus the necessity of dealing with the action of
the icosahedral group in this case.

To motivate the calculation below, we prove the following lemma. As in
Part II, F1 denotes the field F1 = Q(η), where η = r(wd/5).

Lemma 4.1. If w = wd is defined as in ( 1.2), and τ5 =
(
F1/K
℘5

)
, then for

some 5-th root of unity ζi, we have

ητ
−1
5 = r

(w
5

)τ−1
5

= ζir
( w

25

)
.

Proof. Define τ5 on F1(
√

5) = Q(η,
√

5) so that it fixes
√

5. This is possible
since F1 and K(

√
5) are disjoint, abelian extensions of K. (See the discussion

in Sections 5.2 and 5.3 of [14], where τ5 = σ1φ|F1 and both σ1 and φ fix the
field L = Q(ζ).) Recall the linear fractional expression from Part II that
was denoted

τ(b) =
−b+ ε5

ε5b+ 1
.

From τ(ξ5) = η5 and T (ητ5) = ξ (Part II, Thms. 3.3 and 5.1) we then obtain

η5τ−1
5 = τ(ξ5)τ

−1
5 = τ

(
(ξτ
−1
5 )5

)
= τ(T (η)5) = r(η),

where

r(z) = z
z4 − 3z3 + 4z2 − 2z + 1

z4 + 2z3 + 4z2 + 3z + 1
,

as in the Introduction to Part II. On the other hand,

r(η) = r
(
r
(w

5

))
= r5

( w
25

)
,

by Ramanujan’s modular equation. Thus, η5τ−1
5 = r5(w/25), and the asser-

tion follows. �

By (3.3), we have fi(T5(x)) ≡ fi(x
5) (mod 5), and since T5(a) is an

”unramified” periodic point in D5 whenever a is, it follows that σ : x→ T5(x)
is a lift of the Frobenius automorphism on the roots of fi(x), for each i with
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1 ≤ i ≤ N . We may assume that σ fixes
√

5, since K5 and Q5(
√

5) are
linearly disjoint over Q5. In order to apply σ to all the maps occurring in

the proof below, we also extend σ to the field K5

(√
−5+

√
5

2

)
, so that it

fixes elements of the field Q5

(√
−5+

√
5

2

)
; this is a cyclic quartic and totally

ramified extension of Q5 (the minimal polynomial of the square-root being
the Eisenstein polynomial x4 + 5x2 + 5).

Theorem 4.2. For n > 1 the polynomial Pn(x) is a product of polynomials
pd(x):

Pn(x) = ±
∏

−d∈Dn,5

pd(x), (4.1)

where Dn,5 is the set of discriminants −d = dKf
2 of imaginary quadratic

orders R−d ⊂ K = Q(
√
−d) for which

(−d
5

)
= +1 and the corresponding au-

tomorphism τ5 =
(
F1/K
℘5

)
has order n in Gal(F1/K). Here F1 = Q(r(wd/5))

is the inertia field for the prime divisor ℘5 = (5, wd) in the abelian extension
Σ5Ωf (d 6= 4f2) or Σ5Ω5f (d = 4f2 > 4) of K; and pd(x) is the minimal
polynomial of the value r(wd/5) over Q.

Proof. Let {η = η0, η1, . . . , ηn−1}, n ≥ 2, be a periodic orbit of T5(x)
contained in D5, where Tn5 (η) = η, and let

ξ = T (η1) = T (T5(η)) = T (ησ).

Then the relation g(η, η1) = g(η, T (ξ)) = 0 implies that (η, ξ) is a point on
the curve

C5 : X5 + Y 5 = ε5(1−X5Y 5).

Rewrite this relation as

ξ5 =
−η5 + ε5

ε5η5 + 1
= τ(η5), τ(b) =

−b+ ε5

ε5b+ 1
, b = η5.

Let

E5(b) : Y 2 + (1 + b)XY + bY = X3 + bX2

be the Tate normal form for a point of order 5; and let E5,5(b) be the
isogenous curve

E5,5(b) : Y 2 + (1 + b)XY + 5bY = X3 + 7bX2 + 6(b3 + b2 − b)X
+ b5 + b4 − 10b3 − 29b2 − b.

The X-coordinate of the map ψ : E5(b)→ E5,5(b) is given by

X(ψ(P )) =
b4 + (3b3 + b4)x+ (3b2 + b3)x2 + (b− b2 − b3)x3 + x5

x2(x+ b)2
, b = η5,

with x = X(P ). Note that ker(ψ) = 〈(0, 0)〉, and ψ is defined over Q(b).
(See [11, p. 259].)
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The relation ξ5 = τ(η5) implies that there is an isogeny φ : E5(η5) →
E5(τ(η5)) = E5(ξ5). This is because the j-invariant of E5(ξ5) is

jξ =
(1− 12ξ5 + 14ξ10 + 12ξ15 + ξ20)3

ξ25(1− 11ξ5 − ξ10)

=
(1 + 228η5 + 494η10 − 228η15 + η20)3

η5(1− 11η5 − η10)5
,

where the latter value is j(E5,5(η5)). Thus, E5,5(η5) ∼= E5(ξ5) by an iso-
morphism ι1. Composing ψ (for b = η5) with this isomorphism gives the
isogeny φ = ι1 ◦ ψ. Furthermore, j(E5,5(η5)) is invariant under the substi-

tution η → T (η) = ξσ
−1

, so

jξ =

(
(1 + 228ξ5 + 494ξ10 − 228ξ15 + ξ20)3

ξ5(1− 11ξ5 − ξ10)5

)σ−1

=

(
(1− 12η5 + 14η10 + 12η15 + η20)3

η25(1− 11η5 − η10)

)σ−1

= j
ησ−1 .

It follows that E5(ξ5) ∼= E5((ησ
−1

)5) by an isomorphism ι2. Composing

ι2 with φ gives an isogeny ι2 ◦ φ = φ1 : E5(η5) → E5(η5)σ
−1

of degree 5.
Applying σ−i+1 to the coefficients of φ1 gives an isogeny

φi : E5(η5)σ
−(i−1) → E5(η5)σ

−i
, 1 ≤ i ≤ n,

which also has degree 5. Hence, ι = φn ◦ φn−1 ◦ · · · ◦ φ1 is an isogeny from

E5(η5) to E5(η5)σ
−n

of degree 5n. But σn is trivial on Q5(η,
√

5), since
Tn5 (η) = η. Hence, ι : E5(η5)→ E5(η5).

We will show that ι is a cyclic isogeny by showing that some point P ∈
E5(η5)[5] is not in ker(ι). The following formula from [15] gives the X-
coordinate on E5(b) for a point P of order 5, which does not lie in 〈(0, 0)〉:

X(P ) =
−ε4

2

(−2u2 + (1 +
√

5)u− 3
√

5− 7)(2u2 + (2
√

5 + 4)u+ 3
√

5 + 7)

(−2u2 + (
√

5 + 1)u− 2)(u+ 1)2
,

where

u5 = −b− ε̄
5

b− ε5
, b = η5, ε̄ = −1 +

√
5

2
.

A calculation on Maple shows that

X1 = X(ψ(P )) =
−5 +

√
5

10
(b2 + ε4b+ ε̄2), b = η5.

This is the X-coordinate of the point P ′ = ψ(P ) on E5,5(b). On the other
hand, an isomorphism ι1 : E5,5(b) → E5(τ(b)) is given by ι1(X1, Y1) =
(X2, Y2), where

X2 = λ2
1X1 + λ2

1

b2 + 30b+ 1

12
− τ(b)2 + 6τ(b) + 1

12
,
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and

λ2
1 =

√
5ε̄5

(b− ε̄5)2
=

√
5ε̄5

(η5 − ε̄5)2
.

Under this isomorphism, X1 = X(ψ(P )) maps to X2 = 0, whence φ(P ) =
ι1 ◦ ψ(P ) = ±(0, 0) on E5(τ(b)) = E5(ξ5). Note that the map φ is defined

over Λ = Q
(
η,
√√

5ε̄
)

= Q
(
η,

√
−5−

√
5

2

)
, since λ1 lies in this field.

Now we find an explicit formula for the isomorphism ι2 between E5(ξ5)

and E5(η5σ−1
). The Weierstrass normal form Y 2 = 4X3−g2X−g3 of E5(b)

has coefficients

g2(b) =
1

12
(b4 + 12b3 + 14b2 − 12b+ 1),

g3(b) =
−1

216
(b2 + 1)(b4 + 18b3 + 74b2 − 18b+ 1).

An isomorphism ι2 : E5(ξ5) → E5(η5σ−1
) is determined by a number λ2

satisfying the equations

g2(η5σ−1
) = λ4

2 · g2(ξ5), g3(η5σ−1
) = λ6

2 · g3(ξ5).

We now use computations analogous to those in Lemma 4.1, obtaining

η5σ−1
= τ(ξ5)σ

−1
= τ

(
(ξσ

−1
)5
)

= τ(T (η)5) = r(η).

Then we solve for λ2
2 from

λ2
2 =

g3(r(η))g2(τ(η5))

g2(r(η))g3(τ(η5))

and find that

λ2
2 =

(11
√

5− 25)(2η + 1 +
√

5)2(−2η2 + (3 +
√

5)η − 3−
√

5)2

40(−2η2 − 2η − 3 +
√

5)2
.

Here, λ2 lies in the field Q
(
η,
√
−
√

5ε
)

= Q
(
η,

√
−5+

√
5

2

)
, which coincides

with the field Λ above. Hence, the desired isomorphism is given on X-
coordinates by

X3 = ι2(X2) = λ2
2X2 + λ2

2

τ(η5)2 + 6τ(η5) + 1

12
− r(η)2 + 6r(η) + 1

12
,

if (X2, Y2) are the coordinates on E5(ξ5) and (X3, Y3) are the coordinates

on E5(η5σ−1
). Therefore, the points with X2 = 0 map to points with

X3 =
(−5 +

√
5)(η
√

5 + 2η2 −
√

5− 3η + 3)(η
√

5− 2η2 −
√

5 + 3η − 3)

20(−2η2 +
√

5− 2η − 3)
.

Finally, we choose u = 1
εξ ∈ K5(

√
5), so that

u5 =
1

ε5ξ5
= −ε̄5 ε

5η5 + 1

−η5 + ε5
= −η

5 − ε̄5

η5 − ε5
,
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as required above for the formula X(P ). Then we compute that

uσ
−1

=
1

εξσ−1 =
1

εT (η)
,

which implies that η = T
(
ε−1u−σ

−1
)

. Substituting this expression for η in

X3 gives

X3 =
−ε4

2

(−2u2
1 + (1 +

√
5)u1 − 3

√
5− 7)(2u2

1 + (2
√

5 + 4)u1 + 3
√

5 + 7)

(−2u2
1 + (

√
5 + 1)u1 − 2)(u1 + 1)2

,

with u1 = uσ
−1

. Comparing with the above formula for X(P ) shows that

X3 = X(P )σ
−1

and therefore the points ±(0, 0) on E5(ξ5) map to ±P σ−1

on E5(η5σ−1
).

This discussion shows that the isogeny φ1 = ι2 ◦ ι1 ◦ ψ from E5(η5) to

E5(η5)σ
−1

satisfies

φ1(P ) = ±P σ−1
.

Applying σ−i+1 to this gives φi(P
σ−i+1

) = ±P σ−i , and therefore

ι(P ) = φn ◦ φn−1 ◦ · · · ◦ φ1(P ) = ±P σ−n = ±P.

Since P is a point of order 5 on E5(η5), and P does not lie in ker(ι), we see
that ι is indeed a cyclic isogeny.

From this and the fact that deg(ι) = 5n we conclude that the j-invariant
jη = j(E5(η5)) satisfies the modular equation

Φ5n(jη, jη) = 0.

On the other hand, from [4, p. 263],

Φ5n(X,X) = cn
∏
−d

H−d(X)r(d,5
n),

where the product is over the discriminants of orders R−d of imaginary
quadratic fields and

r(d, 5n) = |{α ∈ R−d : α primitive, N(α) = 5n}/R×−d|.

Thus, r(d, 5n) is nonzero only when the equation 4k · 5n = x2 + dy2, (k =
0, 1), has a primitive solution. Now the polynomial Pn(x) ∈ Z[x] splits
completely in K5(

√
5), and its “unramified” roots all lie in K5. Furthermore

the “ramified” roots all have the form ξ = T (ησ) for some unramified root
η, and the corresponding j-invariants have the form

jξ =
(1− 12ξ5 + 14ξ10 + 12ξ15 + ξ20)3

ξ25(1− 11ξ5 − ξ10)
,

which equals

jξ =
(1 + 228η5 + 494η10 − 228η15 + η20)3

η5(1− 11η5 − η10)5
.
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It follows that all the j-invariants jη, jξ lie in K5. Hence, the value d for
which H−d(jη) = 0 is not divisible by 5. Thus, (5, xyd) = 1, and therefore(−d

5

)
= +1.

From H−d(jη) = H−d((jη)
σ−1

) = H−d(jξ) = 0 we see that the periodic
point η is a root of both polynomials Fd(x

5), Gd(x
5), where

Fd(x) = x5h(−d)(1− 11x− x2)h(−d)H−d

[
(x4 + 12x3 + 14x2 − 12x+ 1)3

x5(1− 11x− x2)

]
and

Gd(x) = xh(−d)(1−11x−x2)5h(−d)H−d

[
(x4 − 228x3 + 494x2 + 228x+ 1)3

x(1− 11x− x2)5

]
.

Now the roots of the polynomial Gd(x
5) are invariant under the action of

the icosahedral group G60 = 〈S, T 〉, where T is as before and S(z) = ζz,

with ζ = e2πi/5. (See [11], [17].) Since H−d(X) is irreducible over the field
L = Q(ζ), containing the coefficients of all the maps in G60, the polynomial
Gd(x

5) factors over L into a product of irreducible polynomials of the same
degree. (See the similar argument in [12, p. 864].) By the results of [14,
pp. 1193, 1202], one of these irreducible factors is pd(x), whose degree is
4h(−d), and pd(x) is invariant under the action of the subgroup

H = 〈U, T 〉, U(z) =
−1

z
,

a Klein group of order 4. The normalizer of H in G60 is N = 〈A,H〉 ∼= A4,
where A = STS−2 is the map

A(z) = ζ3 (1 + ζ)z + 1

z − 1− ζ4

of order 3, and ATA−1 = U,AUA−1 = T2 = TU . The distinct left cosets of
H in G60 are represented by the elements

Mij = SjAi, 0 ≤ i ≤ 2, 0 ≤ j ≤ 4.

(See [17, Prop. 3.3].) We would like to show that η is a root of the factor
pd(x).

Since all the roots of Gd(x
5) have the form Mij(α), for some root α of

pd(x) ([14, p. 1203]), the factors of Gd(x
5) over L have the form

pi,j(x) = (cx+ d)4h(−d)pd(A
iSj(x)),

where AiSj(x) = ax+b
cx+d . The stabilizer of this polynomial in G60 is

(AiSj)−1HAiSj = S−jHSj ,

which contains the map S−jUSj(x) = −ζ−2j

x . If pi,j(η) = 0, where j 6= 0,

then both η and −ζ
−2j

η are roots of pi,j(x), which would imply that ζ−2j is

contained in the splitting field of Pn(x) over Q, and is therefore contained
in K5(

√
5), which is not the case. Hence, η can only be a root of pi,0(x) =
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(cix + di)
4h(−d)pd(A

i(x)), for some i. But then the elements in HAi(η)
are roots of pd(x). Assume i = 1. Since A(η) is a root of pd(x), so is

Aρ
j
(η), where ρ is the automorphism of K5(ζ)/K5 for which ζρ = ζ2. But

Aρ = A−1U , so that Aρ
2

= A−ρU = UAU and Aρ
3

= UAρU = UA−1. Thus,

Aρ
3
(η) being a root of pd(x) and U ∈ H imply that A−1(η) is also a root of

pd(x). But then η is a common root of p1,0(x) = (c1x + d1)4h(−d)pd(A(x))

and p2,0(x) = (c2x + d2)4h(−d)pd(A
−1(x)), which is impossible, since these

are two of the irreducible factors of Gd(x
5) over L, and the latter polynomial

has no multiple roots, for d 6= 4. (See [17, §2.2].) A similar argument works
if i = 2, since A2 = A−1 and A = UA−ρ. For d = 4, we have

G4(x5) = (x20 − 228x15 + 494x10 + 228x5 + 1)3 − 1728x5(1− 11x5 − x10)5

= (x2 + 1)2(x4 + 2x3 − 6x2 − 2x+ 1)2(x8 − x6 + x4 − x2 + 1)2

× (x8 + 4x7 + 17x6 + 22x5 + 5x4 − 22x3 + 17x2 − 4x+ 1)2

× (x8 − 6x7 + 17x6 − 18x5 + 25x4 + 18x3 + 17x2 + 6x+ 1)2,

and the only periodic point η ∈ D5 which is a root of G4(x5) is the fixed
point

η = i = 3 + 3 · 5 + 2 · 52 + 3 · 53 + 54 + · · · ∈ Q5.

Thus, d = 4 does not occur when n ≥ 2. (Except for the primitive 20-th
roots of unity, which do not lie in K5(

√
5), the other roots of G4(x5) = 0

satisfy x ≡ 2 mod 5, and so do not lie in D5.)
Hence, the only possibility is that pd(η) = 0. This shows that all periodic

points of T5(x) in D5 are roots of some pd(x) for which (−d/5) = +1. Since
T5(η) = ητ5 for such a root by (3.6), it is clear that τ5 has order n in the
corresponding Galois group Gal(F1/Q), as well. All the roots of Pn(x) which
do not lie in D5 have the form T (η), for η ∈ D5, by the discussion in Section
2, and are also roots of pd(x) for one of these integers d, since T (x) stabilizes
the roots of pd(x).

Thus, if n ≥ 2, the only irreducible factors of Pn(x) over Q are the
polynomials pd(x) for which (−d/5) = +1 and τ5 ∈ Gal(F1/Q) has order n.
This proves (4.1). �

For use in the following corollary, note that the substitution (X,Y ) →(−1
X , −1

Y

)
represents an automorphism of the curve g(X,Y ) = 0, since

X5Y 5g

(
−1

X
,
−1

Y

)
= g(X,Y ). (4.2)

As in [14], put

g1(X,Y ) = Y 5g

(
X,
−1

Y

)
. (4.3)

In the following corollary, we prove the claim stated in the last paragraph
of [14, p. 1212]. In that paragraph, the polynomial x2 + x− 1 should have
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also been listed along with x, x2 + 1 and pd(x) as factors of the resultants

Rn(x). As we will see below, however, x2 + x− 1 never divides R̃n(x).

Corollary 4.3. Let R̃n(x) be the (n− 1)-fold iterated resultant

Resxn−1(...(Resx2(Resx1(g(x, x1), g(x1, x2)), g(x2, x3)), ..., g1(xn−1, x))

for n ≥ 2. If α 6= 0 is a root of R̃n(x), then α is either ±i or a root of some
polynomial pd(x), where pd(x) | R2n(x).

Proof. A root α 6= 0 of R̃n(x) satisfies the simultaneous equations

g(α, α1) = g(α1, α2) = · · · = g(αn−2, αn−1) = g1(αn−1, α) = 0,

for some elements αi in Q, the algebraic closure of Q. Note that αi 6= 0,
for 1 ≤ i ≤ n − 1, because g(X, 0) = X5, so that αi = 0 implies αi−1 = 0.
But the definition of g1(X,Y ) and the final equation in the above chain
give that g

(
αn−1,

−1
α

)
= 0. Now the identity (4.2) implies, using the above

simultaneous equations, that

g

(
−1

α
,
−1

α1

)
= g

(
−1

α1
,
−1

α2

)
= · · · = g

(
−1

αn−1
, α

)
= 0.

Tacking this chain of equations onto the first chain following the equation
g
(
αn−1,

−1
α

)
= 0 shows that α is a root of R2n(x) = 0. Setting p4(x) = x2+1

(see below), we only have to verify that α is not a root of x2+x−1 to conclude
that α is a root of some polynomial pd(x), because

P1(x) = x(x2+1)(x2+x−1)(x4+x3+3x2−x+1) = x(x2+x−1)p4(x)p19(x).

For in that case α is either a root of p4(x)p19(x) or a root of some Pm(x),

for m > 1. But if α = −1±
√

5
2 , then α is a fixed point, g(α, y) = 0⇒ y = α,

but

g1(α, α) = α5g(α, α) =
625− 275

√
5

2
6= 0.

Thus, α cannot be a root of R̃n(x) for any n ≥ 1. �

Remark. This justifies the claims made in Section 5 of Part II about the
resultant R̃n(x). In particular, all its irreducible factors are x2 + 1 and
polynomials of the form pd(x). This shows also that the polynomial in Ex-
ample 2 of that section (pp. 1210-1211) is indeed p491(x). The computation

of the degree R̃3(x) was in error, however, at the beginning of that exam-
ple. In fact the degree is 250, and there are five factors of degree 12, not
three, as was claimed before: these factors are the polynomials pd(x) for
d = 31, 44, 124, 211, 331.

Note that the root −i = r
(−7+i

5

)
, so p4(x) is the minimal polynomial of

a value r(w4/5), with w4 = −7 + i ∈ Q(
√
−4) and ℘2

5 = (−2 + i)2 | w4. This
justifies the notation p4(x). See [7, p. 139].

The following theorem is immediate from Theorem 4.2 and the computa-
tions of Section 2.
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Theorem 4.4. The set of periodic points in Q (or Q5 or C) of the multi-
valued algebraic function g(z) defined by the equation g(z, g(z)) = 0 consists

of 0, −1±
√

5
2 , and the roots of the polynomials pd(x), for negative discrim-

inants −d satisfying
(−d

5

)
= +1. Over Q or C the latter values coincide

with the values η = r(wd/5) and their conjugates over Q, where r(τ) is the
Rogers-Ramanujan continued fraction and the argument wd ∈ K = Q(

√
−d)

satisfies

wd =
v +
√
−d

2
∈ RK , ℘2

5 | wd, and (N(wd), f) = 1.

The fixed points 0, −1±
√

5
2 come from the factors x, x2 + x − 1 of the

polynomial P1(x).
Equating degrees in the formula (4.1) yields

deg(Pn(x)) =
∑

−d∈Dn,5

4h(−d), n > 1.

From (2.7) we get the following class number formula.

Theorem 4.5. For n > 1 we have∑
−d∈Dn,5

h(−d) =
1

2

∑
k|n

µ(n/k)5k,

where Dn,5 has the meaning given in Theorem 1.3.

This proves Theorem 1.3, where the field F1 has been denoted as Fd,5,
to indicate its dependence on d. Note that the corresponding formula for
n = 1 reads ∑

−d∈D1,5

h(−d) = h(−4) + h(−19) = 2 =
1

2
(5− 1).

5. Ramanujan’s modular equations for r(τ )

In this section we take a slight detour to show how the polynomials
p4d(x), p9d(x) and p49d(x) can be computed, if the polynomial pd(x) is known.

From Berndt’s book [2, p. 17] we take the following identity relating
u = r(τ) and v = r(3τ):

(v − u3)(1 + uv3) = 3u2v2. (5.1)

Let

P3(u, v) = (v − u3)(1 + uv3)− 3u2v2.

This polynomial satisfies the identity

v4P3

(
u,
−1

v

)
= P3(v, u).
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The following theorem gives a simple method of calculating p9d(x) from
pd(x).

Theorem 5.1. For any negative discriminant −d ≡ ±1 (mod 5), the poly-
nomial p9d(x) divides the resultant

Resy(P3(y, x), pd(y)).

Proof. Let −d = dKf
2, where dK is the discriminant of K = Q(

√
−d). One

of the roots of p9d(x) is η′ = r(w9d/5), where w9d = v+
√
−9d

2 ∈ R−9d, ℘
2
5 | w9d

and N(w9d) = v2+9d
4 is prime to 3f . Let f = 3sf ′, with (f ′, 3) = 1. For some

integer k, w9d + 25f ′k = v+50f ′k+
√
−9d

2 satisfies v + 50f ′k ≡ v − 4f ′k ≡ 3
mod 9. Furthermore,

η′ = r

(
w9d + 25f ′k

5

)
= r

(w9d

5
+ 5f ′k

)
= r

(w9d

5

)
.

Thus, we may assume 3 || v, and then 9 | N(w9d). In that case wd = w9d
3 ∈

R−d, where (N(wd), f) = 1, even when 3 | f . Furthermore, ℘2
5 | wd. Hence,

η = r(wd/5) is a root of pd(x). From (5.1) we have

P3(η, η′) = P3(r(wd/5), r(w9d/5)) = P3(r(wd/5), r(3wd/5)) = 0.

Hence, η′ is a root of the resultant, which therefore has its minimal polyno-
mial p9d(x) as a factor. �

Example 1. We compute

Resy(P3(y, x), p4(y)) = Resy(P3(y, x), y2+1) = x8+x6−6x5+9x4+6x3+x2+1.

Since the latter polynomial is irreducible, the theorem shows that it equals
p36(x):

p36(x) = x8 + x6 − 6x5 + 9x4 + 6x3 + x2 + 1.

This verifies once again the entry for d = 36 in Table 1 of [14], which we
used in Example 1 of that paper (p. 1208). In the same way, we compute

Resy(P3(y, x), p36(y)) = (x2 + 1)4(x24 − 18x23 + 81x22 − 60x21 + 594x20

+ 1074x19 + 118x18 − 1002x17 − 261x16 + 6882x15 + 12078x14

+ 1014x13 − 18585x12 − 1014x11 + 12078x10 − 6882x9 − 261x8

+ 1002x7 + 118x6 − 1074x5 + 594x4 + 60x3 + 81x2 + 18x+ 1)

= p4(x)4p324(x).

There is also the identity from [2, p. 12] relating u = r(τ) and v = r(2τ):

(v − u2) = (v + u2) · uv2. (5.2)

Setting

P2(u, v) = (v + u2) · uv2 − (v − u2),



808 PATRICK MORTON

we have the following identity, analogous to the identity for P3(u, v).

v3P2

(
u,
−1

v

)
= P2(v, u).

An argument similar to the proof of Theorem 5.1 yields

Theorem 5.2. For any negative discriminant −d ≡ ±1 (mod 5), the poly-
nomial p4d(x) divides the resultant

Resy(P2(y, x), pd(y)).

Proof. Again, let −d = dKf
2, where dK is the discriminant of K =

Q(
√
−d). One of the roots of p4d(x) is η′ = r(w4d/5), where w4d = v+

√
−4d

2 ∈
R−4d, ℘

2
5 | w4d and N(w4d) = v2+4d

4 is prime to 2f . Thus, v ≡ 2d+ 2 (mod
4). If f is odd, we set

w′ = w4d + 25f =
(v

2
+ 25f

)
+
√
−d = v′ +

√
−d.

Then,

r

(
w′

5

)
= r

(w4d

5
+ 5f

)
= r

(w4d

5

)
= η′.

Moreover, v′ ≡ v
2 +1 ≡ d (mod 2). Now let wd = w′

2 = v′+
√
−d

2 ∈ R−d, where

(N(wd), f) = 1. Then ℘2
5 | wd and η = r(wd/5) is a root of pd(x). From

(5.2) we have

P2(η, η′) = P2(r(wd/5), r(w4d/5)) = P2(r(wd/5), r(2wd/5)) = 0.

Hence, η′ is a root of the resultant, which therefore has its minimal polyno-
mial p4d(x) as a factor.

On the other hand, if f is even, let f = 2sf ′, with f ′ odd. Then d is even,
so v/2 is odd. In this case we choose k so that

v′ =
v

2
+ 25f ′k ≡

{
0 (mod 4), if 4 || d;

2 (mod 4), if 8 | d.

With this choice of k we have v′ ≡ d (mod 2), so letting w′ = v′ +
√
−d =

w4d + 25f ′k and wd = w′

2 , we have wd ∈ R−d and

N(wd) =
v′2 + d

4
≡

{
d
4 ≡ 1 (mod 2), if 4 || d;
v′2

4 ≡ 1 (mod 2), if 8 | d.

In either case, we get that (N(wd), f) = 1. We have r(w′/5) = r(w4d/5), as
before, and letting η = r(wd/5) be a root of pd(x), we obtain P2(η, η′) = 0
as above, and the assertion of the theorem follows. �
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Example 2. We have

Resy(P2(y, x), p36(y)) = (x8 + x6 − 6x5 + 9x4 + 6x3 + x2 + 1)

× (x16 − 2x15 + 18x14 + 24x13 + 83x12 + 78x11 + 74x10 + 40x9

+ 9x8 − 40x7 + 74x6 − 78x5 + 83x4 − 24x3 + 18x2 + 2x+ 1)

= p36(x)p144(x)

and

Resy(P2(y, x), p144(y)) = (x8 + x6 − 6x5 + 9x4 + 6x3 + x2 + 1)2

× (x32 − 32x31 + 586x30 − 2856x29 + 5818x28 − 160x27 − 23408x26

+ 41964x25 − 6573x24 − 63520x23 + 64426x22 + 12736x21 − 38746x20

− 11464x19 + 55416x18 − 38148x17 − 5743x16 + 38148x15 + 55416x14

+ 11464x13 − 38746x12 − 12736x11 + 64426x10 + 63520x9 − 6573x8

− 41964x7 − 23408x6 + 160x5 + 5818x4 + 2856x3 + 586x2 + 32x+ 1)

= p36(x)2p576(x).

We can use Theorems 5.1 and 5.2 to construct polynomials pd(x) for which
the Conjecture (1) in [14, p. 1199] does not hold. For example, starting with

p51(x) = x8 + x7 + x6 − 7x5 + 12x4 + 7x3 + x2 − x+ 1,

applying Theorem 5.2 once gives that

p204(x) = x24 − x23 + 38x22 + 36x21 + 166x20 + 33x19 + 57x18 + 22x17

+ 573x16 + 1603x15 + 2465x14 + 1225x13 + 1768x12 − 1225x11

+ 2465x10 − 1603x9 + 573x8 − 22x7 + 57x6 − 33x5 + 166x4 − 36x3

+ 38x2 + x+ 1,

whose discriminant is exactly divisible by 1712, in accordance with Conjec-
ture (1). Applying Theorem 5.2 to this polynomial yields the polynomial
p816(x), of degree 48, whose discriminant is exactly divisible by 1740:

disc(p816(x)) = 216031205276740174031244787981794191122418491854186918;

whereas Conjecture (1) predicts that 1724 should be the power of 17 dividing
disc(p816(x)).

Note that the period of the roots of p51(x) is 4, whereas the period of the
roots of p204(x) and p816(x) is 12.

We modify the statement of Conjecture (1) in [14, p. 1199] as follows.

Conjecture 2. If q > 5 is a prime which divides the field discriminant dK
of K = Q(

√
−d), then q2h(−dK) exactly divides disc(pdK (x)).
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Now define the polynomial P7(u, v) by

P7(u, v) = u8v7 + (−7v5 + 1)u7 + 7u6v3 + 7(−v6 + v)u5 + 35u4v4

+ 7(v7 + v2)u3 − 7u2v5 − (v8 + 7v3)u− v.
Note that P7(u, v) satisfies the polynomial identity

v8P7

(
u,
−1

v

)
= P7(v, u).

From [22, Thm. 3.3] we have the following fact.

Proposition (Yi). The Rogers-Ramanujan continued fraction r(τ) satisfies
the equation P7(r(τ), r(7τ)) = 0.

Theorem 5.3. For any negative discriminant −d ≡ ±1 (mod 5), the poly-
nomial p49d(x) divides the resultant

Resy(P7(y, x), pd(y)).

The proof is the same, mutatis mutandis, as the proof of Theorem 5.1,
on replacing the prime 3 by 7.

Example 3. We compute that

Resy(P7(y, x), p4(y)) = p196(x)

= x16 + 14x15 + 64x14 + 84x13 − 35x12 − 14x11 + 196x10

+ 672x9 + 1029x8 − 672x7 + 196x6 + 14x5 − 35x4

− 84x3 + 64x2 − 14x+ 1.

As a check, note that h(−4 · 72) = 4 and the discriminant of p196(x) is

disc(p196(x)) = 232 · 312 · 528 · 714 · 194 · 718,

all of whose prime factors are less than d = 196 = 4 · 72.

6. Periodic points for h(t, u)

6.1. Reduction to periodic points of g(x, y). From [14] the equation
connecting t = X − 1

X and u = Y − 1
Y in the function field of the curve

g(X,Y ) = 0 is

h(t, u) = u5 − (6 + 5t+ 5t3 + t5)u4 + (21 + 5t+ 5t3 + t5)u3

− (56 + 30t+ 30t3 + 6t5)u2 + (71 + 30t+ 30t3 + 6t5)u

− 120− 55t− 55t3 − 11t5.

On this curve υ = η − 1
η ∈ Ωf , with η = r(wd/5), satisfies

h(υ, υτ5) = 0, τ5 =

(
Ωf/Q(

√
−d)

℘5

)
.
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This yielded the following theorem.

Theorem 6.1. If Ωf is the ring class field of conductor f (relatively prime

to 5) over the field K = Q(
√
−d), where −d = dKf

2 and
(−d

5

)
= +1, then

Ωf = K(υ), where υ = η − 1
η is a periodic point of the algebraic function

f(z) defined by h(z, f(z)) = 0.

Note the identity

X5Y 5h

(
X − 1

X
,Y − 1

Y

)
= −g(X,Y )g1(X,Y ), (6.1)

where g(X,Y ) is given by (2.1) and g1(X,Y ) is defined in (4.3). Also, recall
that

X5Y 5g

(
−1

X
,
−1

Y

)
= g(X,Y ), X5Y 5g1

(
−1

X
,
−1

Y

)
= g1(X,Y ), (6.2)

where the second identity is an easy consequence of the first. Using these
facts we can prove the following.

Theorem 6.2. If υ 6= −1 is any periodic point of the algebraic function f(z)
in Theorem 6.1, then

υ = η − 1

η
,

for some periodic point η of g(z), and υ generates a ring class field Ωf over

some field K = Q(
√
−d), where −d = dKf

2 and
(−d

5

)
= +1.

Proof. Assume that there exist elements υi for which

h(υ, υ1) = h(υ1, υ2) = · · · = h(υn−1, υ) = 0. (6.3)

Since the substitution x = y − 1
y transforms the polynomial

h(x, x) = −(x+ 1)(x2 + 4)(x2 − x+ 3)(x2 − 2x+ 2)(x2 + x+ 5),

(after multiplying by y9) into the product

−(y2 + y − 1)(y2 + 1)2(y4 − y3 + y2 + y + 1)(y4 − 2y3 + 2y + 1)

× (y4 + y3 + 3y2 − y + 1)

= −(y2 + y − 1)p4(y)2p11(y)p16(y)p19(y),

we may assume n ≥ 2. Set g0(X,Y ) = g(X,Y ) and write υ = η − 1
η and

υi = ηi − 1
ηi

. By (6.1), equation (6.3) is equivalent to a set of simultaneous
equations

gi1(η, η1) = gi2(η1, η2) = · · · = gin(ηn−1, η) = 0, (6.4)

where each ik = 0 or 1. Using the same idea as in the proof of Corollary 4.3,
we will transform this set of equations into a set of equations which only
involve the polynomial g = g0. Assume first that i1 = 1. Then

0 = g1(η, η1) = g

(
η,
−1

η1

)
.
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Now we use (6.2) to rewrite the remaining equations, so that we have

0 = g

(
η,
−1

η1

)
= gi2

(
−1

η1
,
−1

η2

)
= · · · = gin

(
−1

ηn−1
,
−1

η

)
,

with the same subscripts ir, for r ≥ 2, as before. Now assume we have
transformed the first k − 1 equations so that only the polynomial g(X,Y )
appears. Then, on renaming the elements ±η±1

i as ηi, we have the simulta-
neous equations

0 = g (η, η1) = · · · = g(ηk−2, ηk−1) = gik(ηk−1, ηk) = · · · = gin(ηn−1,±η±1).

If ik = 0 we replace k by k+1 and continue. If ik = 1 we replace gik(ηk−1, ηk)
by g(ηk−1,−1/ηk) and use (6.2) to replace ηr in the remaining equations by
−1/ηr, r ≥ k. Then, on renaming the η’s again, we get a chain of equations

0 = g (η, η1) = · · · = g(ηk−1, ηk) = · · · = gin(ηn−1,±η±1).

Thus, by induction, we see that (6.4) is equivalent to a chain of equations

0 = g (η, η1) = · · · = g(ηn−1,±η±1)

only involving the polynomial g. If the final η is simply η, then η is a periodic
point of g having period n. On the other hand, if the final η appearing in
these equations is −η−1, then we use the same argument as in Corollary 4.3
to show that η is a periodic point of period 2n. Then we know η is not 0 or a
root of x2 +x− 1, and therefore must be a root of some pd(x). By Theorem
6.1, this implies that K(υ) = Ωf , for K = Q(

√
−d) and −d = dKf

2. This
proves the theorem. �

Taken together, Theorems 6.1 and 6.2 verify Conjecture 1(b) of Part I for
the case p = 5. To verify Conjecture 1(a), we define the function

T5(z) = T5(η)− 1

T5(η)
, η =

z ±
√
z2 + 4

2
.

We can also write

T5(z) = φ ◦ T5 ◦ φ−1(z), φ(z) = z − 1

z
,

where φ−1(z) ∈ { z±
√
z2+4
2 } is two-valued. Since

g(z, T5(z)) = 0 ⇒ g

(
−1

z
,
−1

T5(z)

)
= 0,

it follows from Proposition 3.2 that

T5

(
−1

z

)
=
−1

T5(z)
, for z ∈ D5 ∩ {z : |z|5 = 1}.

Since the two solutions η(+), η(−) of φ(η(±)) = z satisfy η(+)η(−) = −1, the
value taken for φ−1(z) does not affect the value of T5(z). In other words,
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we have the symmetric formula

T5(z) = T5(η(+)) + T5(η(−)), η(±) =
z ±
√
z2 + 4

2
.

Then from T5(η(+)) ·T5(η(−)) = −1 and (3.3) it follows that T5(z) ∈ φ(D5 ∩
{z : |z|5 = 1}), which implies that

Tn5 (z) = Tn5 (η(+)) + Tn5 (η(−)), n ≥ 1, η(±) =
z ±
√
z2 + 4

2
.

Furthermore, g(z, T5(z)) = 0 implies that

h(z − 1/z,T5(z − 1/z)) = −g(z, T5(z))g1(z, T5(z)) = 0.

We deduce the following.

Theorem 6.3. For any negative discriminant −d = dKf
2 with

(−d
5

)
= +1,

and for η = r(wd/5), as in Part II, the h(−d) distinct conjugate values

υτ = ητ − 1

ητ
, τ ∈ Gal(F1/K),

lying in the ring class field Ωf of K = Q(
√
−d), are periodic points of the

5-adic algebraic function T5(z) in the 5-adic domain

D̃5 = φ(D5 ∩ {z ∈ K5 : |z|5 = 1}).

The period of υτ is equal to the order of the automorphism τ̃5 =
(

Ωf/K
℘5

)
.

Proof. This is immediate from

T5(υτ ) = T5

(
ητ − 1

ητ

)
= T5(ητ )− 1

T5(ητ )
= ηττ5 − 1

ηττ5
= υττ5 ,

where the third equality above follows from g(ητ , ηττ5) = 0. The fact that
the period is the order of τ̃ is a consequence of the fact that Q(υ) = Ωf and
that

τ̃5 = τ5|Ωf , τ5 =

(
F1/K

℘5

)
.

�

Corollary 6.4. Conjecture 1(a) of [13] holds for the prime p = 5: Every
ring class field Ωf over K = Q(

√
−d), with

(−d
5

)
= +1 and (f, 5) = 1, is

generated over Q by a periodic point of the 5-adic algebraic function T5(z)

which is contained in the domain D̃5 = φ(D5 ∩ {z ∈ K5 : |z|5 = 1}) ⊂ K5.

Note: it is clear that T5(D̃5) ⊆ D̃5, since T5(x) maps the set D5 ∩ {z ∈
K5 : |z|5 = 1} into itself, by Corollary 3.3 and equation (3.3).

The values υτ and their complex conjugates coincide with the roots of the
polynomial td(x), for which

x2h(−d)td

(
x− 1

x

)
= pd(x), d > 4. (6.5)



814 PATRICK MORTON

Theorem 6.2 shows that every periodic point υ 6= −1,±2i of f(z) is a root
of some polynomial td(x) with d > 4.

6.2. Deuring’s class number formula. Let

S(1)(t, t1) := h(t, t1) ≡ 4(t1 + 1)4(t5 − t1) (mod 5)

and

S(n)(t, tn) := Resultanttn−1(S(n−1)(t, tn−1), h(tn−1, tn)), n ≥ 2.

Then it follows by induction that

S(n)(t, tn) ≡ 4(tn + 1)5n−1(t5
n − tn) (mod 5), n ≥ 1.

Hence, the polynomial Sn(t) := S(n)(t, t) satisfies the congruence

Sn(t) ≡ 4(t+ 1)5n−1(t5
n − t) (mod 5). (6.6)

It follows that
deg(Sn(t)) = 2 · 5n − 1, n ≥ 1.

(See the Lemma on pp. 727-728 of Part I, [13].)
Let L(z) = −z+4

z+1 . Then

L

(
x− 1

x

)
=
−x2 + 4x+ 1

x2 + x− 1
= T (x)− 1

T (x)
,

and we have the identity

(x+ 1)5(y + 1)5h(L(x), L(y)) = 55h(y, x). (6.7)

Moreover,

L(z) + 1 =
5

z + 1
. (6.8)

Using (6.6), (6.7) and (6.8), it follows by the same reasoning as in Section
2 that Sn(x) has distinct roots and that

Qn(x) =
∏
k|n

Sk(x)µ(n/k) (6.9)

is a polynomial. Furthermore, all of the roots of Qn(x) lie in K5. From
Theorem 6.3 we see that the polynomial td(x) divides Qn(x) whenever the
automorphism τ̃5 has order n, and from Theorem 6.2, we see that these are
the only irreducible factors of Qn(x) over Q. This gives

Theorem 6.5. For n > 1, the polynomial Qn(x) is given by the product

Qn(x) = ±
∏

−d∈D(5)
n

td(x),

where td(x) is defined by ( 6.5) and D
(5)
n is the set of negative quadratic

discriminants −d with
(−d

5

)
= +1, for which the automorphism τ̃5,d = τ̃5 =(

Ωf/K
℘5

)
has order n in Gal(Ωf/K), the Galois group of the ring class field

Ωf over K = Q(
√
−d).
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For Q1(x) we have the factorization

Q1(x) = − (x+ 1)(x2 + 4)(x2 − x+ 3)(x2 − 2x+ 2)(x2 + x+ 5)

= − (x+ 1)t4(x)t11(x)t16(x)t19(x),

where t4(x) satisfies

x2t4

(
x− 1

x

)
= (x2 + 1)2 = p4(x)2.

Since deg(td(x)) = 2h(−d), Theorem 6.3 shows that half of the roots of td(x)

lie in the domain D̃5, while the other roots ξ satisfy ξ ≡ −1 (mod 5) in K5,
a fact which follows from (6.7) and (6.8). Also see eq. (32) in [14].

The fact that deg(td(x)) = 2h(−d) now implies the following class number
formula.

Corollary 6.6. For n > 1 we have∑
−d∈D(5)

n

h(−d) =
∑
k|n

µ(n/k)5k.

This formula is equivalent to Deuring’s formula for the prime p = 5 from
[5], [6], as in [16].
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