New York Journal of Mathematics

New York J. Math. 27 (2021) 787-817.

Solutions of diophantine equations as periodic points of p-adic algebraic functions, III

Patrick Morton

Abstract

All the periodic points of a certain algebraic function related to the Rogers-Ramanujan continued fraction $r(\tau)$ are determined. They turn out to be $0, \frac{-1 \pm \sqrt{5}}{2}$, and the conjugates over \mathbb{Q} of the values $r\left(w_{d} / 5\right)$, where w_{d} is one of a specific set of algebraic integers, divisible by the square of a prime divisor of 5 , in the field $K_{d}=\mathbb{Q}(\sqrt{-d})$, as $-d$ ranges over all negative quadratic discriminants for which $\left(\frac{-d}{5}\right)=+1$. This yields a new class number formula for orders in the fields K_{d}. Conjecture 1 of Part I is proved for the prime $p=5$, showing that the ring class fields over fields of type K_{d} whose conductors are relatively prime to 5 coincide with the fields generated over \mathbb{Q} by the periodic points (excluding -1) of a fixed 5 -adic algebraic function.

Contents

1. Introduction 787
2. Iterated resultants 791
3. A 5-adic function 794
4. Identifying the factors of $\mathrm{P}_{n}(x) \quad 798$
5. Ramanujan's modular equations for $r(\tau) \quad 806$
6. Periodic points for $h(t, u) \quad 810$

References

1. Introduction

In Part I a periodic point of an algebraic function $w=\mathfrak{g}(z)$, with minimal polynomial $g(z, w)$ over $F(z), F$ a given field (often algebraically closed), was defined to be an element a of F, for which numbers $a_{i} \in F$ exist satisfying the simultaneous equations

$$
g\left(a, a_{1}\right)=g\left(a_{1}, a_{2}\right)=\cdots=g\left(a_{n-1}, a\right)=0,
$$

Received August 29, 2020.
2010 Mathematics Subject Classification. 11D41,11G07,11G15,14H05.
Key words and phrases. Periodic points, algebraic function, 5 -adic field, extended ring class fields, Rogers-Ramanujan continued fraction.
for some $n \geq 1$. The numbers $a_{i}=\mathfrak{g}\left(a_{i-1}\right)$ in this definition are to be thought of as suitable values of the multi-valued function $\mathfrak{g}(z)$, determined by possibly different branches of $\mathfrak{g}(z)$ (when considered over $F=\mathbb{C}$). Note that if the coefficients of $g(x, y)$ lie in a subfield k of F, over which F is algebraic, then the set of periodic points of $\mathfrak{g}(z)$ in F is invariant under the action of $\operatorname{Gal}(F / k)$. In this part the main focus will be on the multi-valued function $\mathfrak{g}(z)$, whose minimal polynomial is the polynomial

$$
g(x, y)=\left(y^{4}+2 y^{3}+4 y^{2}+3 y+1\right) x^{5}-y\left(y^{4}-3 y^{3}+4 y^{2}-2 y+1\right)
$$

considered in Part II, related to the Rogers-Ramanujan continued fraction $r(\tau)$ (in the notation of [7]). Recall that the function $r(\tau)$ satisfies the modular equation

$$
g(r(\tau), r(5 \tau))=0, \quad \tau \in \mathbb{H}
$$

where \mathbb{H} is the upper half-plane. (See [1], [2], [7].)
I will show, that when transported to the \mathfrak{p}-adic domain - specifically to $\mathrm{K}_{5}(\sqrt{5})$, where K_{5} is the maximal unramified algebraic extension of the 5adic field \mathbb{Q}_{5} - the "multi-valued-ness" disappears, in that the $a_{i}=T_{5}^{i}(a) \in$ $\mathrm{K}_{5}(\sqrt{5})$ become values of a single-valued algebraic function $T_{5}(x)$, defined on a suitable domain $\mathrm{D}_{5} \subset \mathrm{~K}_{5}(\sqrt{5})$. Thus, 5-adically, a and its companions a_{i} are periodic points of $T_{5}(x)$ in the usual sense. Setting $\varepsilon=\frac{-1+\sqrt{5}}{2}$, this single-valued algebraic function is given by the 5 -adically convergent series

$$
\begin{equation*}
T_{5}(x)=x^{5}+5+\sqrt{5} \sum_{k=2}^{\infty} a_{k}\left(\frac{5 \sqrt{5}}{x^{5}-\varepsilon^{5}}\right)^{k-1}, \quad a_{k}=\sum_{j=1}^{4}\binom{j / 5}{k} \tag{1.1}
\end{equation*}
$$

for x in the domain

$$
\mathrm{D}_{5}=\left\{x \in \mathrm{~K}_{5}(\sqrt{5}):|x|_{5} \leq 1 \wedge x \not \equiv 2(\bmod \sqrt{5})\right\}
$$

More precisely, half of the periodic points of $\mathfrak{g}(z)$ lie in D_{5}; namely, those which lie in the unramified extension K_{5}. The other half are periodic points of the function $T \circ T_{5}^{-1} \circ T$ and lie in $T\left(\mathrm{D}_{5}\right)$, where

$$
T(x)=\frac{-(1+\sqrt{5}) x+2}{2 x+1+\sqrt{5}}
$$

The function $T_{5}(x)$ has the property that $y=T_{5}(x)$ is the unique solution in $\mathrm{K}_{5}(\sqrt{5})$ of the equation $g(x, y)=0$, for any $x \in \mathrm{~K}_{5}(\sqrt{5})$ for which $x \not \equiv 2$ $(\bmod \sqrt{5})$. Thus, $T_{5}(x)$ is one of the values of $\mathfrak{g}(x)$, for $x \in \mathrm{D}_{5}$.

In Part II [14] it was shown that the conjugates over \mathbb{Q} of the values $\eta=r(w / 5)$ of the Rogers-Ramanujan continued fraction are periodic points of the algebraic function $\mathfrak{g}(z)$, for specific elements w in the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-d})$. In this part it will be shown that these values are, together with 0 and $\frac{-1 \pm \sqrt{5}}{2}$, the only periodic points of $\mathfrak{g}(z)$. Let d_{K} denote the discriminant of $K=\mathbb{Q}(\sqrt{-d})$, where $\left(\frac{-d}{5}\right)=+1$, and let \wp_{5} denote a prime divisor of $(5)=\wp 5 \wp_{5}^{\prime}$ in K. Recall that $p_{d}(x)$ is the minimal
polynomial over \mathbb{Q} of the value $r\left(w_{d} / 5\right)$, where w_{d} is given by equation (2) below.

Theorem 1.1. (a) The set of periodic points in $\overline{\mathbb{Q}}$ (or $\overline{\mathbb{Q}}_{5}$ or \mathbb{C}) of the multi-valued algebraic function $\mathfrak{g}(z)$ defined by the equation $g(z, \mathfrak{g}(z))=0$ consists of $0, \frac{-1 \pm \sqrt{5}}{2}$, and the roots of the polynomials $p_{d}(x)$, for negative quadratic discriminants $-d=d_{K} f^{2}$ satisfying $\left(\frac{-d}{5}\right)=+1$.
(b) Over \mathbb{C} the latter values coincide with the values $\eta=r\left(w_{d} / 5\right)$ and their conjugates over \mathbb{Q}, where $r(\tau)$ is the Rogers-Ramanujan continued fraction and the argument $w_{d} \in K=\mathbb{Q}(\sqrt{-d})$ satisfies

$$
\begin{equation*}
w_{d}=\frac{v+\sqrt{-d}}{2} \in R_{K}, \quad \wp_{5}^{2} \mid w_{d}, \text { and }\left(N\left(w_{d}\right), f\right)=1 . \tag{1.2}
\end{equation*}
$$

(c) Over $\overline{\mathbb{Q}}_{5}$, all the periodic points of $\mathfrak{g}(z)$ lie in $K_{5}(\sqrt{5})$. Moreover, the periodic points of $\mathfrak{g}(z)$ in K_{5} are periodic points in D_{5} of the single-valued 5-adic function $T_{5}(x)$.

From this theorem and the results of Part II we can assert the following. Let F_{d} denote the abelian extension $F_{d}=\Sigma_{5} \Omega_{f}\left(d \neq 4 f^{2}\right)$ or $F_{d}=\Sigma_{5} \Omega_{5 f}$ $\left(d=4 f^{2}>4\right)$ of $K=\mathbb{Q}(\sqrt{-d})$, where Σ_{5} is the ray class field of conductor $\mathfrak{f}=(5)$ over K and Ω_{f} is the ring class field of conductor f over K. Since $(f, 5)=1$ and $\Omega_{5 f}=\Omega_{5} \Omega_{f}$ when $d \neq 4 f^{2}$ (see [9, Satz 3]), then $F_{d}=$ $\Sigma_{5} \Omega_{5 f}$ in either case. Furthermore, F_{d} coincides with what Cox [4] calls the extended ring class field $L_{\mathcal{O}, 5}$ for the order $\mathcal{O}=\mathrm{R}_{-d}$ of discriminant $-d$ in K. Cox refers to Cho [3], who denotes this field by $K_{(5), \mathcal{O}}$, but these fields are already discussed in Söhngen [20, see p. 318], who shows they are generated by division values of the τ-function, together with suitable values of the j-function. See also Stevenhagen [21] and the monograph of Schertz [19, p. 108].
Theorem 1.2. Let $K=\mathbb{Q}(\sqrt{-d})$, with $\left(\frac{-d}{5}\right)=+1$ and $-d=d_{K} f^{2}$, as above. If $\mathcal{O}=R_{-d}$ is the order of discriminant $-d$ in K, the extended ring class field $F_{d}=\Sigma_{5} \Omega_{5 f}$ over K is generated over \mathbb{Q} by a periodic point $\eta=r\left(w_{d} / 5\right)$ of the function $\mathfrak{g}(z)$ (w_{d} is as in (1.2)), together with a primitive 5 -th root of unity ζ_{5} :

$$
\begin{equation*}
F_{d}=\Sigma_{5} \Omega_{5 f}=\mathbb{Q}\left(\eta, \zeta_{5}\right) . \tag{1.3}
\end{equation*}
$$

Conversely, if $\eta \neq 0, \frac{-1 \pm \sqrt{5}}{2}$ is any periodic point of $\mathfrak{g}(z)$, then for some $-d=d_{K} f^{2}$ for which $\left(\frac{-2}{5}\right)=+1$, the field $\mathbb{Q}\left(\eta, \zeta_{5}\right)=F_{d}$. Furthermore, the field $\mathbb{Q}(\eta)$ generated by η alone is the inertia field for the prime divisor \wp_{5} or for its conjugate \wp_{5}^{\prime} in the field F_{d}.

This theorem provides explicit examples of Satz 22 in Hasse's Zahlbericht [8], according to which any abelian extension of K is obtained from $\Sigma=$ $\Omega_{f}\left(\zeta_{n}\right)$, for some integer $f \geq 1$ and some n-th root of unity ζ_{n}, by adjoining square-roots of elements of Σ. This holds because $\eta=r\left(w_{d} / 5\right)$ satisfies a quadratic equation over $\Omega_{f}\left(\zeta_{5}\right)$. See [14, Prop. 4.3, Cor. 4.7, Thm. 4.8].

Here the method of Part I [13] and [16], which yielded an interpretation and alternate derivation of special cases of a class number formula of Deuring, leads to the following new class number formula.

Theorem 1.3. Let $\mathfrak{D}_{n, 5}$ be the set of discriminants $-d=d_{K} f^{2} \equiv \pm 1$ (mod 5$)$ of orders in imaginary quadratic fields $K=\mathbb{Q}(\sqrt{-d})$ for which the automorphism $\tau_{5}=\left(\frac{F_{d, 5} / K}{\wp_{5}}\right)$ has order n in the Galois group $\operatorname{Gal}\left(F_{d, 5} / K\right)$, where $F_{d, 5}$ is the inertia field for \wp_{5} in the abelian extension F_{d} / K. If $h(-d)$ is the class number of the order $R_{-d} \subset K$, then for $n>1$,

$$
\begin{equation*}
\sum_{-d \in \mathfrak{D}_{n, 5}} h(-d)=\frac{1}{2} \sum_{k \mid n} \mu(n / k) 5^{k} . \tag{1.4}
\end{equation*}
$$

Based on this theorem and numerical calculations, I make the following
Conjecture 1. Let $q>5$ be a prime number. Let $L_{\mathcal{O}, q}=L_{R_{-d}, q}$ be the extended ring class field over $K=K_{d}=\mathbb{Q}(\sqrt{-d})$ for the order $\mathcal{O}=R_{-d}$ of discriminant $-d=d_{K} f^{2}$ in K, and let $h(-d)$ denote the class number of the order \mathcal{O}. Also, let $F_{d, q}$ be the inertia field for the prime divisor \wp_{q} (dividing q in K_{d}) in the abelian extension $L_{\mathcal{O}, q}$ of K_{d}. Then the following class number formula holds:

$$
\sum_{-d \in \mathfrak{Q}_{n, q}} h(-d)=\frac{2}{q-1} \sum_{k \mid n} \mu(n / k) q^{k}, \quad n>1,
$$

where $\mathfrak{D}_{n, q}$ is the set of discriminants $-d=d_{K} f^{2}$ for which $\left(\frac{-d}{q}\right)=+1$ and the Frobenius automorphism $\tau_{q}=\left(\frac{F_{d, q} / K_{d}}{\wp_{q}}\right)$ has order n.

As was shown in [14] for the prime $q=5$, the extension $L_{\mathrm{R}_{-d}, q}$ is equal to $\Sigma_{q} \Omega_{f} / K$, if $d \neq 3 f^{2}$ or $4 f^{2}$; and is equal to $\Sigma_{q} \Omega_{q f} / K$, if $q \equiv 1(\bmod 4)$ and $d=4 f^{2}$; or $q \equiv 1(\bmod 3)$ and $d=3 f^{2}$. The field $F_{d, q}$ has degree $(q-1) / 2$ and is cyclic over the ring class field Ω_{f} of conductor f over K.

One naturally expects that this conjecture describes an aspect of a much more general phenomenon. For example, one could consider families of quadratic fields $K=\mathbb{Q}(\sqrt{-d})$ for which the prime divisors q of a given fixed integer Q all split in K. These are the Q-admissible quadratic fields. Analogous formulas should hold for certain sets of class fields over the family of (imaginary?) abelian extensions of a fixed degree over \mathbb{Q}, whose Galois groups belong to a fixed isomorphism type, and in which a given rational prime q splits.

In Section 6 I show that a similar situation exists for the algebraic function $w=\mathfrak{f}(z)$ whose minimal polynomial over $\overline{\mathbb{Q}}(z)$ is $h(z, w)$, where

$$
\begin{aligned}
h(z, w)=w^{5} & -\left(6+5 z+5 z^{3}+z^{5}\right) w^{4}+\left(21+5 z+5 z^{3}+z^{5}\right) w^{3} \\
& -\left(56+30 z+30 z^{3}+6 z^{5}\right) w^{2}+\left(71+30 z+30 z^{3}+6 z^{5}\right) w \\
& -120-55 z-55 z^{3}-11 z^{5} .
\end{aligned}
$$

I showed in Part II (Theorem 5.4) that any ring class field Ω_{f} over the imaginary quadratic field K, whose conductor is relatively prime to 5 , is generated over K by a periodic point v of $\mathfrak{f}(z)$, which satisfies $v=\eta-\frac{1}{\eta}$, for a certain periodic point η of $\mathfrak{g}(z)$. In Theorem 6.2 of this paper I show that any periodic point $v \neq-1$ of $\mathfrak{f}(z)$ is related to a periodic point of $\mathfrak{g}(z)$ by $v=\eta-\frac{1}{\eta}=\phi(\eta)$, and that the 5 -adic function

$$
\mathrm{T}_{5}(x)=\phi \circ T_{5} \circ \phi^{-1}(x), \quad x \in \widetilde{\mathrm{D}}_{5}=\phi\left(\mathrm{D}_{5} \cap\left\{z \in \mathrm{~K}_{5}:|z|_{5}=1\right\}\right),
$$

plays the same role for $\mathfrak{f}(z)$ that $T_{5}(x)$ plays for $\mathfrak{g}(z)$. In particular, Theorems 6.2 and 6.3 show that Conjecture 1 of Part I is true for the prime $p=5$. This leads to a proof of Deuring's formula for the prime 5 in Theorem 6.5 and its corollary, analogous to the proof given in Part I and in [16] for the prime 2 and in [12] for the prime 3 .

2. Iterated resultants

Set

$$
\begin{equation*}
g(X, Y)=\left(Y^{4}+2 Y^{3}+4 Y^{2}+3 Y+1\right) X^{5}-Y\left(Y^{4}-3 Y^{3}+4 Y^{2}-2 Y+1\right) \tag{2.1}
\end{equation*}
$$

In Part II [14] it was shown that $(X, Y)=\left(\eta, \eta^{\tau_{5}}\right)$, with $\eta=r\left(w_{d} / 5\right)$ and w_{d} given by (1.2), is a point on the curve $g(X, Y)=0$. Here $\tau_{5}=\left(\frac{\mathbb{Q}(\eta) / K}{\wp_{5}}\right)$ is the Frobenius automorphism for the prime divisor \wp_{5} of $K=\mathbb{Q}(\sqrt{-d})$. This fact implies that $r\left(w_{d} / 5\right)$ and its conjugates over \mathbb{Q} are periodic points of the function $\mathfrak{g}(z)$ defined by $g(z, \mathfrak{g}(z))=0$. (See Part II, Theorem 5.3.) In this section and Sections 3-4 it will be shown that these values, together with the fixed points $0, \frac{-1 \pm \sqrt{5}}{2}$, represent all the periodic points of the algebraic function $\mathfrak{g}(z)$. To do this we begin by considering a sequence of iterated resultants defined using the polynomial $g(x, y)$, as in Part I, Section 3 .

We start by defining $R^{(1)}\left(x, x_{1}\right):=g\left(x, x_{1}\right)$, and note that

$$
R^{(1)}\left(x, x_{1}\right) \equiv\left(x_{1}+3\right)^{4}\left(x^{5}-x_{1}\right)(\bmod 5) .
$$

Then we define the polynomial $R^{(n)}\left(x, x_{n}\right)$ inductively by

$$
R^{(n)}\left(x, x_{n}\right):=\operatorname{Resultant}_{x_{n-1}}\left(R^{(n-1)}\left(x, x_{n-1}\right), g\left(x_{n-1}, x_{n}\right)\right), \quad n \geq 2 .
$$

It is easily seen using induction that

$$
R^{(n)}\left(x, x_{n}\right) \equiv(-1)^{n-1}\left(x_{n}+3\right)^{5^{n}-1}\left(x^{5^{n}}-x_{n}\right)(\bmod 5),
$$

so that the polynomial $R_{n}(x):=R^{(n)}(x, x)$ satisfies

$$
\begin{equation*}
R_{n}(x) \equiv(-1)^{n-1}(x+3)^{5^{n}-1}\left(x^{5^{n}}-x\right)(\bmod 5), \quad n \geq 1 . \tag{2.2}
\end{equation*}
$$

The roots of $R_{n}(x)$ are all the periodic points of the multi-valued function $\mathfrak{g}(z)$ in any algebraically closed field containing \mathbb{Q}, whose periods are divisors of the integer n. (See Part I, p. 727.)

From this we deduce, by a similar argument as in the Lemma of Part I (pp. 727-728), that

$$
\operatorname{deg}\left(R_{n}(x)\right)=2 \cdot 5^{n}-1, \quad n \geq 1
$$

As in Part I, we define the expression $\mathrm{P}_{n}(x)$ by

$$
\begin{equation*}
\mathrm{P}_{n}(x)=\prod_{k \mid n} R_{k}(x)^{\mu(n / k)}, \tag{2.3}
\end{equation*}
$$

and show that $\mathrm{P}_{n}(x) \in \mathbb{Z}[x]$. From (2.2) it is clear that $R_{n}(x)$, for $n>1$, is divisible (mod 5) by the N irreducible (monic) polynomials $\bar{f}_{i}(x)$ of degree n over \mathbb{F}_{5}, where

$$
N=\frac{1}{n} \sum_{k \mid n} \mu(n / k) 5^{k},
$$

and that these polynomials are simple factors of $R_{n}(x)(\bmod 5)$. It follows from Hensel's Lemma that $R_{n}(x)$ is divisible by distinct irreducible polynomials $f_{i}(x)$ of degree n over \mathbb{Z}_{5}, the ring of integers in \mathbb{Q}_{5}, for $1 \leq i \leq N$, with $f_{i}(x) \equiv \bar{f}_{i}(x)(\bmod 5)$. In addition, all the roots of $f_{i}(x)$ are periodic of minimal period n and lie in the unramified extension K_{5}. Furthermore, n is the smallest index for which $f_{i}(x) \mid R_{n}(x)$.

Now we make use of the following identity for $g(x, y)$:

$$
\left(x+\frac{1+\sqrt{5}}{2}\right)^{5}\left(y+\frac{1+\sqrt{5}}{2}\right)^{5} g(T(x), T(y))=\left(\frac{5+\sqrt{5}}{2}\right)^{5} g(y, x),
$$

where

$$
T(x)=\frac{-(1+\sqrt{5}) x+2}{2 x+1+\sqrt{5}} .
$$

We have

$$
T(x)-2=-\left(\frac{5+\sqrt{5}}{2}\right) \frac{2 x-1+\sqrt{5}}{2 x+1+\sqrt{5}} .
$$

If the periodic point a of $\mathfrak{g}(z)$, with minimal period $n>1$, is a root of one of the polynomials $f_{i}(x)$, then a is a unit in K_{5}, and for some a_{1}, \ldots, a_{n-1} we have

$$
\begin{equation*}
g\left(a, a_{1}\right)=g\left(a_{1}, a_{2}\right)=\cdots=g\left(a_{n-1}, a\right)=0 . \tag{2.4}
\end{equation*}
$$

Furthermore $a \not \equiv 2(\bmod \sqrt{5})$, since otherwise $a \equiv 2(\bmod 5)$ would have degree 1 over \mathbb{F}_{5} (using that K_{5} is unramified over \mathbb{Q}_{5}). Hence, $2 a+1+\sqrt{5}$ is a unit and $b=T(a) \equiv 2(\bmod \sqrt{5})$. All the a_{i} satisfy $a_{i} \not \equiv 2(\bmod \sqrt{5})$, as well, since the congruence $g(2, y) \equiv 4(y+3)^{5}(\bmod 5)$ has only $y \equiv 2$ as
a solution. Hence, if some $a_{i} \equiv 2$, then $a_{j} \equiv 2$ for $j>i$, which would imply that $a \equiv 2$, as well. The elements $b_{i}=T\left(a_{i}\right)$ are distinct and lie in $\mathrm{K}_{5}(\sqrt{5})$, and the above identity implies that

$$
\begin{equation*}
g\left(b, b_{n-1}\right)=g\left(b_{n-1}, b_{n-2}\right)=\cdots=g\left(b_{1}, b\right)=0 \tag{2.5}
\end{equation*}
$$

in $\mathrm{K}_{5}(\sqrt{5})$. Thus, all the $b_{i} \equiv 2(\bmod \sqrt{5})$, and the orbit $\left\{b, b_{n-1}, \ldots, b_{1}\right\}$ is distinct from all the orbits in (2.4). Now the map $T(x)$ has order 2 , so it is clear that $b=T(a)$ has minimal period n in (2.5), since otherwise $a=T(b)$ would have period smaller than n. It follows that there are at least $2 N$ periodic orbits of minimal period $n>1$. Noting that

$$
R_{1}(x)=g(x, x)=x\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{4}+x^{3}+3 x^{2}-x+1\right),
$$

these distinct orbits and factors account for at least

$$
2 \cdot 5-1+\sum_{d \mid n, d>1}\left(2 \sum_{k \mid d} \mu(d / k) 5^{k}\right)=-1+2 \sum_{d \mid n}\left(\sum_{k \mid d} \mu(d / k) 5^{k}\right)=2 \cdot 5^{n}-1
$$

roots, and therefore all the roots, of $R_{n}(x)$. This shows that the roots of $R_{n}(x)$ are distinct and the expressions $\mathrm{P}_{n}(x)$ are polynomials. Furthermore, over $\mathrm{K}_{5}(\sqrt{5})$ we have the factorization

$$
\begin{equation*}
\mathrm{P}_{n}(x)= \pm \prod_{1 \leq i \leq N} f_{i}(x) \tilde{f}_{i}(x), \quad n>1 \tag{2.6}
\end{equation*}
$$

where $\tilde{f}_{i}(x)=c_{i}(2 x+1+\sqrt{5})^{\operatorname{deg}\left(f_{i}\right)} f_{i}(T(x))$, and the constant c_{i} is chosen to make $\tilde{f}_{i}(x)$ monic. Finally, the periodic points of $\mathfrak{g}(z)$ of minimal period n are the roots of $\mathrm{P}_{n}(x)$ and

$$
\begin{equation*}
\operatorname{deg}\left(\mathrm{P}_{n}(x)\right)=2 \sum_{k \mid n} \mu(n / k) 5^{k}, \quad n>1 . \tag{2.7}
\end{equation*}
$$

This discussion proves the following.
Theorem 2.1. All the periodic points of $\mathfrak{g}(z)$ in $\overline{\mathbb{Q}}_{5}$ lie in $K_{5}(\sqrt{5})$. The periodic points of minimal period n coincide with the roots of the polynomial $P_{n}(x)$ defined by (2.3), and have degree n over $\mathbb{Q}_{5}(\sqrt{5})$. For $n>1$, exactly half of the periodic points of $\mathfrak{g}(z)$ of minimal period n lie in K_{5}.

The last assertion in this theorem follows from the fact that $T(x)$ is a linear fractional expression in the quantity $\sqrt{5}$:

$$
T(x)=\frac{-x \sqrt{5}-x+2}{\sqrt{5}+2 x+1}
$$

with determinant $-2\left(x^{2}+1\right)$. If it were the case that $a \in \mathrm{~K}_{5}$ and $T(a) \in \mathrm{K}_{5}$, for $n>1$, then the last fact would imply that $\sqrt{5} \in \mathrm{~K}_{5}$, which is not the case. Therefore, for $n>1$, the only roots of $\mathrm{P}_{n}(x)$ which lie in K_{5} are the roots of the factors $f_{i}(x)$, in the above notation. Furthermore, the factors $f_{i}(x)$ are irreducible over $\mathbb{Q}_{5}(\sqrt{5})$, since this field is purely ramified over \mathbb{Q}_{5}, which implies that the factors $\tilde{f}_{i}(x)$ are irreducible over $\mathbb{Q}_{5}(\sqrt{5})$, as well.

3. A 5-adic function

Lemma 3.1. Any root η^{\prime} of the polynomial $p_{d}(x)$ which is conjugate to $\eta=r\left(w_{d} / 5\right)$ over $K=\mathbb{Q}(\sqrt{-d})$ satisfies $\eta^{\prime} \not \equiv 2(\bmod \mathfrak{p})$, for any prime divisor \mathfrak{p} of \wp_{5} in $F_{1}=\mathbb{Q}(\eta)$.

Proof. It suffices to prove this for $\eta^{\prime}=\eta$. Assume $\eta \equiv 2(\bmod \mathfrak{p})$, where $\mathfrak{p} \mid \wp_{5}$ in F_{1}. Then the element $z=\eta^{5}-\frac{1}{\eta^{5}}$ satisfies $z \equiv 2^{5}-2^{-5} \equiv-1(\bmod$ \mathfrak{p}). Hence the proof of [14, Theorem 4.6] implies that d can only be one of the values $d=11,16,19$. In these three cases $h(-d)=1$, so η satisfies a quadratic polynomial over $K=\mathbb{Q}(\sqrt{-d})$. We have

$$
\begin{aligned}
p_{11}(x) & =x^{4}-x^{3}+x^{2}+x+1 \\
& =\left(x^{2}+\frac{-1+\sqrt{-11}}{2} x-1\right)\left(x^{2}+\frac{-1-\sqrt{-11}}{2} x-1\right) ; \\
p_{16}(x) & =x^{4}-2 x^{3}+2 x+1 \\
& =\left(x^{2}+(-1-i) x-1\right)\left(x^{2}+(-1+i) x-1\right) ; \\
p_{19}(x) & =x^{4}+x^{3}+3 x^{2}-x+1 \\
& =\left(x^{2}+\frac{1+\sqrt{-19}}{2} x-1\right)\left(x^{2}+\frac{1-\sqrt{-19}}{2} x-1\right) .
\end{aligned}
$$

In each case $\eta=r\left(w_{d} / 5\right)$, where, respectively:

$$
\begin{array}{ll}
w_{11}=\frac{33+\sqrt{-11}}{2}, & N\left(w_{11}\right)=5^{2} \cdot 11 \\
w_{16}=11+2 i, & N\left(w_{16}\right)=5^{3}, \\
w_{19}=\frac{41+\sqrt{-19}}{2}, & N\left(w_{19}\right)=5^{2} \cdot 17
\end{array}
$$

Since $F_{1}=K(\eta)$ is unramified over \wp_{5} and ramified over \wp_{5}^{\prime}, the minimal polynomial $m_{d}(x)$ over K of η in each case is the first factor listed above. Since $\wp_{5}^{2} \mid w_{d}$, we conclude that

$$
\sqrt{-11} \equiv 2, i \equiv 2, \quad \sqrt{-19} \equiv 4
$$

modulo \wp_{5} in R_{K}. Then

$$
m_{11}(x) \equiv x^{2}+3 x+4, m_{16}(x) \equiv x^{2}+2 x+4, m_{19}(x) \equiv(x+1)(x+4)
$$

modulo \wp_{5}, where the first two polynomials are irreducible $\bmod 5$. It follows that η cannot be congruent to 2 modulo any prime divisor of \wp_{5}. In each case we also have $m_{d}(x) \equiv(x+3)^{2}\left(\bmod \wp_{5}^{\prime}\right)$.

Computing the partial derivative

$$
\begin{aligned}
\frac{\partial g(x, y)}{\partial y} & =\left(4 y^{3}+6 y^{2}+8 y+3\right) x^{5}-5 y^{4}+12 y^{3}-12 y^{2}+4 y-1 \\
& \equiv 4(x+3)^{5}(y+3)^{3}(\bmod 5),
\end{aligned}
$$

we see that the points $(x, y)=\left(\eta, \eta^{\tau_{5}}\right)$ on the curve $g(x, y)=0$ satisfy the condition

$$
\left.\frac{\partial g(x, y)}{\partial y}\right|_{(x, y)=\left(\eta, \eta^{\tau_{5}}\right)} \not \equiv 0 \bmod \mathfrak{p}
$$

for any prime divisor \mathfrak{p} of \wp_{5}. Hence, the \mathfrak{p}-adic implicit function theorem implies that $\eta^{\tau_{5}}$ can be written as a single-valued function of η in a suitable neighborhood of $x=\eta$. (See [18, p. 334].) We shall now derive an explicit expression for this single-valued function.

To do this, we consider $g(X, Y)=0$ as a quintic equation in Y. Using Watson's method of solving a quintic equation from the paper [10] of Lavallee, Spearman and Williams, we find that the roots Y of $g(X, Y)=0$ are

$$
\begin{aligned}
Y= & \frac{Z+3}{5}+\frac{\zeta}{10}(2 Z+11+5 \sqrt{5})^{4 / 5}(2 Z+11-5 \sqrt{5})^{1 / 5} \\
& +\frac{\zeta^{2}}{10}(2 Z+11+5 \sqrt{5})^{3 / 5}(2 Z+11-5 \sqrt{5})^{2 / 5} \\
& +\frac{\zeta^{3}}{10}(2 Z+11+5 \sqrt{5})^{2 / 5}(2 Z+11-5 \sqrt{5})^{3 / 5} \\
& +\frac{\zeta^{4}}{10}(2 Z+11+5 \sqrt{5})^{1 / 5}(2 Z+11-5 \sqrt{5})^{4 / 5},
\end{aligned}
$$

where ζ is any fifth root of unity and $Z=X^{5}$. This can also be written in the form

$$
\begin{aligned}
Y= & \frac{Z+3}{5}+\frac{\zeta}{5}\left(Z-\bar{\varepsilon}^{5}\right)^{4 / 5}\left(Z-\varepsilon^{5}\right)^{1 / 5}+\frac{\zeta^{2}}{5}\left(Z-\bar{\varepsilon}^{5}\right)^{3 / 5}\left(Z-\varepsilon^{5}\right)^{2 / 5} \\
& +\frac{\zeta^{3}}{5}\left(Z-\bar{\varepsilon}^{5}\right)^{2 / 5}\left(Z-\varepsilon^{5}\right)^{3 / 5}+\frac{\zeta^{4}}{5}\left(Z-\bar{\varepsilon}^{5}\right)^{1 / 5}\left(Z-\varepsilon^{5}\right)^{4 / 5} \\
= & \frac{Z+3}{5}+\frac{1}{5}\left(Z-\varepsilon^{5}\right)\left(U^{4}+U^{3}+U^{2}+U\right), \quad U=\zeta^{-1}\left(\frac{Z-\bar{\varepsilon}^{5}}{Z-\varepsilon^{5}}\right)^{1 / 5} .
\end{aligned}
$$

Now, $\varepsilon^{5}=\frac{-11+5 \sqrt{5}}{2} \equiv \frac{-1}{2} \equiv 2(\bmod 5)$, so for $\zeta=1$ and $Z \not \equiv 2(\bmod 5)$, the functions U^{j} can be expanded into a convergent series:

$$
U^{j}=\left(\frac{Z-\bar{\varepsilon}^{5}}{Z-\varepsilon^{5}}\right)^{j / 5}=\left(1+\frac{\varepsilon^{5}-\bar{\varepsilon}^{5}}{Z-\varepsilon^{5}}\right)^{j / 5}=\sum_{k=0}^{\infty}\binom{\frac{j}{5}}{k}\left(\frac{5 \sqrt{5}}{Z-\varepsilon^{5}}\right)^{k} .
$$

This series converges for all $Z \not \equiv 2(\bmod \sqrt{5})$ in the field $\mathrm{K}_{5}(\sqrt{5})$. The terms in this series tend to 0 in the 5 -adic valuation, because

$$
5^{k}\binom{\frac{j}{5}}{k}=\frac{j(j-5)(j-10) \cdots(j-5(k-1))}{k!}
$$

and because the additive 5 -adic valuation of k ! satisfies

$$
v_{5}(k!)=\frac{k-s_{k}}{4} \leq \frac{k}{4},
$$

where s_{k} is the sum of the 5 -adic digits of k. Thus, for all $x \not \equiv 2(\bmod \sqrt{5})$ in $\mathrm{K}_{5}(\sqrt{5})$ the expression

$$
\begin{equation*}
y=T_{5}(x)=\frac{x^{5}+3}{5}+\frac{1}{5}\left(x^{5}-\varepsilon^{5}\right) \sum_{k=0}^{\infty} a_{k}\left(\frac{5 \sqrt{5}}{x^{5}-\varepsilon^{5}}\right)^{k}, \quad a_{k}=\sum_{j=1}^{4}\binom{\frac{j}{5}}{k} \tag{3.1}
\end{equation*}
$$

represents a root of the equation $g(x, y)=0$ in the field $\mathrm{K}_{5}(\sqrt{5})$. This formula for $T_{5}(x)$ simplifies to:

$$
\begin{equation*}
T_{5}(x)=x^{5}+5+\sqrt{5} \sum_{k=2}^{\infty} a_{k}\left(\frac{5 \sqrt{5}}{x^{5}-\varepsilon^{5}}\right)^{k-1} \tag{3.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
T_{5}(x) \equiv x^{5}(\bmod 5), \quad|x|_{5} \leq 1 \tag{3.3}
\end{equation*}
$$

This follows from the fact that 5 divides the individual terms

$$
b_{k}=5^{k} a_{k}(\sqrt{5})^{k-2}
$$

(ignoring the unit denominators) in the series (3.2), for $2 \leq k \leq 7$, as can be checked by direct computation, and from the following estimate for $v_{5}\left(b_{k}\right)$, the normalized additive valuation of b_{k} in $\mathrm{K}_{5}(\sqrt{5})$:

$$
v_{5}\left(5^{k} a_{k}(\sqrt{5})^{k-2}\right) \geq \frac{k}{2}-1-\frac{k}{4}=\frac{k}{4}-1 \geq 1, \text { for } k \geq 8
$$

It follows from this that the function $T_{5}(x)$ can be iterated on the set

$$
\begin{equation*}
\mathrm{D}_{5}=\left\{x \in \mathrm{~K}_{5}(\sqrt{5}):|x|_{5} \leq 1 \wedge x \not \equiv 2(\bmod \sqrt{5})\right\} \tag{3.4}
\end{equation*}
$$

I claim now that (3.1) (or (3.2)) gives the only root of $g(x, y)=0$ in the field $\mathrm{K}_{5}(\sqrt{5})$, for a fixed $x \not \equiv 2(\bmod \sqrt{5})$. From the above formulas, a second root of this equation must have the form

$$
y_{1}=\frac{x^{5}+3}{5}+\frac{1}{5}\left(x^{5}-\varepsilon^{5}\right)\left(U^{4}+U^{3}+U^{2}+U\right)
$$

where

$$
U=\zeta^{-1}\left(\frac{x^{5}-\bar{\varepsilon}^{5}}{x^{5}-\varepsilon^{5}}\right)^{1 / 5}
$$

for some fifth root of unity $\zeta \neq 1$. But then

$$
U^{4}+U^{3}+U^{2}+U=\frac{U^{5}-1}{U-1}-1 \in \mathrm{~K}_{5}(\sqrt{5}),
$$

so $U \in \mathrm{~K}_{5}(\sqrt{5})$; and since ζU is also in $\mathrm{K}_{5}(\sqrt{5})$, it follows that $\zeta \in \mathrm{K}_{5}(\sqrt{5})$. This is impossible, since the ramification index of 5 in $\mathrm{K}_{5}(\zeta)$ is $e=4$, while the ramification index of 5 in $\mathrm{K}_{5}(\sqrt{5})$ is only $e=2$.

Proposition 3.2. If $x \in D_{5}$, the subset of $K_{5}(\sqrt{5})$ defined by (3.4), then the series

$$
\begin{equation*}
y=T_{5}(x)=x^{5}+5+\sqrt{5} \sum_{k=2}^{\infty} a_{k}\left(\frac{5 \sqrt{5}}{x^{5}-\varepsilon^{5}}\right)^{k-1}, \quad a_{k}=\sum_{j=1}^{4}\binom{\frac{j}{5}}{k}, \tag{3.5}
\end{equation*}
$$

gives the unique solution of the equation $g(x, y)=0$ in the field $K_{5}(\sqrt{5})$. Moreover, the image $T_{5}(x)$ also lies in D_{5}, so the map T_{5} can be iterated on this set.

Corollary 3.3. The function $T_{5}(x)$ satisfies $T_{5}\left(D_{5} \cap K_{5}\right) \subseteq D_{5} \cap K_{5}$.
Proof. Let σ denote the non-trivial automorphism of $\mathrm{K}_{5}(\sqrt{5}) / \mathrm{K}_{5}$. If $x \in$ $\mathrm{D}_{5} \cap \mathrm{~K}_{5}$, then $g\left(x, T_{5}(x)\right)=0$ and $T_{5}(x) \in \mathrm{K}_{5}(\sqrt{5})$ imply that $g\left(x^{\sigma}, T_{5}(x)^{\sigma}\right)=$ $g\left(x, T_{5}(x)^{\sigma}\right)=0$. The theorem gives that $T_{5}(x)^{\sigma}=T_{5}(x)$, implying that $T_{5}(x) \in \mathrm{K}_{5}$.

Now the completion $\left(F_{1}\right)_{\mathfrak{p}}$ of the field $F_{1}=\mathbb{Q}(\eta)$ with respect to a prime divisor \mathfrak{p} of $R_{F_{1}}$ dividing \wp_{5} is a subfield of $\mathrm{K}_{5}(\sqrt{5})$. This is because F_{1} is unramified at the prime \mathfrak{p} and is abelian over K, so that $\left(F_{1}\right)_{\mathfrak{p}}$ is unramified and abelian over $K_{\wp_{5}}=\mathbb{Q}_{5}$.

By Lemma 3.1, we can substitute $x=\eta$ in (3.5), and since $\eta^{\tau_{5}}$ is a solution of $g(\eta, Y)=0$ in K_{5}, we conclude that $\eta^{\tau_{5}}=T_{5}(\eta)$. Letting $\zeta=1$ and $U=-u$ gives
$\eta^{\tau_{5}}=\frac{\eta^{5}+3}{5}+\frac{1}{5}\left(\eta^{5}-\varepsilon^{5}\right)\left(u^{4}-u^{3}+u^{2}-u\right), u=-\left(\frac{\eta^{5}-\bar{\varepsilon}^{5}}{\eta^{5}-\varepsilon^{5}}\right)^{1 / 5}=\frac{1}{\varepsilon \xi} \in F ;$
which agrees with the result of [14, Theorem 3.3] (see the second line in the proof of that theorem). The automorphism τ_{5} is canonically defined on the unramified extension $\mathbb{Q}_{5}(\eta)$; defining τ_{5} to be trivial on $\mathbb{Q}_{5}(\sqrt{5})$, we have that $T_{5}\left(\eta^{\tau_{5}}\right)=T_{5}(\eta)^{\tau_{5}}$, and hence that

$$
\begin{equation*}
\eta^{\tau_{5}^{n}}=T_{5}^{n}(\eta), \quad n \geq 1 . \tag{3.6}
\end{equation*}
$$

This also follows inductively from

$$
g\left(\eta^{\tau_{5}^{n-1}}, \eta^{\tau_{5}^{n}}\right)=g\left(\eta^{\tau_{5}^{n-1}}, T_{5}\left(\eta^{\tau_{5}^{n-1}}\right)\right)=g\left(\eta^{\tau_{5}^{n-1}}, T_{5}^{n}(\eta)\right)=0 .
$$

Therefore, $\eta=r(w / 5)$ is a periodic point of T_{5} in D_{5}, and the minimal period of η with respect to T_{5} is equal to the order of the automorphism $\tau_{5}=\left(\frac{F_{1} / K}{\wp_{5}}\right)$.

By Theorem 2.1, the periodic points of $\mathfrak{g}(z)$ lie in $\mathrm{K}_{5}(\sqrt{5})$. In particular, the minimal period of $\eta=r\left(w_{d} / 5\right)$ with respect to $\mathfrak{g}(z)$ is the order n of the automorphism τ_{5}. This is because any values η_{i}, for which

$$
g\left(\eta, \eta_{1}\right)=g\left(\eta_{1}, \eta_{2}\right)=\cdots=g\left(\eta_{m-1}, \eta\right)=0,
$$

must themselves be periodic points with $\eta_{i} \not \equiv 2(\bmod \sqrt{5})$. This implies that $\eta_{i} \in \mathrm{D}_{5}$, and then $\eta_{i}=T_{5}^{i}(\eta)$ follows from Proposition 3.2, so that m must
be a multiple of n. Hence, $\eta=r\left(w_{d} / 5\right)$ must be a root of the polynomial $\mathrm{P}_{n}(x)$.

Theorem 3.4. For any discriminant $-d \equiv \pm 1(\bmod 5)$, for which the automorphism $\tau_{5}=\left(\frac{F_{1} / K}{\wp_{5}}\right)$ has order n, the polynomial $p_{d}(x)$ divides $P_{n}(x)$.

4. Identifying the factors of $\mathbf{P}_{\boldsymbol{n}}(\boldsymbol{x})$

We will now show that the polynomials $p_{d}(x)$ in Theorem 3.4 are the only irreducible factors of $\mathrm{P}_{n}(x)$ over \mathbb{Q}. The argument is similar to the argument in [12, pp. 877-878], with added complexity due to the nontrivial nature of the points in $E_{5}[5]-\langle(0,0)\rangle$, plus the necessity of dealing with the action of the icosahedral group in this case.

To motivate the calculation below, we prove the following lemma. As in Part II, F_{1} denotes the field $F_{1}=\mathbb{Q}(\eta)$, where $\eta=r\left(w_{d} / 5\right)$.
Lemma 4.1. If $w=w_{d}$ is defined as in (1.2), and $\tau_{5}=\left(\frac{F_{1} / K}{\wp_{5}}\right)$, then for some 5 -th root of unity ζ^{i}, we have

$$
\eta^{\tau_{5}^{-1}}=r\left(\frac{w}{5}\right)^{\tau_{5}^{-1}}=\zeta^{i} r\left(\frac{w}{25}\right) .
$$

Proof. Define τ_{5} on $F_{1}(\sqrt{5})=\mathbb{Q}(\eta, \sqrt{5})$ so that it fixes $\sqrt{5}$. This is possible since F_{1} and $K(\sqrt{5})$ are disjoint, abelian extensions of K. (See the discussion in Sections 5.2 and 5.3 of [14], where $\tau_{5}=\left.\sigma_{1} \phi\right|_{F_{1}}$ and both σ_{1} and ϕ fix the field $L=\mathbb{Q}(\zeta)$.) Recall the linear fractional expression from Part II that was denoted

$$
\tau(b)=\frac{-b+\varepsilon^{5}}{\varepsilon^{5} b+1} .
$$

From $\tau\left(\xi^{5}\right)=\eta^{5}$ and $T\left(\eta^{\tau_{5}}\right)=\xi$ (Part II, Thms. 3.3 and 5.1) we then obtain

$$
\eta^{5 \tau_{5}^{-1}}=\tau\left(\xi^{5}\right)^{\tau_{5}^{-1}}=\tau\left(\left(\xi^{\tau_{5}^{-1}}\right)^{5}\right)=\tau\left(T(\eta)^{5}\right)=\mathfrak{r}(\eta)
$$

where

$$
\mathfrak{r}(z)=z \frac{z^{4}-3 z^{3}+4 z^{2}-2 z+1}{z^{4}+2 z^{3}+4 z^{2}+3 z+1},
$$

as in the Introduction to Part II. On the other hand,

$$
\mathfrak{r}(\eta)=\mathfrak{r}\left(r\left(\frac{w}{5}\right)\right)=r^{5}\left(\frac{w}{25}\right),
$$

by Ramanujan's modular equation. Thus, $\eta^{5 \tau_{5}^{-1}}=r^{5}(w / 25)$, and the assertion follows.

By (3.3), we have $f_{i}\left(T_{5}(x)\right) \equiv f_{i}\left(x^{5}\right)(\bmod 5)$, and since $T_{5}(a)$ is an "unramified" periodic point in D_{5} whenever a is, it follows that $\sigma: x \rightarrow T_{5}(x)$ is a lift of the Frobenius automorphism on the roots of $f_{i}(x)$, for each i with
$1 \leq i \leq N$. We may assume that σ fixes $\sqrt{5}$, since K_{5} and $\mathbb{Q}_{5}(\sqrt{5})$ are linearly disjoint over \mathbb{Q}_{5}. In order to apply σ to all the maps occurring in the proof below, we also extend σ to the field $\mathrm{K}_{5}\left(\sqrt{\frac{-5+\sqrt{5}}{2}}\right)$, so that it fixes elements of the field $\mathbb{Q}_{5}\left(\sqrt{\frac{-5+\sqrt{5}}{2}}\right)$; this is a cyclic quartic and totally ramified extension of \mathbb{Q}_{5} (the minimal polynomial of the square-root being the Eisenstein polynomial $\left.x^{4}+5 x^{2}+5\right)$.

Theorem 4.2. For $n>1$ the polynomial $P_{n}(x)$ is a product of polynomials $p_{d}(x)$:

$$
\begin{equation*}
P_{n}(x)= \pm \prod_{-d \in \mathfrak{Q}_{n, 5}} p_{d}(x) \tag{4.1}
\end{equation*}
$$

where $\mathfrak{D}_{n, 5}$ is the set of discriminants $-d=d_{K} f^{2}$ of imaginary quadratic orders $R_{-d} \subset K=\mathbb{Q}(\sqrt{-d})$ for which $\left(\frac{-d}{5}\right)=+1$ and the corresponding automorphism $\tau_{5}=\left(\frac{F_{1} / K}{\wp_{5}}\right)$ has order n in $\operatorname{Gal}\left(F_{1} / K\right)$. Here $F_{1}=\mathbb{Q}\left(r\left(w_{d} / 5\right)\right)$ is the inertia field for the prime divisor $\wp_{5}=\left(5, w_{d}\right)$ in the abelian extension $\Sigma_{5} \Omega_{f}\left(d \neq 4 f^{2}\right)$ or $\Sigma_{5} \Omega_{5 f}\left(d=4 f^{2}>4\right)$ of K; and $p_{d}(x)$ is the minimal polynomial of the value $r\left(w_{d} / 5\right)$ over \mathbb{Q}.
Proof. Let $\left\{\eta=\eta_{0}, \eta_{1}, \ldots, \eta_{n-1}\right\}, n \geq 2$, be a periodic orbit of $T_{5}(x)$ contained in D_{5}, where $T_{5}^{n}(\eta)=\eta$, and let

$$
\xi=T\left(\eta_{1}\right)=T\left(T_{5}(\eta)\right)=T\left(\eta^{\sigma}\right) .
$$

Then the relation $g\left(\eta, \eta_{1}\right)=g(\eta, T(\xi))=0$ implies that (η, ξ) is a point on the curve

$$
\mathcal{C}_{5}: X^{5}+Y^{5}=\varepsilon^{5}\left(1-X^{5} Y^{5}\right)
$$

Rewrite this relation as

$$
\xi^{5}=\frac{-\eta^{5}+\varepsilon^{5}}{\varepsilon^{5} \eta^{5}+1}=\tau\left(\eta^{5}\right), \quad \tau(b)=\frac{-b+\varepsilon^{5}}{\varepsilon^{5} b+1}, \quad b=\eta^{5} .
$$

Let

$$
E_{5}(b): Y^{2}+(1+b) X Y+b Y=X^{3}+b X^{2}
$$

be the Tate normal form for a point of order 5 ; and let $E_{5,5}(b)$ be the isogenous curve

$$
\begin{aligned}
E_{5,5}(b): Y^{2}+(1+b) X Y+5 b Y=X^{3} & +7 b X^{2}+6\left(b^{3}+b^{2}-b\right) X \\
& +b^{5}+b^{4}-10 b^{3}-29 b^{2}-b .
\end{aligned}
$$

The X-coordinate of the map $\psi: E_{5}(b) \rightarrow E_{5,5}(b)$ is given by
$X(\psi(P))=\frac{b^{4}+\left(3 b^{3}+b^{4}\right) x+\left(3 b^{2}+b^{3}\right) x^{2}+\left(b-b^{2}-b^{3}\right) x^{3}+x^{5}}{x^{2}(x+b)^{2}}, \quad b=\eta^{5}$,
with $x=X(P)$. Note that $\operatorname{ker}(\psi)=\langle(0,0)\rangle$, and ψ is defined over $\mathbb{Q}(b)$. (See [11, p. 259].)

The relation $\xi^{5}=\tau\left(\eta^{5}\right)$ implies that there is an isogeny $\phi: E_{5}\left(\eta^{5}\right) \rightarrow$ $E_{5}\left(\tau\left(\eta^{5}\right)\right)=E_{5}\left(\xi^{5}\right)$. This is because the j-invariant of $E_{5}\left(\xi^{5}\right)$ is

$$
\begin{aligned}
j_{\xi} & =\frac{\left(1-12 \xi^{5}+14 \xi^{10}+12 \xi^{15}+\xi^{20}\right)^{3}}{\xi^{25}\left(1-11 \xi^{5}-\xi^{10}\right)} \\
& =\frac{\left(1+228 \eta^{5}+494 \eta^{10}-228 \eta^{15}+\eta^{20}\right)^{3}}{\eta^{5}\left(1-11 \eta^{5}-\eta^{10}\right)^{5}}
\end{aligned}
$$

where the latter value is $j\left(E_{5,5}\left(\eta^{5}\right)\right)$. Thus, $E_{5,5}\left(\eta^{5}\right) \cong E_{5}\left(\xi^{5}\right)$ by an isomorphism ι_{1}. Composing ψ (for $b=\eta^{5}$) with this isomorphism gives the isogeny $\phi=\iota_{1} \circ \psi$. Furthermore, $j\left(E_{5,5}\left(\eta^{5}\right)\right)$ is invariant under the substitution $\eta \rightarrow T(\eta)=\xi^{\sigma^{-1}}$, so

$$
\begin{aligned}
j_{\xi} & =\left(\frac{\left(1+228 \xi^{5}+494 \xi^{10}-228 \xi^{15}+\xi^{20}\right)^{3}}{\xi^{5}\left(1-11 \xi^{5}-\xi^{10}\right)^{5}}\right)^{\sigma^{-1}} \\
& =\left(\frac{\left(1-12 \eta^{5}+14 \eta^{10}+12 \eta^{15}+\eta^{20}\right)^{3}}{\eta^{25}\left(1-11 \eta^{5}-\eta^{10}\right)}\right)^{\sigma^{-1}} \\
& =j_{\eta^{\sigma-1}} .
\end{aligned}
$$

It follows that $E_{5}\left(\xi^{5}\right) \cong E_{5}\left(\left(\eta^{\sigma^{-1}}\right)^{5}\right)$ by an isomorphism ι_{2}. Composing ι_{2} with ϕ gives an isogeny $\iota_{2} \circ \phi=\phi_{1}: E_{5}\left(\eta^{5}\right) \rightarrow E_{5}\left(\eta^{5}\right)^{\sigma^{-1}}$ of degree 5. Applying σ^{-i+1} to the coefficients of ϕ_{1} gives an isogeny

$$
\phi_{i}: E_{5}\left(\eta^{5}\right)^{\sigma^{-(i-1)}} \rightarrow E_{5}\left(\eta^{5}\right)^{\sigma^{-i}}, \quad 1 \leq i \leq n
$$

which also has degree 5. Hence, $\iota=\phi_{n} \circ \phi_{n-1} \circ \cdots \circ \phi_{1}$ is an isogeny from $E_{5}\left(\eta^{5}\right)$ to $E_{5}\left(\eta^{5}\right)^{\sigma^{-n}}$ of degree 5^{n}. But σ^{n} is trivial on $\mathbb{Q}_{5}(\eta, \sqrt{5})$, since $T_{5}^{n}(\eta)=\eta$. Hence, $\iota: E_{5}\left(\eta^{5}\right) \rightarrow E_{5}\left(\eta^{5}\right)$.

We will show that ι is a cyclic isogeny by showing that some point $P \in$ $E_{5}\left(\eta^{5}\right)[5]$ is not in $\operatorname{ker}(\iota)$. The following formula from [15] gives the X coordinate on $E_{5}(b)$ for a point P of order 5 , which does not lie in $\langle(0,0)\rangle$:

$$
X(P)=\frac{-\varepsilon^{4}}{2} \frac{\left(-2 u^{2}+(1+\sqrt{5}) u-3 \sqrt{5}-7\right)\left(2 u^{2}+(2 \sqrt{5}+4) u+3 \sqrt{5}+7\right)}{\left(-2 u^{2}+(\sqrt{5}+1) u-2\right)(u+1)^{2}},
$$

where

$$
u^{5}=-\frac{b-\bar{\varepsilon}^{5}}{b-\varepsilon^{5}}, \quad b=\eta^{5}, \bar{\varepsilon}=-\frac{1+\sqrt{5}}{2} .
$$

A calculation on Maple shows that

$$
X_{1}=X(\psi(P))=\frac{-5+\sqrt{5}}{10}\left(b^{2}+\varepsilon^{4} b+\bar{\varepsilon}^{2}\right), \quad b=\eta^{5}
$$

This is the X-coordinate of the point $P^{\prime}=\psi(P)$ on $E_{5,5}(b)$. On the other hand, an isomorphism $\iota_{1}: E_{5,5}(b) \rightarrow E_{5}(\tau(b))$ is given by $\iota_{1}\left(X_{1}, Y_{1}\right)=$ $\left(X_{2}, Y_{2}\right)$, where

$$
X_{2}=\lambda_{1}^{2} X_{1}+\lambda_{1}^{2} \frac{b^{2}+30 b+1}{12}-\frac{\tau(b)^{2}+6 \tau(b)+1}{12},
$$

and

$$
\lambda_{1}^{2}=\frac{\sqrt{5} \bar{\varepsilon}^{5}}{\left(b-\bar{\varepsilon}^{5}\right)^{2}}=\frac{\sqrt{5} \bar{\varepsilon}^{5}}{\left(\eta^{5}-\bar{\varepsilon}^{5}\right)^{2}} .
$$

Under this isomorphism, $X_{1}=X(\psi(P))$ maps to $X_{2}=0$, whence $\phi(P)=$ $\iota_{1} \circ \psi(P)= \pm(0,0)$ on $E_{5}(\tau(b))=E_{5}\left(\xi^{5}\right)$. Note that the map ϕ is defined over $\Lambda=\mathbb{Q}(\eta, \sqrt{\sqrt{5} \bar{\varepsilon}})=\mathbb{Q}\left(\eta, \sqrt{\frac{-5-\sqrt{5}}{2}}\right)$, since λ_{1} lies in this field.

Now we find an explicit formula for the isomorphism ι_{2} between $E_{5}\left(\xi^{5}\right)$ and $E_{5}\left(\eta^{5 \sigma^{-1}}\right)$. The Weierstrass normal form $Y^{2}=4 X^{3}-g_{2} X-g_{3}$ of $E_{5}(b)$ has coefficients

$$
\begin{aligned}
& g_{2}(b)=\frac{1}{12}\left(b^{4}+12 b^{3}+14 b^{2}-12 b+1\right), \\
& g_{3}(b)=\frac{-1}{216}\left(b^{2}+1\right)\left(b^{4}+18 b^{3}+74 b^{2}-18 b+1\right) .
\end{aligned}
$$

An isomorphism $\iota_{2}: E_{5}\left(\xi^{5}\right) \rightarrow E_{5}\left(\eta^{5 \sigma^{-1}}\right)$ is determined by a number λ_{2} satisfying the equations

$$
g_{2}\left(\eta^{5 \sigma^{-1}}\right)=\lambda_{2}^{4} \cdot g_{2}\left(\xi^{5}\right), \quad g_{3}\left(\eta^{5 \sigma^{-1}}\right)=\lambda_{2}^{6} \cdot g_{3}\left(\xi^{5}\right)
$$

We now use computations analogous to those in Lemma 4.1, obtaining

$$
\eta^{5 \sigma^{-1}}=\tau\left(\xi^{5}\right)^{\sigma^{-1}}=\tau\left(\left(\xi^{\sigma^{-1}}\right)^{5}\right)=\tau\left(T(\eta)^{5}\right)=\mathfrak{r}(\eta)
$$

Then we solve for λ_{2}^{2} from

$$
\lambda_{2}^{2}=\frac{g_{3}(\mathfrak{r}(\eta)) g_{2}\left(\tau\left(\eta^{5}\right)\right)}{g_{2}(\mathfrak{r}(\eta)) g_{3}\left(\tau\left(\eta^{5}\right)\right)}
$$

and find that

$$
\lambda_{2}^{2}=\frac{(11 \sqrt{5}-25)(2 \eta+1+\sqrt{5})^{2}\left(-2 \eta^{2}+(3+\sqrt{5}) \eta-3-\sqrt{5}\right)^{2}}{40\left(-2 \eta^{2}-2 \eta-3+\sqrt{5}\right)^{2}} .
$$

Here, λ_{2} lies in the field $\mathbb{Q}(\eta, \sqrt{-\sqrt{5} \varepsilon})=\mathbb{Q}\left(\eta, \sqrt{\frac{-5+\sqrt{5}}{2}}\right)$, which coincides with the field Λ above. Hence, the desired isomorphism is given on X coordinates by

$$
X_{3}=\iota_{2}\left(X_{2}\right)=\lambda_{2}^{2} X_{2}+\lambda_{2}^{2} \frac{\tau\left(\eta^{5}\right)^{2}+6 \tau\left(\eta^{5}\right)+1}{12}-\frac{\mathfrak{r}(\eta)^{2}+6 \mathfrak{r}(\eta)+1}{12}
$$

if $\left(X_{2}, Y_{2}\right)$ are the coordinates on $E_{5}\left(\xi^{5}\right)$ and $\left(X_{3}, Y_{3}\right)$ are the coordinates on $E_{5}\left(\eta^{5 \sigma^{-1}}\right)$. Therefore, the points with $X_{2}=0$ map to points with

$$
X_{3}=\frac{(-5+\sqrt{5})\left(\eta \sqrt{5}+2 \eta^{2}-\sqrt{5}-3 \eta+3\right)\left(\eta \sqrt{5}-2 \eta^{2}-\sqrt{5}+3 \eta-3\right)}{20\left(-2 \eta^{2}+\sqrt{5}-2 \eta-3\right)} .
$$

Finally, we choose $u=\frac{1}{\varepsilon \xi} \in \mathrm{~K}_{5}(\sqrt{5})$, so that

$$
u^{5}=\frac{1}{\varepsilon^{5} \xi^{5}}=-\bar{\varepsilon}^{5} \frac{\varepsilon^{5} \eta^{5}+1}{-\eta^{5}+\varepsilon^{5}}=-\frac{\eta^{5}-\bar{\varepsilon}^{5}}{\eta^{5}-\varepsilon^{5}},
$$

as required above for the formula $X(P)$. Then we compute that

$$
u^{\sigma^{-1}}=\frac{1}{\varepsilon \xi^{\sigma^{-1}}}=\frac{1}{\varepsilon T(\eta)}
$$

which implies that $\eta=T\left(\varepsilon^{-1} u^{-\sigma^{-1}}\right)$. Substituting this expression for η in X_{3} gives

$$
X_{3}=\frac{-\varepsilon^{4}}{2} \frac{\left(-2 u_{1}^{2}+(1+\sqrt{5}) u_{1}-3 \sqrt{5}-7\right)\left(2 u_{1}^{2}+(2 \sqrt{5}+4) u_{1}+3 \sqrt{5}+7\right)}{\left(-2 u_{1}^{2}+(\sqrt{5}+1) u_{1}-2\right)\left(u_{1}+1\right)^{2}}
$$

with $u_{1}=u^{\sigma^{-1}}$. Comparing with the above formula for $X(P)$ shows that $X_{3}=X(P)^{\sigma^{-1}}$ and therefore the points $\pm(0,0)$ on $E_{5}\left(\xi^{5}\right)$ map to $\pm P^{\sigma^{-1}}$ on $E_{5}\left(\eta^{5 \sigma^{-1}}\right)$.

This discussion shows that the isogeny $\phi_{1}=\iota_{2} \circ \iota_{1} \circ \psi$ from $E_{5}\left(\eta^{5}\right)$ to $E_{5}\left(\eta^{5}\right)^{\sigma^{-1}}$ satisfies

$$
\phi_{1}(P)= \pm P^{\sigma^{-1}}
$$

Applying σ^{-i+1} to this gives $\phi_{i}\left(P^{\sigma^{-i+1}}\right)= \pm P^{\sigma^{-i}}$, and therefore

$$
\iota(P)=\phi_{n} \circ \phi_{n-1} \circ \cdots \circ \phi_{1}(P)= \pm P^{\sigma^{-n}}= \pm P
$$

Since P is a point of order 5 on $E_{5}\left(\eta^{5}\right)$, and P does not lie in $\operatorname{ker}(\iota)$, we see that ι is indeed a cyclic isogeny.

From this and the fact that $\operatorname{deg}(\iota)=5^{n}$ we conclude that the j-invariant $j_{\eta}=j\left(E_{5}\left(\eta^{5}\right)\right)$ satisfies the modular equation

$$
\Phi_{5^{n}}\left(j_{\eta}, j_{\eta}\right)=0 .
$$

On the other hand, from [4, p. 263],

$$
\Phi_{5^{n}}(X, X)=c_{n} \prod_{-d} H_{-d}(X)^{r\left(d, 5^{n}\right)},
$$

where the product is over the discriminants of orders R_{-d} of imaginary quadratic fields and

$$
r\left(d, 5^{n}\right)=\mid\left\{\alpha \in \mathrm{R}_{-d}: \alpha \text { primitive, } N(\alpha)=5^{n}\right\} / \mathrm{R}_{-d}^{\times} \mid .
$$

Thus, $r\left(d, 5^{n}\right)$ is nonzero only when the equation $4^{k} \cdot 5^{n}=x^{2}+d y^{2},(k=$ $0,1)$, has a primitive solution. Now the polynomial $\mathrm{P}_{n}(x) \in \mathbb{Z}[x]$ splits completely in $\mathrm{K}_{5}(\sqrt{5})$, and its "unramified" roots all lie in K_{5}. Furthermore the "ramified" roots all have the form $\xi=T\left(\eta^{\sigma}\right)$ for some unramified root η, and the corresponding j-invariants have the form

$$
j_{\xi}=\frac{\left(1-12 \xi^{5}+14 \xi^{10}+12 \xi^{15}+\xi^{20}\right)^{3}}{\xi^{25}\left(1-11 \xi^{5}-\xi^{10}\right)}
$$

which equals

$$
j_{\xi}=\frac{\left(1+228 \eta^{5}+494 \eta^{10}-228 \eta^{15}+\eta^{20}\right)^{3}}{\eta^{5}\left(1-11 \eta^{5}-\eta^{10}\right)^{5}}
$$

It follows that all the j-invariants j_{η}, j_{ξ} lie in K_{5}. Hence, the value d for which $H_{-d}\left(j_{\eta}\right)=0$ is not divisible by 5 . Thus, $(5, x y d)=1$, and therefore $\left(\frac{-d}{5}\right)=+1$.

From $H_{-d}\left(j_{\eta}\right)=H_{-d}\left(\left(j_{\eta}\right)^{\sigma^{-1}}\right)=H_{-d}\left(j_{\xi}\right)=0$ we see that the periodic point η is a root of both polynomials $F_{d}\left(x^{5}\right), G_{d}\left(x^{5}\right)$, where

$$
F_{d}(x)=x^{5 h(-d)}\left(1-11 x-x^{2}\right)^{h(-d)} H_{-d}\left[\frac{\left(x^{4}+12 x^{3}+14 x^{2}-12 x+1\right)^{3}}{x^{5}\left(1-11 x-x^{2}\right)}\right]
$$

and

$$
G_{d}(x)=x^{h(-d)}\left(1-11 x-x^{2}\right)^{5 h(-d)} H_{-d}\left[\frac{\left(x^{4}-228 x^{3}+494 x^{2}+228 x+1\right)^{3}}{x\left(1-11 x-x^{2}\right)^{5}}\right] .
$$

Now the roots of the polynomial $G_{d}\left(x^{5}\right)$ are invariant under the action of the icosahedral group $G_{60}=\langle S, T\rangle$, where T is as before and $S(z)=\zeta z$, with $\zeta=e^{2 \pi i / 5}$. (See [11], [17].) Since $H_{-d}(X)$ is irreducible over the field $L=\mathbb{Q}(\zeta)$, containing the coefficients of all the maps in G_{60}, the polynomial $G_{d}\left(x^{5}\right)$ factors over L into a product of irreducible polynomials of the same degree. (See the similar argument in [12, p. 864].) By the results of [14, pp. 1193, 1202], one of these irreducible factors is $p_{d}(x)$, whose degree is $4 h(-d)$, and $p_{d}(x)$ is invariant under the action of the subgroup

$$
H=\langle U, T\rangle, \quad U(z)=\frac{-1}{z},
$$

a Klein group of order 4 . The normalizer of H in G_{60} is $N=\langle A, H\rangle \cong A_{4}$, where $A=S T S^{-2}$ is the map

$$
A(z)=\zeta^{3} \frac{(1+\zeta) z+1}{z-1-\zeta^{4}}
$$

of order 3, and $A T A^{-1}=U, A U A^{-1}=T_{2}=T U$. The distinct left cosets of H in G_{60} are represented by the elements

$$
M_{i j}=S^{j} A^{i}, \quad 0 \leq i \leq 2,0 \leq j \leq 4 .
$$

(See [17, Prop. 3.3].) We would like to show that η is a root of the factor $p_{d}(x)$.

Since all the roots of $G_{d}\left(x^{5}\right)$ have the form $M_{i j}(\alpha)$, for some root α of $p_{d}(x)([14, \mathrm{p} .1203])$, the factors of $G_{d}\left(x^{5}\right)$ over L have the form

$$
p_{i, j}(x)=(c x+d)^{4 h(-d)} p_{d}\left(A^{i} S^{j}(x)\right),
$$

where $A^{i} S^{j}(x)=\frac{a x+b}{c x+d}$. The stabilizer of this polynomial in G_{60} is

$$
\left(A^{i} S^{j}\right)^{-1} H A^{i} S^{j}=S^{-j} H S^{j},
$$

which contains the map $S^{-j} U S^{j}(x)=\frac{-\zeta^{-2 j}}{x}$. If $p_{i, j}(\eta)=0$, where $j \neq 0$, then both η and $\frac{-\zeta^{-2 j}}{\eta}$ are roots of $p_{i, j}(x)$, which would imply that $\zeta^{-2 j}$ is contained in the splitting field of $\mathrm{P}_{n}(x)$ over \mathbb{Q}, and is therefore contained in $\mathrm{K}_{5}(\sqrt{5})$, which is not the case. Hence, η can only be a root of $p_{i, 0}(x)=$
$\left(c_{i} x+d_{i}\right)^{4 h(-d)} p_{d}\left(A^{i}(x)\right)$, for some i. But then the elements in $H A^{i}(\eta)$ are roots of $p_{d}(x)$. Assume $i=1$. Since $A(\eta)$ is a root of $p_{d}(x)$, so is $A^{\rho^{j}}(\eta)$, where ρ is the automorphism of $\mathrm{K}_{5}(\zeta) / \mathrm{K}_{5}$ for which $\zeta^{\rho}=\zeta^{2}$. But $A^{\rho}=A^{-1} U$, so that $A^{\rho^{2}}=A^{-\rho} U=U A U$ and $A^{\rho^{3}}=U A^{\rho} U=U A^{-1}$. Thus, $A^{\rho^{3}}(\eta)$ being a root of $p_{d}(x)$ and $U \in H$ imply that $A^{-1}(\eta)$ is also a root of $p_{d}(x)$. But then η is a common root of $p_{1,0}(x)=\left(c_{1} x+d_{1}\right)^{4 h(-d)} p_{d}(A(x))$ and $p_{2,0}(x)=\left(c_{2} x+d_{2}\right)^{4 h(-d)} p_{d}\left(A^{-1}(x)\right)$, which is impossible, since these are two of the irreducible factors of $G_{d}\left(x^{5}\right)$ over L, and the latter polynomial has no multiple roots, for $d \neq 4$. (See [17, §2.2].) A similar argument works if $i=2$, since $A^{2}=A^{-1}$ and $A=U A^{-\rho}$. For $d=4$, we have

$$
\begin{aligned}
G_{4}\left(x^{5}\right)= & \left(x^{20}-228 x^{15}+494 x^{10}+228 x^{5}+1\right)^{3}-1728 x^{5}\left(1-11 x^{5}-x^{10}\right)^{5} \\
= & \left(x^{2}+1\right)^{2}\left(x^{4}+2 x^{3}-6 x^{2}-2 x+1\right)^{2}\left(x^{8}-x^{6}+x^{4}-x^{2}+1\right)^{2} \\
& \times\left(x^{8}+4 x^{7}+17 x^{6}+22 x^{5}+5 x^{4}-22 x^{3}+17 x^{2}-4 x+1\right)^{2} \\
& \times\left(x^{8}-6 x^{7}+17 x^{6}-18 x^{5}+25 x^{4}+18 x^{3}+17 x^{2}+6 x+1\right)^{2},
\end{aligned}
$$

and the only periodic point $\eta \in \mathrm{D}_{5}$ which is a root of $G_{4}\left(x^{5}\right)$ is the fixed point

$$
\eta=i=3+3 \cdot 5+2 \cdot 5^{2}+3 \cdot 5^{3}+5^{4}+\cdots \quad \in \mathbb{Q}_{5} .
$$

Thus, $d=4$ does not occur when $n \geq 2$. (Except for the primitive 20-th roots of unity, which do not lie in $\mathrm{K}_{5}(\sqrt{5})$, the other roots of $G_{4}\left(x^{5}\right)=0$ satisfy $x \equiv 2 \bmod 5$, and so do not lie in D_{5}.)

Hence, the only possibility is that $p_{d}(\eta)=0$. This shows that all periodic points of $T_{5}(x)$ in D_{5} are roots of some $p_{d}(x)$ for which $(-d / 5)=+1$. Since $T_{5}(\eta)=\eta^{\tau_{5}}$ for such a root by (3.6), it is clear that τ_{5} has order n in the corresponding Galois group $\operatorname{Gal}\left(F_{1} / \mathbb{Q}\right)$, as well. All the roots of $\mathrm{P}_{n}(x)$ which do not lie in D_{5} have the form $T(\eta)$, for $\eta \in \mathrm{D}_{5}$, by the discussion in Section 2 , and are also roots of $p_{d}(x)$ for one of these integers d, since $T(x)$ stabilizes the roots of $p_{d}(x)$.

Thus, if $n \geq 2$, the only irreducible factors of $\mathrm{P}_{n}(x)$ over \mathbb{Q} are the polynomials $p_{d}(x)$ for which $(-d / 5)=+1$ and $\tau_{5} \in \operatorname{Gal}\left(F_{1} / \mathbb{Q}\right)$ has order n. This proves (4.1).

For use in the following corollary, note that the substitution $(X, Y) \rightarrow$ $\left(\frac{-1}{X}, \frac{-1}{Y}\right)$ represents an automorphism of the curve $g(X, Y)=0$, since

$$
\begin{equation*}
X^{5} Y^{5} g\left(\frac{-1}{X}, \frac{-1}{Y}\right)=g(X, Y) \tag{4.2}
\end{equation*}
$$

As in [14], put

$$
\begin{equation*}
g_{1}(X, Y)=Y^{5} g\left(X, \frac{-1}{Y}\right) . \tag{4.3}
\end{equation*}
$$

In the following corollary, we prove the claim stated in the last paragraph of [14, p. 1212]. In that paragraph, the polynomial $x^{2}+x-1$ should have
also been listed along with $x, x^{2}+1$ and $p_{d}(x)$ as factors of the resultants $R_{n}(x)$. As we will see below, however, $x^{2}+x-1$ never divides $\tilde{R}_{n}(x)$.
Corollary 4.3. Let $\tilde{R}_{n}(x)$ be the $(n-1)$-fold iterated resultant

$$
\operatorname{Res}_{x_{n-1}}\left(\ldots\left(\operatorname{Res}_{x_{2}}\left(\operatorname{Res}_{x_{1}}\left(g\left(x, x_{1}\right), g\left(x_{1}, x_{2}\right)\right), g\left(x_{2}, x_{3}\right)\right), \ldots, g_{1}\left(x_{n-1}, x\right)\right)\right.
$$

for $n \geq 2$. If $\alpha \neq 0$ is a root of $\tilde{R}_{n}(x)$, then α is either $\pm i$ or a root of some polynomial $p_{d}(x)$, where $p_{d}(x) \mid R_{2 n}(x)$.
Proof. A root $\alpha \neq 0$ of $\tilde{R}_{n}(x)$ satisfies the simultaneous equations

$$
g\left(\alpha, \alpha_{1}\right)=g\left(\alpha_{1}, \alpha_{2}\right)=\cdots=g\left(\alpha_{n-2}, \alpha_{n-1}\right)=g_{1}\left(\alpha_{n-1}, \alpha\right)=0,
$$

for some elements α_{i} in $\overline{\mathbb{Q}}$, the algebraic closure of \mathbb{Q}. Note that $\alpha_{i} \neq 0$, for $1 \leq i \leq n-1$, because $g(X, 0)=X^{5}$, so that $\alpha_{i}=0$ implies $\alpha_{i-1}=0$. But the definition of $g_{1}(X, Y)$ and the final equation in the above chain give that $g\left(\alpha_{n-1}, \frac{-1}{\alpha}\right)=0$. Now the identity (4.2) implies, using the above simultaneous equations, that

$$
g\left(\frac{-1}{\alpha}, \frac{-1}{\alpha_{1}}\right)=g\left(\frac{-1}{\alpha_{1}}, \frac{-1}{\alpha_{2}}\right)=\cdots=g\left(\frac{-1}{\alpha_{n-1}}, \alpha\right)=0 .
$$

Tacking this chain of equations onto the first chain following the equation $g\left(\alpha_{n-1}, \frac{-1}{\alpha}\right)=0$ shows that α is a root of $R_{2 n}(x)=0$. Setting $p_{4}(x)=x^{2}+1$ (see below), we only have to verify that α is not a root of $x^{2}+x-1$ to conclude that α is a root of some polynomial $p_{d}(x)$, because
$\mathrm{P}_{1}(x)=x\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{4}+x^{3}+3 x^{2}-x+1\right)=x\left(x^{2}+x-1\right) p_{4}(x) p_{19}(x)$.
For in that case α is either a root of $p_{4}(x) p_{19}(x)$ or a root of some $\mathrm{P}_{m}(x)$, for $m>1$. But if $\alpha=\frac{-1 \pm \sqrt{5}}{2}$, then α is a fixed point, $g(\alpha, y)=0 \Rightarrow y=\alpha$, but

$$
g_{1}(\alpha, \alpha)=\alpha^{5} g(\alpha, \bar{\alpha})=\frac{625-275 \sqrt{5}}{2} \neq 0 .
$$

Thus, α cannot be a root of $\tilde{R}_{n}(x)$ for any $n \geq 1$.
Remark. This justifies the claims made in Section 5 of Part II about the resultant $\tilde{R}_{n}(x)$. In particular, all its irreducible factors are $x^{2}+1$ and polynomials of the form $p_{d}(x)$. This shows also that the polynomial in Example 2 of that section (pp. 1210-1211) is indeed $p_{491}(x)$. The computation of the degree $\tilde{R}_{3}(x)$ was in error, however, at the beginning of that example. In fact the degree is 250 , and there are five factors of degree 12 , not three, as was claimed before: these factors are the polynomials $p_{d}(x)$ for $d=31,44,124,211,331$.

Note that the root $-i=r\left(\frac{-7+i}{5}\right)$, so $p_{4}(x)$ is the minimal polynomial of a value $r\left(w_{4} / 5\right)$, with $w_{4}=-7+i \in \mathbb{Q}(\sqrt{-4})$ and $\wp_{5}^{2}=(-2+i)^{2} \mid w_{4}$. This justifies the notation $p_{4}(x)$. See [7, p. 139].

The following theorem is immediate from Theorem 4.2 and the computations of Section 2.

Theorem 4.4. The set of periodic points in $\overline{\mathbb{Q}}$ (or $\overline{\mathbb{Q}}_{5}$ or \mathbb{C}) of the multivalued algebraic function $\mathfrak{g}(z)$ defined by the equation $g(z, \mathfrak{g}(z))=0$ consists of $0, \frac{-1 \pm \sqrt{5}}{2}$, and the roots of the polynomials $p_{d}(x)$, for negative discriminants $-d$ satisfying $\left(\frac{-d}{5}\right)=+1$. Over $\overline{\mathbb{Q}}$ or \mathbb{C} the latter values coincide with the values $\eta=r\left(w_{d} / 5\right)$ and their conjugates over \mathbb{Q}, where $r(\tau)$ is the Rogers-Ramanujan continued fraction and the argument $w_{d} \in K=\mathbb{Q}(\sqrt{-d})$ satisfies

$$
w_{d}=\frac{v+\sqrt{-d}}{2} \in R_{K}, \quad \wp_{5}^{2} \mid w_{d}, \quad \text { and }\left(N\left(w_{d}\right), f\right)=1 .
$$

The fixed points $0, \frac{-1 \pm \sqrt{5}}{2}$ come from the factors $x, x^{2}+x-1$ of the polynomial $\mathrm{P}_{1}(x)$.

Equating degrees in the formula (4.1) yields

$$
\operatorname{deg}\left(\mathrm{P}_{n}(x)\right)=\sum_{-d \in \mathfrak{D}_{n, 5}} 4 h(-d), \quad n>1
$$

From (2.7) we get the following class number formula.
Theorem 4.5. For $n>1$ we have

$$
\sum_{-d \in \mathfrak{D}_{n, 5}} h(-d)=\frac{1}{2} \sum_{k \mid n} \mu(n / k) 5^{k},
$$

where $\mathfrak{D}_{n, 5}$ has the meaning given in Theorem 1.3.
This proves Theorem 1.3, where the field F_{1} has been denoted as $F_{d, 5}$, to indicate its dependence on d. Note that the corresponding formula for $n=1$ reads

$$
\sum_{-d \in \mathfrak{D}_{1,5}} h(-d)=h(-4)+h(-19)=2=\frac{1}{2}(5-1) .
$$

5. Ramanujan's modular equations for $r(\tau)$

In this section we take a slight detour to show how the polynomials $p_{4 d}(x), p_{9 d}(x)$ and $p_{49 d}(x)$ can be computed, if the polynomial $p_{d}(x)$ is known.

From Berndt's book [2, p. 17] we take the following identity relating $u=r(\tau)$ and $v=r(3 \tau)$:

$$
\begin{equation*}
\left(v-u^{3}\right)\left(1+u v^{3}\right)=3 u^{2} v^{2} . \tag{5.1}
\end{equation*}
$$

Let

$$
P_{3}(u, v)=\left(v-u^{3}\right)\left(1+u v^{3}\right)-3 u^{2} v^{2} .
$$

This polynomial satisfies the identity

$$
v^{4} P_{3}\left(u, \frac{-1}{v}\right)=P_{3}(v, u) .
$$

The following theorem gives a simple method of calculating $p_{9 d}(x)$ from $p_{d}(x)$.
Theorem 5.1. For any negative discriminant $-d \equiv \pm 1(\bmod 5)$, the polynomial $p_{9 d}(x)$ divides the resultant

$$
\operatorname{Res}_{y}\left(P_{3}(y, x), p_{d}(y)\right) .
$$

Proof. Let $-d=d_{K} f^{2}$, where d_{K} is the discriminant of $K=\mathbb{Q}(\sqrt{-d})$. One of the roots of $p_{9 d}(x)$ is $\eta^{\prime}=r\left(w_{9 d} / 5\right)$, where $w_{9 d}=\frac{v+\sqrt{-9 d}}{2} \in \mathrm{R}_{-9 d}, \wp_{5}^{2} \mid w_{9 d}$ and $N\left(w_{9 d}\right)=\frac{v^{2}+9 d}{4}$ is prime to $3 f$. Let $f=3^{s} f^{\prime}$, with $\left(f^{\prime}, 3\right)=1$. For some integer $k, w_{9 d}+25 f^{\prime} k=\frac{v+50 f^{\prime} k+\sqrt{-9 d}}{2}$ satisfies $v+50 f^{\prime} k \equiv v-4 f^{\prime} k \equiv 3$ $\bmod 9$. Furthermore,

$$
\eta^{\prime}=r\left(\frac{w_{9 d}+25 f^{\prime} k}{5}\right)=r\left(\frac{w_{9 d}}{5}+5 f^{\prime} k\right)=r\left(\frac{w_{9 d}}{5}\right) .
$$

Thus, we may assume $3 \| v$, and then $9 \mid N\left(w_{9 d}\right)$. In that case $w_{d}=\frac{w_{9 d}}{3} \in$ R_{-d}, where $\left(N\left(w_{d}\right), f\right)=1$, even when $3 \mid f$. Furthermore, $\wp_{5}^{2} \mid w_{d}$. Hence, $\eta=r\left(w_{d} / 5\right)$ is a root of $p_{d}(x)$. From (5.1) we have

$$
P_{3}\left(\eta, \eta^{\prime}\right)=P_{3}\left(r\left(w_{d} / 5\right), r\left(w_{9 d} / 5\right)\right)=P_{3}\left(r\left(w_{d} / 5\right), r\left(3 w_{d} / 5\right)\right)=0 .
$$

Hence, η^{\prime} is a root of the resultant, which therefore has its minimal polynomial $p_{9 d}(x)$ as a factor.

Example 1. We compute
$\operatorname{Res}_{y}\left(P_{3}(y, x), p_{4}(y)\right)=\operatorname{Res}_{y}\left(P_{3}(y, x), y^{2}+1\right)=x^{8}+x^{6}-6 x^{5}+9 x^{4}+6 x^{3}+x^{2}+1$.
Since the latter polynomial is irreducible, the theorem shows that it equals $p_{36}(x)$:

$$
p_{36}(x)=x^{8}+x^{6}-6 x^{5}+9 x^{4}+6 x^{3}+x^{2}+1 .
$$

This verifies once again the entry for $d=36$ in Table 1 of [14], which we used in Example 1 of that paper (p. 1208). In the same way, we compute

$$
\begin{aligned}
\operatorname{Res}_{y} & \left(P_{3}(y, x), p_{36}(y)\right)=\left(x^{2}+1\right)^{4}\left(x^{24}-18 x^{23}+81 x^{22}-60 x^{21}+594 x^{20}\right. \\
& +1074 x^{19}+118 x^{18}-1002 x^{17}-261 x^{16}+6882 x^{15}+12078 x^{14} \\
& +1014 x^{13}-18585 x^{12}-1014 x^{11}+12078 x^{10}-6882 x^{9}-261 x^{8} \\
& \left.+1002 x^{7}+118 x^{6}-1074 x^{5}+594 x^{4}+60 x^{3}+81 x^{2}+18 x+1\right) \\
& =p_{4}(x)^{4} p_{324}(x) .
\end{aligned}
$$

There is also the identity from [2, p. 12] relating $u=r(\tau)$ and $v=r(2 \tau)$:

$$
\begin{equation*}
\left(v-u^{2}\right)=\left(v+u^{2}\right) \cdot u v^{2} \tag{5.2}
\end{equation*}
$$

Setting

$$
P_{2}(u, v)=\left(v+u^{2}\right) \cdot u v^{2}-\left(v-u^{2}\right),
$$

we have the following identity, analogous to the identity for $P_{3}(u, v)$.

$$
v^{3} P_{2}\left(u, \frac{-1}{v}\right)=P_{2}(v, u) .
$$

An argument similar to the proof of Theorem 5.1 yields
Theorem 5.2. For any negative discriminant $-d \equiv \pm 1(\bmod 5)$, the polynomial $p_{4 d}(x)$ divides the resultant

$$
\operatorname{Res}_{y}\left(P_{2}(y, x), p_{d}(y)\right) .
$$

Proof. Again, let $-d=d_{K} f^{2}$, where d_{K} is the discriminant of $K=$ $\mathbb{Q}(\sqrt{-d})$. One of the roots of $p_{4 d}(x)$ is $\eta^{\prime}=r\left(w_{4 d} / 5\right)$, where $w_{4 d}=\frac{v+\sqrt{-4 d}}{2} \in$ $\mathrm{R}_{-4 d}, \wp_{5}^{2} \mid w_{4 d}$ and $N\left(w_{4 d}\right)=\frac{v^{2}+4 d}{4}$ is prime to $2 f$. Thus, $v \equiv 2 d+2(\bmod$ 4). If f is odd, we set

$$
w^{\prime}=w_{4 d}+25 f=\left(\frac{v}{2}+25 f\right)+\sqrt{-d}=v^{\prime}+\sqrt{-d} .
$$

Then,

$$
r\left(\frac{w^{\prime}}{5}\right)=r\left(\frac{w_{4 d}}{5}+5 f\right)=r\left(\frac{w_{4 d}}{5}\right)=\eta^{\prime} .
$$

Moreover, $v^{\prime} \equiv \frac{v}{2}+1 \equiv d(\bmod 2)$. Now let $w_{d}=\frac{w^{\prime}}{2}=\frac{v^{\prime}+\sqrt{-d}}{2} \in \mathrm{R}_{-d}$, where $\left(N\left(w_{d}\right), f\right)=1$. Then $\wp_{5}^{2} \mid w_{d}$ and $\eta=r\left(w_{d} / 5\right)$ is a root of $p_{d}(x)$. From (5.2) we have

$$
P_{2}\left(\eta, \eta^{\prime}\right)=P_{2}\left(r\left(w_{d} / 5\right), r\left(w_{4 d} / 5\right)\right)=P_{2}\left(r\left(w_{d} / 5\right), r\left(2 w_{d} / 5\right)\right)=0 .
$$

Hence, η^{\prime} is a root of the resultant, which therefore has its minimal polynomial $p_{4 d}(x)$ as a factor.

On the other hand, if f is even, let $f=2^{s} f^{\prime}$, with f^{\prime} odd. Then d is even, so $v / 2$ is odd. In this case we choose k so that

$$
v^{\prime}=\frac{v}{2}+25 f^{\prime} k \equiv \begin{cases}0(\bmod 4), & \text { if } 4 \| d \\ 2(\bmod 4), & \text { if } 8 \mid d\end{cases}
$$

With this choice of k we have $v^{\prime} \equiv d(\bmod 2)$, so letting $w^{\prime}=v^{\prime}+\sqrt{-d}=$ $w_{4 d}+25 f^{\prime} k$ and $w_{d}=\frac{w^{\prime}}{2}$, we have $w_{d} \in \mathrm{R}_{-d}$ and

$$
N\left(w_{d}\right)=\frac{v^{\prime 2}+d}{4} \equiv \begin{cases}\frac{d}{4} \equiv 1(\bmod 2), & \text { if } 4 \| d \\ \frac{v^{\prime 2}}{4} \equiv 1(\bmod 2), & \text { if } 8 \mid d\end{cases}
$$

In either case, we get that $\left(N\left(w_{d}\right), f\right)=1$. We have $r\left(w^{\prime} / 5\right)=r\left(w_{4 d} / 5\right)$, as before, and letting $\eta=r\left(w_{d} / 5\right)$ be a root of $p_{d}(x)$, we obtain $P_{2}\left(\eta, \eta^{\prime}\right)=0$ as above, and the assertion of the theorem follows.

Example 2. We have

$$
\begin{aligned}
& \operatorname{Res}_{y}\left(P_{2}(y, x), p_{36}(y)\right)=\left(x^{8}+x^{6}-6 x^{5}+9 x^{4}+6 x^{3}+x^{2}+1\right) \\
& \quad \times\left(x^{16}-2 x^{15}+18 x^{14}+24 x^{13}+83 x^{12}+78 x^{11}+74 x^{10}+40 x^{9}\right. \\
&\left.\quad+9 x^{8}-40 x^{7}+74 x^{6}-78 x^{5}+83 x^{4}-24 x^{3}+18 x^{2}+2 x+1\right) \\
& \quad= p_{36}(x) p_{144}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Res}_{y} & \left(P_{2}(y, x), p_{144}(y)\right)=\left(x^{8}+x^{6}-6 x^{5}+9 x^{4}+6 x^{3}+x^{2}+1\right)^{2} \\
& \times\left(x^{32}-32 x^{31}+586 x^{30}-2856 x^{29}+5818 x^{28}-160 x^{27}-23408 x^{26}\right. \\
& +41964 x^{25}-6573 x^{24}-63520 x^{23}+64426 x^{22}+12736 x^{21}-38746 x^{20} \\
& -11464 x^{19}+55416 x^{18}-38148 x^{17}-5743 x^{16}+38148 x^{15}+55416 x^{14} \\
& +11464 x^{13}-38746 x^{12}-12736 x^{11}+64426 x^{10}+63520 x^{9}-6573 x^{8} \\
& \left.-41964 x^{7}-23408 x^{6}+160 x^{5}+5818 x^{4}+2856 x^{3}+586 x^{2}+32 x+1\right) \\
& =p_{36}(x)^{2} p_{576}(x) .
\end{aligned}
$$

We can use Theorems 5.1 and 5.2 to construct polynomials $p_{d}(x)$ for which the Conjecture (1) in [14, p. 1199] does not hold. For example, starting with

$$
p_{51}(x)=x^{8}+x^{7}+x^{6}-7 x^{5}+12 x^{4}+7 x^{3}+x^{2}-x+1,
$$

applying Theorem 5.2 once gives that

$$
\begin{aligned}
p_{204}(x) & =x^{24}-x^{23}+38 x^{22}+36 x^{21}+166 x^{20}+33 x^{19}+57 x^{18}+22 x^{17} \\
& +573 x^{16}+1603 x^{15}+2465 x^{14}+1225 x^{13}+1768 x^{12}-1225 x^{11} \\
& +2465 x^{10}-1603 x^{9}+573 x^{8}-22 x^{7}+57 x^{6}-33 x^{5}+166 x^{4}-36 x^{3} \\
& +38 x^{2}+x+1,
\end{aligned}
$$

whose discriminant is exactly divisible by 17^{12}, in accordance with Conjecture (1). Applying Theorem 5.2 to this polynomial yields the polynomial $p_{816}(x)$, of degree 48 , whose discriminant is exactly divisible by 17^{40} :

$$
\operatorname{disc}\left(p_{816}(x)\right)=2^{160} 3^{120} 5^{276} 7^{40} 17^{40} 31^{24} 47^{8} 79^{8} 179^{4} 191^{12} 241^{8} 491^{8} 541^{8} 691^{8} ;
$$

whereas Conjecture (1) predicts that 17^{24} should be the power of 17 dividing $\operatorname{disc}\left(p_{816}(x)\right)$.

Note that the period of the roots of $p_{51}(x)$ is 4 , whereas the period of the roots of $p_{204}(x)$ and $p_{816}(x)$ is 12 .

We modify the statement of Conjecture (1) in [14, p. 1199] as follows.
Conjecture 2. If $q>5$ is a prime which divides the field discriminant d_{K} of $K=\mathbb{Q}(\sqrt{-d})$, then $q^{2 h\left(-d_{K}\right)}$ exactly divides $\operatorname{disc}\left(p_{d_{K}}(x)\right)$.

Now define the polynomial $P_{7}(u, v)$ by

$$
\begin{aligned}
P_{7}(u, v)= & u^{8} v^{7}+\left(-7 v^{5}+1\right) u^{7}+7 u^{6} v^{3}+7\left(-v^{6}+v\right) u^{5}+35 u^{4} v^{4} \\
& +7\left(v^{7}+v^{2}\right) u^{3}-7 u^{2} v^{5}-\left(v^{8}+7 v^{3}\right) u-v .
\end{aligned}
$$

Note that $P_{7}(u, v)$ satisfies the polynomial identity

$$
v^{8} P_{7}\left(u, \frac{-1}{v}\right)=P_{7}(v, u)
$$

From [22, Thm. 3.3] we have the following fact.
Proposition (Yi). The Rogers-Ramanujan continued fraction $r(\tau)$ satisfies the equation $P_{7}(r(\tau), r(7 \tau))=0$.

Theorem 5.3. For any negative discriminant $-d \equiv \pm 1(\bmod 5)$, the polynomial $p_{49 d}(x)$ divides the resultant

$$
\operatorname{Res}_{y}\left(P_{7}(y, x), p_{d}(y)\right)
$$

The proof is the same, mutatis mutandis, as the proof of Theorem 5.1, on replacing the prime 3 by 7 .

Example 3. We compute that

$$
\begin{aligned}
\operatorname{Res}_{y}\left(P_{7}(y, x),\right. & \left.p_{4}(y)\right)=p_{196}(x) \\
= & x^{16}+14 x^{15}+64 x^{14}+84 x^{13}-35 x^{12}-14 x^{11}+196 x^{10} \\
& +672 x^{9}+1029 x^{8}-672 x^{7}+196 x^{6}+14 x^{5}-35 x^{4} \\
& -84 x^{3}+64 x^{2}-14 x+1 .
\end{aligned}
$$

As a check, note that $h\left(-4 \cdot 7^{2}\right)=4$ and the discriminant of $p_{196}(x)$ is

$$
\operatorname{disc}\left(p_{196}(x)\right)=2^{32} \cdot 3^{12} \cdot 5^{28} \cdot 7^{14} \cdot 19^{4} \cdot 71^{8}
$$

all of whose prime factors are less than $d=196=4 \cdot 7^{2}$.

6. Periodic points for $\boldsymbol{h}(\boldsymbol{t}, \boldsymbol{u})$

6.1. Reduction to periodic points of $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y})$. From [14] the equation connecting $t=X-\frac{1}{X}$ and $u=Y-\frac{1}{Y}$ in the function field of the curve $g(X, Y)=0$ is

$$
\begin{aligned}
h(t, u)=u^{5} & -\left(6+5 t+5 t^{3}+t^{5}\right) u^{4}+\left(21+5 t+5 t^{3}+t^{5}\right) u^{3} \\
& -\left(56+30 t+30 t^{3}+6 t^{5}\right) u^{2}+\left(71+30 t+30 t^{3}+6 t^{5}\right) u \\
& -120-55 t-55 t^{3}-11 t^{5} .
\end{aligned}
$$

On this curve $v=\eta-\frac{1}{\eta} \in \Omega_{f}$, with $\eta=r\left(w_{d} / 5\right)$, satisfies

$$
h\left(v, v^{\tau_{5}}\right)=0, \quad \tau_{5}=\left(\frac{\Omega_{f} / \mathbb{Q}(\sqrt{-d})}{\wp_{5}}\right)
$$

This yielded the following theorem.
Theorem 6.1. If Ω_{f} is the ring class field of conductor f (relatively prime to 5) over the field $K=\mathbb{Q}(\sqrt{-d})$, where $-d=d_{K} f^{2}$ and $\left(\frac{-d}{5}\right)=+1$, then $\Omega_{f}=K(v)$, where $v=\eta-\frac{1}{\eta}$ is a periodic point of the algebraic function $\mathfrak{f}(z)$ defined by $h(z, \mathfrak{f}(z))=0$.

Note the identity

$$
\begin{equation*}
X^{5} Y^{5} h\left(X-\frac{1}{X}, Y-\frac{1}{Y}\right)=-g(X, Y) g_{1}(X, Y) \tag{6.1}
\end{equation*}
$$

where $g(X, Y)$ is given by (2.1) and $g_{1}(X, Y)$ is defined in (4.3). Also, recall that

$$
\begin{equation*}
X^{5} Y^{5} g\left(\frac{-1}{X}, \frac{-1}{Y}\right)=g(X, Y), \quad X^{5} Y^{5} g_{1}\left(\frac{-1}{X}, \frac{-1}{Y}\right)=g_{1}(X, Y), \tag{6.2}
\end{equation*}
$$

where the second identity is an easy consequence of the first. Using these facts we can prove the following.
Theorem 6.2. If $v \neq-1$ is any periodic point of the algebraic function $\mathfrak{f}(z)$ in Theorem 6.1, then

$$
v=\eta-\frac{1}{\eta}
$$

for some periodic point η of $\mathfrak{g}(z)$, and v generates a ring class field Ω_{f} over some field $K=\mathbb{Q}(\sqrt{-d})$, where $-d=d_{K} f^{2}$ and $\left(\frac{-d}{5}\right)=+1$.

Proof. Assume that there exist elements v_{i} for which

$$
\begin{equation*}
h\left(v, v_{1}\right)=h\left(v_{1}, v_{2}\right)=\cdots=h\left(v_{n-1}, v\right)=0 . \tag{6.3}
\end{equation*}
$$

Since the substitution $x=y-\frac{1}{y}$ transforms the polynomial

$$
h(x, x)=-(x+1)\left(x^{2}+4\right)\left(x^{2}-x+3\right)\left(x^{2}-2 x+2\right)\left(x^{2}+x+5\right),
$$

(after multiplying by y^{9}) into the product

$$
\begin{aligned}
-\left(y^{2}+y-1\right)\left(y^{2}\right. & +1)^{2}\left(y^{4}-y^{3}+y^{2}+y+1\right)\left(y^{4}-2 y^{3}+2 y+1\right) \\
& \times\left(y^{4}+y^{3}+3 y^{2}-y+1\right) \\
= & -\left(y^{2}+y-1\right) p_{4}(y)^{2} p_{11}(y) p_{16}(y) p_{19}(y)
\end{aligned}
$$

we may assume $n \geq 2$. Set $g_{0}(X, Y)=g(X, Y)$ and write $v=\eta-\frac{1}{\eta}$ and $v_{i}=\eta_{i}-\frac{1}{\eta_{i}}$. By (6.1), equation (6.3) is equivalent to a set of simultaneous equations

$$
\begin{equation*}
g_{i_{1}}\left(\eta, \eta_{1}\right)=g_{i_{2}}\left(\eta_{1}, \eta_{2}\right)=\cdots=g_{i_{n}}\left(\eta_{n-1}, \eta\right)=0 \tag{6.4}
\end{equation*}
$$

where each $i_{k}=0$ or 1 . Using the same idea as in the proof of Corollary 4.3, we will transform this set of equations into a set of equations which only involve the polynomial $g=g_{0}$. Assume first that $i_{1}=1$. Then

$$
0=g_{1}\left(\eta, \eta_{1}\right)=g\left(\eta, \frac{-1}{\eta_{1}}\right) .
$$

Now we use (6.2) to rewrite the remaining equations, so that we have

$$
0=g\left(\eta, \frac{-1}{\eta_{1}}\right)=g_{i_{2}}\left(\frac{-1}{\eta_{1}}, \frac{-1}{\eta_{2}}\right)=\cdots=g_{i_{n}}\left(\frac{-1}{\eta_{n-1}}, \frac{-1}{\eta}\right)
$$

with the same subscripts i_{r}, for $r \geq 2$, as before. Now assume we have transformed the first $k-1$ equations so that only the polynomial $g(X, Y)$ appears. Then, on renaming the elements $\pm \eta_{i}^{ \pm 1}$ as η_{i}, we have the simultaneous equations

$$
0=g\left(\eta, \eta_{1}\right)=\cdots=g\left(\eta_{k-2}, \eta_{k-1}\right)=g_{i_{k}}\left(\eta_{k-1}, \eta_{k}\right)=\cdots=g_{i_{n}}\left(\eta_{n-1}, \pm \eta^{ \pm 1}\right)
$$

If $i_{k}=0$ we replace k by $k+1$ and continue. If $i_{k}=1$ we replace $g_{i_{k}}\left(\eta_{k-1}, \eta_{k}\right)$ by $g\left(\eta_{k-1},-1 / \eta_{k}\right)$ and use (6.2) to replace η_{r} in the remaining equations by $-1 / \eta_{r}, r \geq k$. Then, on renaming the η 's again, we get a chain of equations

$$
0=g\left(\eta, \eta_{1}\right)=\cdots=g\left(\eta_{k-1}, \eta_{k}\right)=\cdots=g_{i_{n}}\left(\eta_{n-1}, \pm \eta^{ \pm 1}\right)
$$

Thus, by induction, we see that (6.4) is equivalent to a chain of equations

$$
0=g\left(\eta, \eta_{1}\right)=\cdots=g\left(\eta_{n-1}, \pm \eta^{ \pm 1}\right)
$$

only involving the polynomial g. If the final η is simply η, then η is a periodic point of g having period n. On the other hand, if the final η appearing in these equations is $-\eta^{-1}$, then we use the same argument as in Corollary 4.3 to show that η is a periodic point of period $2 n$. Then we know η is not 0 or a root of $x^{2}+x-1$, and therefore must be a root of some $p_{d}(x)$. By Theorem 6.1, this implies that $K(v)=\Omega_{f}$, for $K=\mathbb{Q}(\sqrt{-d})$ and $-d=d_{K} f^{2}$. This proves the theorem.

Taken together, Theorems 6.1 and 6.2 verify Conjecture 1(b) of Part I for the case $p=5$. To verify Conjecture 1(a), we define the function

$$
\mathrm{T}_{5}(z)=T_{5}(\eta)-\frac{1}{T_{5}(\eta)}, \quad \eta=\frac{z \pm \sqrt{z^{2}+4}}{2}
$$

We can also write

$$
\mathrm{T}_{5}(z)=\phi \circ T_{5} \circ \phi^{-1}(z), \quad \phi(z)=z-\frac{1}{z},
$$

where $\phi^{-1}(z) \in\left\{\frac{z \pm \sqrt{z^{2}+4}}{2}\right\}$ is two-valued. Since

$$
g\left(z, T_{5}(z)\right)=0 \Rightarrow g\left(\frac{-1}{z}, \frac{-1}{T_{5}(z)}\right)=0
$$

it follows from Proposition 3.2 that

$$
T_{5}\left(\frac{-1}{z}\right)=\frac{-1}{T_{5}(z)}, \text { for } z \in \mathrm{D}_{5} \cap\left\{z:|z|_{5}=1\right\}
$$

Since the two solutions $\eta^{(+)}, \eta^{(-)}$of $\phi\left(\eta^{(\pm)}\right)=z$ satisfy $\eta^{(+)} \eta^{(-)}=-1$, the value taken for $\phi^{-1}(z)$ does not affect the value of $\mathrm{T}_{5}(z)$. In other words,
we have the symmetric formula

$$
\mathrm{T}_{5}(z)=T_{5}\left(\eta^{(+)}\right)+T_{5}\left(\eta^{(-)}\right), \quad \eta^{(\pm)}=\frac{z \pm \sqrt{z^{2}+4}}{2}
$$

Then from $T_{5}\left(\eta^{(+)}\right) \cdot T_{5}\left(\eta^{(-)}\right)=-1$ and (3.3) it follows that $\mathrm{T}_{5}(z) \in \phi\left(\mathrm{D}_{5} \cap\right.$ $\left.\left\{z:|z|_{5}=1\right\}\right)$, which implies that

$$
\mathrm{T}_{5}^{n}(z)=T_{5}^{n}\left(\eta^{(+)}\right)+T_{5}^{n}\left(\eta^{(-)}\right), n \geq 1, \eta^{(\pm)}=\frac{z \pm \sqrt{z^{2}+4}}{2}
$$

Furthermore, $g\left(z, T_{5}(z)\right)=0$ implies that

$$
h\left(z-1 / z, \mathrm{~T}_{5}(z-1 / z)\right)=-g\left(z, T_{5}(z)\right) g_{1}\left(z, T_{5}(z)\right)=0 .
$$

We deduce the following.
Theorem 6.3. For any negative discriminant $-d=d_{K} f^{2}$ with $\left(\frac{-d}{5}\right)=+1$, and for $\eta=r\left(w_{d} / 5\right)$, as in Part II, the $h(-d)$ distinct conjugate values

$$
v^{\tau}=\eta^{\tau}-\frac{1}{\eta^{\tau}}, \quad \tau \in \operatorname{Gal}\left(F_{1} / K\right)
$$

lying in the ring class field Ω_{f} of $K=\mathbb{Q}(\sqrt{-d})$, are periodic points of the 5 -adic algebraic function $T_{5}(z)$ in the 5 -adic domain

$$
\widetilde{D}_{5}=\phi\left(D_{5} \cap\left\{z \in K_{5}:|z|_{5}=1\right\}\right) .
$$

The period of v^{τ} is equal to the order of the automorphism $\tilde{\tau}_{5}=\left(\frac{\Omega_{f} / K}{\wp_{5}}\right)$.
Proof. This is immediate from

$$
\mathrm{T}_{5}\left(v^{\tau}\right)=\mathrm{T}_{5}\left(\eta^{\tau}-\frac{1}{\eta^{\tau}}\right)=T_{5}\left(\eta^{\tau}\right)-\frac{1}{T_{5}\left(\eta^{\tau}\right)}=\eta^{\tau \tau_{5}}-\frac{1}{\eta^{\tau \tau_{5}}}=v^{\tau \tau_{5}},
$$

where the third equality above follows from $g\left(\eta^{\tau}, \eta^{\tau \tau_{5}}\right)=0$. The fact that the period is the order of $\tilde{\tau}$ is a consequence of the fact that $\mathbb{Q}(v)=\Omega_{f}$ and that

$$
\tilde{\tau}_{5}=\left.\tau_{5}\right|_{\Omega_{f}}, \quad \tau_{5}=\left(\frac{F_{1} / K}{\wp_{5}}\right) .
$$

Corollary 6.4. Conjecture 1 (a) of [13] holds for the prime $p=5$: Every ring class field Ω_{f} over $K=\mathbb{Q}(\sqrt{-d})$, with $\left(\frac{-d}{5}\right)=+1$ and $(f, 5)=1$, is generated over \mathbb{Q} by a periodic point of the 5 -adic algebraic function $T_{5}(z)$ which is contained in the domain $\widetilde{D}_{5}=\phi\left(D_{5} \cap\left\{z \in K_{5}:|z|_{5}=1\right\}\right) \subset K_{5}$.

Note: it is clear that $\mathrm{T}_{5}\left(\widetilde{\mathrm{D}}_{5}\right) \subseteq \widetilde{\mathrm{D}}_{5}$, since $T_{5}(x)$ maps the set $\mathrm{D}_{5} \cap\{z \in$ $\left.\mathrm{K}_{5}:|z|_{5}=1\right\}$ into itself, by Corollary 3.3 and equation (3.3).

The values v^{τ} and their complex conjugates coincide with the roots of the polynomial $t_{d}(x)$, for which

$$
\begin{equation*}
x^{2 h(-d)} t_{d}\left(x-\frac{1}{x}\right)=p_{d}(x), \quad d>4 . \tag{6.5}
\end{equation*}
$$

Theorem 6.2 shows that every periodic point $v \neq-1, \pm 2 i$ of $\mathfrak{f}(z)$ is a root of some polynomial $t_{d}(x)$ with $d>4$.

6.2. Deuring's class number formula. Let

$$
S^{(1)}\left(t, t_{1}\right):=h\left(t, t_{1}\right) \equiv 4\left(t_{1}+1\right)^{4}\left(t^{5}-t_{1}\right)(\bmod 5)
$$

and

$$
S^{(n)}\left(t, t_{n}\right):=\operatorname{Resultant}_{t_{n-1}}\left(S^{(n-1)}\left(t, t_{n-1}\right), h\left(t_{n-1}, t_{n}\right)\right), \quad n \geq 2
$$

Then it follows by induction that

$$
S^{(n)}\left(t, t_{n}\right) \equiv 4\left(t_{n}+1\right)^{5^{n}-1}\left(t^{5^{n}}-t_{n}\right)(\bmod 5), \quad n \geq 1
$$

Hence, the polynomial $S_{n}(t):=S^{(n)}(t, t)$ satisfies the congruence

$$
\begin{equation*}
S_{n}(t) \equiv 4(t+1)^{5^{n}-1}\left(t^{5^{n}}-t\right)(\bmod 5) \tag{6.6}
\end{equation*}
$$

It follows that

$$
\operatorname{deg}\left(S_{n}(t)\right)=2 \cdot 5^{n}-1, \quad n \geq 1
$$

(See the Lemma on pp. 727-728 of Part I, [13].)
Let $L(z)=\frac{-z+4}{z+1}$. Then

$$
L\left(x-\frac{1}{x}\right)=\frac{-x^{2}+4 x+1}{x^{2}+x-1}=T(x)-\frac{1}{T(x)},
$$

and we have the identity

$$
\begin{equation*}
(x+1)^{5}(y+1)^{5} h(L(x), L(y))=5^{5} h(y, x) . \tag{6.7}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
L(z)+1=\frac{5}{z+1} . \tag{6.8}
\end{equation*}
$$

Using (6.6), (6.7) and (6.8), it follows by the same reasoning as in Section 2 that $S_{n}(x)$ has distinct roots and that

$$
\begin{equation*}
\mathrm{Q}_{n}(x)=\prod_{k \mid n} S_{k}(x)^{\mu(n / k)} \tag{6.9}
\end{equation*}
$$

is a polynomial. Furthermore, all of the roots of $\mathrm{Q}_{n}(x)$ lie in K_{5}. From Theorem 6.3 we see that the polynomial $t_{d}(x)$ divides $\mathrm{Q}_{n}(x)$ whenever the automorphism $\tilde{\tau}_{5}$ has order n, and from Theorem 6.2, we see that these are the only irreducible factors of $\mathrm{Q}_{n}(x)$ over \mathbb{Q}. This gives
Theorem 6.5. For $n>1$, the polynomial $Q_{n}(x)$ is given by the product

$$
Q_{n}(x)= \pm \prod_{-d \in \mathfrak{D}_{n}^{(5)}} t_{d}(x)
$$

where $t_{d}(x)$ is defined by (6.5) and $\mathfrak{D}_{n}^{(5)}$ is the set of negative quadratic discriminants $-d$ with $\left(\frac{-d}{5}\right)=+1$, for which the automorphism $\tilde{\tau}_{5, d}=\tilde{\tau}_{5}=$ $\left(\frac{\Omega_{f} / K}{\wp_{5}}\right)$ has order n in $\operatorname{Gal}\left(\Omega_{f} / K\right)$, the Galois group of the ring class field Ω_{f} over $K=\mathbb{Q}(\sqrt{-d})$.

For $\mathrm{Q}_{1}(x)$ we have the factorization

$$
\begin{aligned}
\mathrm{Q}_{1}(x) & =-(x+1)\left(x^{2}+4\right)\left(x^{2}-x+3\right)\left(x^{2}-2 x+2\right)\left(x^{2}+x+5\right) \\
& =-(x+1) t_{4}(x) t_{11}(x) t_{16}(x) t_{19}(x)
\end{aligned}
$$

where $t_{4}(x)$ satisfies

$$
x^{2} t_{4}\left(x-\frac{1}{x}\right)=\left(x^{2}+1\right)^{2}=p_{4}(x)^{2} .
$$

Since $\operatorname{deg}\left(t_{d}(x)\right)=2 h(-d)$, Theorem 6.3 shows that half of the roots of $t_{d}(x)$ lie in the domain $\widetilde{\mathrm{D}}_{5}$, while the other roots ξ satisfy $\xi \equiv-1(\bmod 5)$ in K_{5}, a fact which follows from (6.7) and (6.8). Also see eq. (32) in [14].

The fact that $\operatorname{deg}\left(t_{d}(x)\right)=2 h(-d)$ now implies the following class number formula.

Corollary 6.6. For $n>1$ we have

$$
\sum_{-d \in \mathfrak{D}_{n}^{(5)}} h(-d)=\sum_{k \mid n} \mu(n / k) 5^{k} .
$$

This formula is equivalent to Deuring's formula for the prime $p=5$ from [5], [6], as in [16].

References

[1] Andrews, George E.; Berndt, Bruce C. Ramanujan's lost notebook. Part I. Springer, New York, 2005. xiv+437 pp. ISBN: 978-0387-25529-3; 0-387-25529-X. MR2135178, Zbl 1075.11001. 788
[2] Berndt, Bruce C. Ramanujan's notebooks. Part V. Springer-Verlag, New York, 1998. xiv+624 pp. ISBN: 0-387-94941-0. MR1486573, Zbl 0886.11001. 788, 806, 807
[3] Cho, Bumkyu. Primes of the form $x^{2}+n y^{2}$ with conditions $x \equiv 1 \bmod N$, $y \equiv 0 \bmod N . J$. Number Theory 130 (2010), no. 4, 852-861. MR2600406, Zbl 1211.11103, doi: 10.1016/j.jnt.2009.07.013. 789
[4] Cox, David A. Primes of the form $x^{2}+n y^{2}$. Fermat, class field theory and complex multiplication. Second edition. Pure and Applied Mathematics. John Wiley \mathcal{G} Sons, Inc., Hoboken, NJ, 2013. xviii+356 pp. ISBN: 978-1-118-39018-4. MR3236783, Zbl 1275.11002, doi: 10.1002/9781118400722. 789, 802
[5] Deuring, Max. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14 (1941), 197-272. MR0005125, Zbl 0025.02003, doi: 10.1007/BF02940746. 815
[6] Deuring, Max. Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl. Jber. Deutsch. Math.-Verein. 54 (1950), 24-41. MR0036777, Zbl 0039.02902. 815
[7] Duke, William. Continued fractions and modular functions. Bull. Amer. Math. Soc. 42 (2005), no. 2, 137-162. MR2133308, Zbl 1109.11026, doi: 10.1090/S0273-0979-05-01047-5. 788, 805
[8] Hasse, Helmut. Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil I: Klassenkörpertheorie. Jahresbericht
der Deutschen Mathematiker-Vereinigung 35 (1926), 1-55; reprinted by PhysicaVerlag, Würzburg-Vienna, 1965, iv + 135 pp. ISBN 3-7908-0010-4. MR0195847, JFM 52.1050.19, doi: 10.1007/978-3-662-39429-8. 789
[9] Hasse, Helmut. Ein Satz über die Ringklassenkörper der komplexen Multiplikation, Monatshefte für Mathematik und Physik 38 (1931), 323-330. Reprinted in Helmut Hasse Mathematische Abhandlungen, Bd. 2, paper 36, pp. 61-68, Walter de Gruyter, Berlin, 1975, ISBN 3-11-005931-2. MR1549921, Zbl 0002.33101, doi: 10.1007/BF01700703. 789
[10] Lavallee, Melisa J.; Spearman, Blair K.; Williams, Kenneth S. Watson's method of solving a quintic equation. JP J. Algebra, Number Theory Appl. 5 (2005), no. 1, 49-73. MR2140318, Zbl 1102.12001. 795
[11] Morton, Patrick. Explicit identities for invariants of elliptic curves. J. Number Theory 120 (2006), no. 2, 234-271. MR2257546, Zbl 1193.11062, doi: 10.1016/j.jnt.2005.12.008. 799, 803
[12] Morton, Patrick. Solutions of the cubic Fermat equation in ring class fields of imaginary quadratic fields (as periodic points of a 3 -adic algebraic function). Int. J. Number Theory 12 (2016), no. 4, 853-902. MR3484288, Zbl 06580489, arXiv:1410.6798, doi: 10.1142/S179304211650055X. 791, 798, 803
[13] Morton, Patrick. Solutions of diophantine equations as periodic points of p adic algebraic functions. I. New York J. Math. 22 (2016), 715-740. MR3548120, Zbl 1419.11059. 790, 813, 814
[14] Morton, Patrick. Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction. New York J. Math. 25 (2019), 1178-1213. MR4028831, Zbl 1441.11064. 788, 789, 790, 791, 794, 797, 798, 803, 804, 807, 809, 810, 815
[15] Morton, Patrick. Product formulas for the 5-division points on the Tate normal form and the Rogers-Ramanujan continued fraction. J. Number Theory 200 (2019), 380-396. MR3944443, Zbl 07038702, doi: 10.1016/j.jnt.2018.12.013. 800
[16] Morton, Patrick. Periodic points of algebraic functions and Deuring's class number formula. Ramanujan J. 50 (2019), no. 2, 323-354. MR4022234, Zbl 07140967, doi: 10.1007/s11139-018-0120-x. 790, 791, 815
[17] Morton, Patrick. On the Hasse invariants of the Tate normal forms E_{5} and E_{7}. J. Number Theory 218 (2021), 234-271. MR4157698, Zbl 07257228, doi: 10.1016/j.jnt.2020.07.008. 803, 804
[18] Prestel, Alexander; Ziegler, Martin. Model-theoretic methods in the theory of topological fields. J. Reine Angew. Math. 299(300) (1978), 318-341. MR0491852, Zbl 0367.12014. 795
[19] Schertz, Reinhard. Complex multiplication. New Mathematical Monographs, 15. Cambridge University Press, Cambridge, 2010. xiv+361 pp. ISBN: 978-0-521-76668-5. MR2641876, Zbl 1203.11001. 789
[20] Söhngen, Heinz. Zur komplexen Multiplikation. Math. Ann. 111 (1935), no. 1, 302-328. MR1512998, Zbl 0012.00902, JFM 61.0169.02, doi: 10.1007/BF01472223. 789
[21] Stevenhagen, Peter. Hilbert's 12th problem, complex multiplication and Shimura reciprocity. Class field theory-its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math., 30. Math. Soc. Japan, Tokyo, 2001. MR1846457, Zbl 1097.11535. 789
[22] Yi, Jinhee. Modular Equations for the Rogers-Ramanujan Continued Fraction and the Dedekind Eta-Function, Ramanujan J. Math. 5 (2001), 377-384. MR1891418, Zbl 1043.11041, doi: 10.1023/A:1013991704758. 810
(Patrick Morton) Dept. of Mathematical Sciences, LD 270, Indiana University Purdue University at Indianapolis (IUPUI), Indianapolis, IN 46202, USA
pmorton@iupui.edu
This paper is available via http://nyjm.albany.edu/j/2021/27-30.html.

