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On equivariant oriented cohomology of
Bott-Samelson varieties

Hao Li and Changlong Zhong

Abstract. For any Bott-Samelson resolution of the �ag variety, and any
torus equivariant oriented cohomology, we compute the restriction formula
of certain basis �L of equivariant oriented cohomology of Bott-Samelson vari-
ety determined by the projective bundle formula. As an application, we show
that the equivariant oriented cohomology of Bott-Samelson variety embeds
into the equivariant oriented cohomology of T-�xed points, and the image
can be characterized by using the Goresky-Kottwitz-MacPherson (GKM) de-
scription. Furthermore, we compute the push-forward of the basis �L onto
equivariant oriented cohomology of �ag variety, and their restriction formula.
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1. Introduction
Let G∕B be a �ag variety. For each w in the Weyl group W, and a reduced

decomposition w = si1⋯ sil , one de�nes the variety (see De�nition 3.1)

X̂Iw = Pi1 ×
B Pi2 ×

B⋯ ×B Pil∕B.

HerePij is theminimal parabolic subgroup corresponding to the simple root�ij .
Multiplication of all the coordinates de�nes a canonical map qIw ∶ X̂Iw → G∕B,
which is proper and birational over the Schubert variety X(w) of w. This is
called a Bott-Samelson resolution ofX(w). These resolutions play an important
role in Schubert calculus and representation theory.
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Let T be a split maximal torus in Borel subgroup B of G. One has a natural
T-action on the �ag variety. We are interested in ℎT(X̂Iw ), where ℎT is an (equi-
variant) oriented cohomology theory in the sense of Levine-Morel. Examples
of ℎ include the Chow group (singular cohomology) and K-theory. For any ℎ, it
is proved in [CZZ12, CZZ19, CZZ14] that, after �xing a reduced decomposition
Iw for each w ∈ W, the push-forward (qIw )∗(1) in ℎT(G∕B) of the fundamen-
tal class de�nes a basis of ℎT(G∕B) over the base ring ℎT(pt). This enables the
authors of loc. it. to construct the algebraic replacement of ℎT(G∕B), and pro-
vides a standard setting for generalized Schubert calculus. For further study on
equivariant oriented cohomology of T-varieties following this method, please
refer to [DZ20, GZ20, LZZ16, CNZ19, Z20].

Let us consider ℎT(X̂I) for a general sequence I = (i1, ..., il). The set X̂T
I of

T-�xed points of X̂I is in bijection with the power set of [l] = {1, 2, ..., l}. Denote
by j ∶ X̂T

I → X̂I the canonical embedding. Our main result is the following:

Theorem 1.1. (Corollary 4.4) For any sequence I, the pull-back to T-�xed points
j∗ ∶ ℎT(X̂I)→ ℎT(X̂T

I ) is injective.

Furthermore, we show that elements in the image of j∗ satisfy the Goresky-
Kottwitz-MacPherson (GKM) description (see Theorem 4.5). Indeed, in the
case where the sequence I = (i1, ..., il) consists of distinct ij’s, we prove that
the GKM description uniquely characterizes the image (Theorem 4.6).

Let usmention the idea of the proof brie�y. Since X̂I is constructed as a tower
of P1-bundles, there are canonically de�ned algebra generators �j ∈ ℎT(X̂I)
corresponding to each parabolic subgroup Pij in X̂I . Each �j satis�es certain
quadratic relation. Therefore, for each subset L of [l], denoting by �L the prod-
uct of �j with j in L, then {�L|L ∈ [l]} forms a basis of ℎT(X̂I).

We compute the restriction j∗(�L) explicitly (Theorem 4.3). The computation
uses the characteristic map c ∶ ℎT(pt) → ℎT(X̂I) induced by the map sending
a character � of T to the �rst Chern class of the associated line bundle over X̂I .
We then use the explicit formula of j∗(�L) to prove Theorem 1.1, and use the
GKM description to characterize the image of j∗.

As another application of the computation of j∗(�L), we also compute the
push-forward of �L via the canonical map qI ∶ X̂I → G∕B. We show that the
push-forward (qI)∗(�L) coincides with the Bott-Samelson class corresponding
to the sequence I∖L.

For future applications, one would apply the restriction formula (Theorem
4.3) and the push-forward formula (Theorem 5.4) in the study of motivic Chern
(mC) classes in K-theory. MC classes are certain K-theory classes associated to
constructible subsets of T-varieties. For details, please refer [AMSS17, RTV15,
RTV17]. They are closely related with the K-theoretic stable basis of Springer
resolutions, de�ned byMaulik-Okounkov [MO12, O15] and studied in [SZZ17,
SZZ19]. Indeed, Mihalcea has some recent work on the relationship between
push-forward ofMCclasses of Bott-Samelson varieties and theKazhdan-Lusztig
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basis ofHecke algebra. The authors hope to apply the computation of this paper
to understanding this relationship.

The paper is organized as follows: In Section 2, we recall necessary notions
of equivariant oriented cohomology theory, formal group algebra, and the char-
acteristic map c. In Section 3, we recall some basic facts about Bott-Samelson
varieties. In Section 4, we compute the restriction formula (Theorem4.3)which
was used to prove the injectivity of the pull-back map j∗ and the GKM descrip-
tion (Theorem 4.5). In Section 5, we compute the push-forward of the basis {�L}
onto ℎT(G∕B).

Acknowledgments: The second author would like to thank Leonardo Mihal-
cea and Rebecca Goldin for helpful conversations.

2. Equivariant oriented cohomology theory
In this section, we de�ne some notation, and collect some basic notions and

facts about equivariant oriented cohomology theory.
Let G be a split semisimple linear algebraic group over a �eld k, with rank

n. Let T be a split maximal torus of G and B ⊂ G be a Borel subgroup. Let
Σ be the set of roots of G, and Π = {�1, �2,… , �n} be the set of simple roots
corresponding to B. Let Pi be the minimal parabolic subgroup corresponding
to the simple root �i. TheWeyl groupW ofG is generated by

{
s�1 ,… , s�n

}
where

s�i is the re�ection corresponding to �i. Note that W can be identi�ed with
NG(T)∕T. Sometimes we will understand si = s�i as a lifting of an element in
G. We denote the group of characters of T by Λ. For each positive integer l,
denote [l] = {1, 2, ..., l}.

Let F be a formal group law over the commutative ring R. Examples include
the additive formal group law Fa = x+ y over Z, and the multiplicative formal
group law F = x + y − �xy over Z[�, �−1].

De�nition 2.1. Let RJxΛK ∶= RJx�|� ∈ ΛK be the power series ring. Let JF
be the closure of the ideal generated by x0 and x�+� − F(x�, x�), �, � ∈ Λ. We
de�ne the formal group algebra RJΛKF to be the quotient

RJΛKF = RJxΛK∕JF .

It is proved in [CPZ13, Corollary 2.13] that RJΛKF is non-canonically isomor-
phic to the formal power series ring with n variables. For simplicity, we denote
S = RJΛKF . Note that by de�nition, x−� is the formal inverse of x�, that is,
F(x�, x−�) = 0. Since any formal group law F is always of the form

F(x, y) = x + y + a11xy + higher order terms, a11 ∈ R,
so it is not di�cult to see that x−� = −x� + x2�f(x�) for some f(t) ∈ R[[t]].
Therefore, x�

x−�
is an invertible element in S.

Example 2.2. (1) Let Fa be an additive formal group law, then we have a
ring isomorphism

RJΛKFa ≅ SR(Λ)∧, x� ↦ �,
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where SR(Λ) is the symmetric algebra of Λ and the completion is done
at the augmentation ideal.

(2) Let R[Λ] be the group algebra
{∑

j aje
�j |aj ∈ R, �j ∈ Λ

}
. Then we have

isomorphism

RJΛKFm ≅ R[Λ]∧, x� ↦ �−1(1 − e�),
where the completion ∧ is done at the augmentation ideal.

Throughout this paper, we assume that the root datumofG together with the
formal group law F satisfy the regularity condition of [CZZ12, De�nition 4.4].
For example, this is satis�ed if 2 is regular in R. Please consult loc.it. for more
details. In particular, x� is regular in S, for any root � of G. The Weyl group
action on Λ induces an action ofW on RJΛKF by s�(x�) = xs�(�). In particular,
we have

Lemma 2.3. [CPZ13, Corollary 3.4] For any v, w ∈ W, any root � of G and
p ∈ S, we have

vs�w(p) − vw(p)
xv(�)

∈ S.

Proof. According to [CPZ13, Corollary 3.4], we know that s�w(p) − w(p) is
uniquely divisible by x�. In other word,

s�w(p) − w(p)
x�

∈ S.

Then
v(
s�w(p) − w(p)

x�
) =

vs�w(p) − vw(p)
xv(�)

∈ S.

�

In particular, taking w = v = e, we see that x�|(p − s�(p)). We can then
de�ne the Demazure operator ∆� ∶ S → S by

∆�(p) =
p − s�(p)

x�
. (1)

Remark 2.4. By direct calculation, we have the following formulas: for p, q ∈
S,

s�∆�(p) = −∆−�(p) (2)

∆�(pq) = ∆�(p)q + p∆�(q) − ∆�(p)∆�(q)x�. (3)

We follow [CZZ14, §2] on the assumption of equivariant oriented cohomol-
ogy, however, we only consider the case when the group is �xed to be the torus
T. Roughly speaking, it is an additive contravariant functor ℎT from the cat-
egory of smooth quasi-projective T-varieties to the category of commutative
rings with units, satisfying the following axioms: existence of push-forwards
for projective morphisms, existence of total equivariant characteristic class for
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T-equivariant bundle, Quillen’s formula, etc. [CZZ14, §2]. Moreover, there ex-
ists a formal group law F over R = ℎT(pt) such that ifℒ1 andℒ2 are locally free
sheaves of rank one, then

c1(ℒ1 ⊗ℒ2) = F(c1(ℒ1), c1(ℒ2)).
It is proved in [CZZ14, Theorem 3.3] that

S = RJΛKF ≅ ℎT(pt), x� ↦ c1(ℒ�),
where ℒ� is the associated line bundle. As an immediate consequence, we see
that if the variety X is �nite set of points of the form Spec(k) (with trivial T-
action), then

ℎT(X) = F(X; S),
where the latter is the set of all maps from X(k) to S. It has a S-basis fx, x ∈ X,
and is a ring with product de�ned by

fx ⋅ fy = �x,yfx, and unit
∑

x∈X
fx.

By functoriality, if p ∶ X → Y is a T-equivariant map between two �nite
discrete sets of points on which T acts trivially, then

p∗(fy) =
∑

x∈f−1(y)
fx, p∗(fx) = fp(x). (4)

We recall the de�nition of the characteristic map. Let X be a T-variety on
whichB acts on the right, and theT andB actions commute. Moreover, suppose
the quotient X∕B exists and X → X∕B is a T-equivariant principal bundle.
Following [CPZ13, §10.2], we can de�ne a ring homomorphism

c ∶ S = ℎT(pt)→ ℎT(X∕B), x� ↦ c1(ℒ�).
It is called the characteristic map.

Let � be a simple root with corresponding minimal parabolic subgroup P�.
Consider the �ber product X′ = X ×B P�, then X′ is a T-equivariant principal
P�-bundle over X∕B. Denote p ∶ X′∕B → X∕B, and there is a zero section

� ∶ X∕B → X′∕B, x ↦ (x, 1). (5)

As in [CPZ13, §10.5], we have

ℎT(X′∕B) ≅ ℎT(X∕B)[�]∕(�2 − y�), � = �∗(1), y = p∗�∗�. (6)

The following properties can be proved similarly as their non-equivariant
versions in [CPZ13, §10].

Lemma2.5. Denote c ∶ S → ℎT(X∕B)and c′ ∶ S → ℎT(X′∕B). For each � ∈ Λ,
denote the associated line bundles on X∕B and X′∕B byℒ� andℒ′

�, respectively.
(1) We have �∗� = c1(ℒ−�) = c(x−�).
(2) y = p∗�∗� = p∗c(x−�).
(3) For any u ∈ S, we have

�∗c′(u) = c(u), c′(u) = p∗c(s�(u)) + p∗c(∆−�(u)) ⋅ �.
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Note that in [CPZ13, §10], the projective bundle theorem plays a key role.
The equivariant projective bundle theorem for equivariant P1-bundle is proved
in [CZZ14, Lemma 4.6], which then can be used to prove Lemma 2.5.

Lemma 2.6. If X = B,X′ = P�, there are two T-�xed points in P�∕B, indexed
by e, s� ∈ W, whose embeddings are denoted by �e, �� ∶ pt → P�∕B. Then
�∗e c′(u) = u, �∗�c′(u) = s�(u).

Proof. Wehave c(u) = u, p�e = id, p�� = id, and �e coincides with � in (5), so
the �rst identity of Lemma 2.5.(3) implies �∗e c′(u) = c(u). On the other hand,
applying �∗� on the the second identity of Lemma 2.5.(3), and using �∗�(�) =
�∗�(�e)∗(1) = 0, we get that �∗�c′(u) = s�(u). �

3. Bott-Samelson varieties
In this section, we collect some facts about Bott-Samelson varieties .

De�nition 3.1. For any sequence I = (i1, i2,… , il) with 1 ≤ ij ≤ n, we de�ne
the variety X̂I to be

X̂I = Pi1 ×
B Pi2 ×

B … ×B Pil∕B,
which is the orbit space in Pi1 × Pi2 × … × Pil under B

l-action de�ned by

(g1,⋯ , gl)(b1,⋯ , bl) = (g1b1, b−11 g2b2,⋯ , b−1l−1glbl),
where bi ∈ B and gj ∈ Pij . Here the right B-action is given by right multipli-
cation on the last coordinate. If I = ∅, then we set X̂∅ = pt . The variety X̂I is
called the Bott-Samelson variety corresponding to I. It has an obvious T-action
by left multiplication on the �rst coordinate. We denote T-�xed points on X̂I
by ℰI .

Since Pi∕B ≅ P1, so we have a sequence of P1−bundles:

X̂I // X̂(i1,…,il−1) ////
�l
jj …

�l−1
nn

// X̂(i1) //
�2
ii pt,

�1
kk (7)

where �i, 1 ≤ i ≤ l are the zero sections. Multiplication of all factors of X̂I
induces a map

qI ∶ X̂I → G∕B.
Denote by �i ∶ G∕B → G∕Pi the canonical map, and denote I′ = (i1, ..., il−1).
We then have the following transverse Cartesian diagram:

X̂I
qI //

p
��

G∕B

��l
��

X̂I′
��l◦qI′ // G∕P�l

. (8)

So we have the base-change formula
(qI)∗p∗ = �∗�l (��lqI′)∗.
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The operator
�∗�l (��l )∗ ∶ ℎT(G∕B)→ ℎT(G∕B)

is called the push-pull operator.
Denote by cI ∶ S → ℎT(X̂I) the characteristic map. The following propo-

sition describes the R-algebra structure of equivariant oriented cohomology of
Bott-Samelson varieties.

Proposition 3.2. [CPZ13, §11.3]We have the following presentation

ℎT(X̂I) ≅ ℎT(pt)[�1, �2,… , �l]∕(
{
�j2 − yj�j|j = 1,… , l

}
),

where
yj = p∗jc(i1,…,ij−1)(x−�ij ), �j = p∗j (�j)∗(1),

with p∗j the pull-back from ℎT(X̂(i1,...,ij)) to ℎT(X̂I).

For ordinary oriented cohomology, this theorem is proved in [CPZ13]. The
idea of the proof is to apply the projective bundle formula to the sequence of
P1−bundle (7). One can check that all the arguments hold in the equivariant
setting, which can be used to prove Proposition 3.2.

For each subset L ∈ [l], de�ne
�L =

∏

j∈L
�j ∈ ℎT(X̂I).

Since in Proposition 3.2, the yj does not belong to the coe�cient ring ℎT(pt),
the presentation of ℎT(X̂) is not satisfactory. To get a polynomial presentation
of it, we follow the idea in [CPZ13, Theorem 11.4].

Lemma 3.3. For any sequence I = (i1, ..., il), we have
cI(u) =

∑

L⊂[l]
�I,L(u)�L, u ∈ S,

where �l,L = �1⋯ �l with �j = {
∆−�ij , if j ∈ L,
sij , otherwise.

Proof. We prove it by induction on l. If l = 1, from Lemma 2.5, we have

ci1(u) = p∗c∅(si1(u)) + p∗c∅(∆−�i1 (u)) ⋅ �1.

Note that the characteristic map c∅ ∶ S → ℎT(pt) is the identity map. So it
holds.

Now assume the conclusion holds for I′ ∶= (i1,… , il−1). Denote the canoni-
cal projection from X̂I to X̂I′ by p. By Lemma 2.5 we have

cI(u) = p∗cI′(sil (u)) + p∗cI′(∆−�il (u)) ⋅ �l
=

∑

L⊂[l−1]
�l−1,L(sil (u))�L +

∑

L∈[l−1]
�l−1,L(∆−�ij (u))�L ⋅ �l

=
∑

L⊂[l]
�l,L(u)�L. �
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Proposition 3.4. [CPZ13, Theorem 11.4] The ring ℎT(X̂I) is a quotient of the
polynomial ring S[�1, �2,… , �l]modulo the relations

�2j =
∑

L⊂[j−1]
�j−1,L(x−�ij )�L�j, j ∈ [l].

Proof. Denote K = (i1, ..., ij−1) and p ∶ X̂I → X̂K . By de�nition of yj and
Lemma 3.3, we have

yj = p∗cK(x�ij ) = p∗(
∑

L⊂[j−1]
�j−1,L(x−�ij )�L) =

∑

L⊂[j−1]
�j−1,L(x−�ij )�L.

The statement then follows from the fact that �2j = yj�j. �

Corollary 3.5. The S-module ℎT(X̂I) is free with basis {�L|L ∈ Pl} .

Example 3.6. For SL(4)whose simple roots are �1, �2, �3, let us consider Bott-
Salmelson X̂I = P�1 ×

B P�2 ×
B P�3∕B. Then ℎT(X̂I) is a polynomial algebra

generated by �1, �2, �3 with following quotient relations:

�21 = x−�1�1,

�22 = x−�1−�2�1 +
x−�2 − x�1−�2

x−�1
�1�2,

�23 = x�1−�2−�3�3 +
x−�3−�2 − x2�1−�2−�3

x−�1
�1�3 +

x�3 − x�1+�2−�3
x−�1−�2

�2�3

+ (
x−�3−x�2−�3
x−�2x−�1

−
x−�3 − x�2−�1−�3
x�1−�2x−�1

)�1�2�3.

Let us consider some geometry information on X̂, and its T-�xed points. We
�x some notations �rst. For any L ⊂ [l], de�ne

(X̂I)L = {[g1, g2,… , gl] ∈ X̂I| gj ∈ B if j ∉ L, and gi ∉ B if j ∈ L} ⊂ X̂I ,

and
vLj =

∏

k∈L∩[j]
sik , vL ∶= vLl =

∏

k∈L
sik .

The following lemma will be used in the proof of Theorem 4.6.

Lemma 3.7. Let I = (i1, ..., il) be a sequence such that ij are all distinct. Let
L ⊂ [l], then vLj−1(�j), j ∈ Lc are all distinct. In particular, vLj−1(x−�ij ), j ∈ Lc

are all distinct.

Proof. Suppose j1, j2 ∈ Lc and j1 < j2. Then L∩[j1] ⊆ L∩[j2]. There are two
cases.

Case 1: L ∩ [j1] = L ∩ [j2]. Then

vLj1−1(�ij1 ) = (
∏

k∈L∩[j1]
sik )(�ij1 ),
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and
vLj2−1(�ij2 ) = (

∏

k∈L∩[j2]
sik )(�ij2 ) = (

∏

k∈L∩[j1]
sik )(�ij2 ).

They are not equal since �ij1 ≠ �ij2 .
Case 2. L ∩ [j1] ⊊ L ∩ [j2]. DenoteM = (L ∩ [j2])∖(L ∩ [j1]). Then

vLj1−1(�ij1 ) = (
∏

k∈L∩[j1]
sik )(�ij1 ),

vLj2−1(�ij2 ) = (
∏

k∈L∩[j1]
sik )(

∏

k′∈M
sik′ )(�ij2 ).

By de�nition of the Weyl group action,

(
∏

k′∈M
sik′ )(�ij2 ) = �ij2 +

∑

k′∈M
ck′�ik′ , ck′ ∈ Z,

which is di�erent from �ij1 , since the set {�ij1 , �ij2 } ∪ {±�ik′ |k
′ ∈ M} is linearly

independent. Thus vLj1−1(�ij1 ) and v
L
j2−1

(�ij2 ) are not equal to each other. �

The following lemma recalled from [W04, Proposition 2.6] provides some
geometric information on the Bott-Samelson variety, which is useful for our
computation.

Lemma 3.8. (1) The set X̂T
I of T-�xed points in X̂I , consists of 2l points

[g1, g2,… , gl]

where gj ∈
{
e, sij

}
. Here we think of sij as inW ≅ NG(T)∕T and pick a

preimage for sij in NG(T) ⊂ G. Consequently, we have bijection of sets
from the power set Pl ∶= P([l]) to X̂T

I ,

L ↦ ptL ∶= [g1, ..., gl], gj = {
sij , if j ∈ L,
e, if j ∉ L.

(2) The set (X̂I)L is T-stable, contains the �xed point ptL, and is isomorphic
to the a�ne space of dimension |L|. The variety X̂I has a decomposition∐

L∈ℰI
(X̂I)L.

(3) Suppose L, L′ ⊂ [l]. then ptL ∈ (X̂I)L′ if and only if L ⊂ L′. The weights
of the T-action on the tangent space of (X̂I)L′ at ptL are

{−vLj (�ij )|j ∈ L′}.

Example 3.9. For the A2-case, consider X̂(1,2) = P1 ×B P2∕B. There are four
T-�xed points, denoted by {00, 01, 10, 11}, corresponding to

{[e, e], [e, s2], [s1, e], [s1, s2]},

or
∅, {2}, {1}, {1, 2}



1452 HAO LI AND CHANGLONG ZHONG

as subsets of [2]. The weights of the tangent spaces of X̂(1,2) at the four points
are:

00 ∶ −�1,−�2 01 ∶ −�1, �2
10 ∶ �1,−�1 − �2 11 ∶ �1, �1 + �2.

We denote the set of functions on ℰI with values in S by F(ℰI ; S). It is a
free S-module with basis fL, L ∈ ℰI de�ned by fL(L′) = �L,L′ , and have a ring
structure given by

fL ⋅ fL′ = �L,L′fL.

Moreover, we have
ℎT(ℰI) ≅ F(ℰI ; S),

where the total Chern class of the tangent space at the �xed point ptL, corre-
sponds to the basis element fL up to a scalar.

Let jI ∶ X̂T
I → X̂I be the embedding of �xed points. For each L ⊂ [l], denote

by jIL the embedding of ptL into X̂I . Sometimes we will drop the superscript I
for simplicity. Then

j∗(f) =
∑

L⊂[l]
j∗L(f)fL, f ∈ ℎT(X̂I).

Denote

xI,L =
∏

1≤j≤l
vLj (x−�ij ). (9)

We have

Lemma 3.10. For any L ⊂ [l], we have j∗j∗(fL) = xI,LfL.

Proof. This follows easily from [CZZ14, §2.A8] and Lemma 3.8 concerning the
weights of the tangent space of X̂I at the point L. �

Example 3.11. Following Example 3.9, with I = (�1, �2), we have

xI,00 = x−�1x−�2 , xI,10 = x�1x−�1−�2 ,
xI,01 = x−�1x�2 , xI,11 = x�1x�1+�2 .

4. Restriction to T-�xed points
In this section, we compute the restriction formula of the �L basis. We �rst

compute the restriction formula of the image of the characteristic map.

Lemma 4.1. Let I be a sequence of length l, and cI ∶ S → X̂I be the characteristic
map, then

j∗cI(u) =
∑

L⊂[l]
vL(u)fL.
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Proof. We prove it by induction on the length l of I. If I = (i1), then it follows
from Lemma 2.6.

Now assume it holds for all sequences of length ≤ l − 1, and assume I =
(i1, ..., il). Denote I′ = (i1, ..., il−1) and � ∶ X̂I′ → X̂I the zero section. By
induction assumption, for each L′ ⊂ [l − 1], we have

(jI′L′)
∗cI′(u) = vL′l−1(u). (10)

Concerning L ⊂ [l], we have two cases:
Case 1: l ∈ L. In this case, ptL ∉ �(X̂I′), so

(jIL)
∗◦�∗ = 0. (11)

Moreover, we have the following commutative diagram

pt
jIL //

jI′L∖{l} ��

X̂I
p
��

X̂I′ ,

that is, p◦jIL = jI′L∖{l}, so

(jIL)
∗◦p∗ = (jI′L∖{l})

∗. (12)

Denote � = �∗(1), then by Lemma 2.5, we have

(jIL)
∗◦cI(u) = (jIL)

∗[p∗cI′(sil (u)) + p∗cI′(∆−�il (u)) ⋅ �]

= (jIL)
∗p∗cI′(sil (u)) + (jIL)

∗p∗cI′(∆−�il (u)) ⋅ (j
I
L)
∗(�∗(1))

♯1= (jI′L∖{l})
∗cI′(sil (u))

♯2= vL∖{l}l−1 ◦sil (u) = vLl (u).

Here the identity ♯1 follows from (11) and (12), and ♯2 follows from (10).
Case 2: l ∉ L. In this case, we can view L ⊂ [l − 1], so we have commutative

diagrams:

pt
jIL //

jI′L ��

X̂I
p
��

X̂I′

, pt
jIL //

jI′L ��

X̂I

X̂I′

�

OO
,

so p◦jIL = jI′L and �◦jI′L = jIL. The latter implies that

(jIL)
∗�∗(1) = (jI′L )

∗�∗�∗(1)
Lem.2.5
= (jI′L )

∗cI′(x−�il ). (13)

Therefore,

(jIL)
∗(cI(u)) = (jIL)

∗[p∗cI′(sil (u)) + p∗cI′(∆−�il (u)) ⋅ �]
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= (jIL)
∗p∗cI′(sil (u)) + (jIL)

∗p∗cI′(∆−�il (u)) ⋅ (j
I
L)
∗(�∗(1))

= (jI′L )
∗cI′(sil (u)) + (jI′L )

∗cI′(∆−�il (u)) ⋅ (j
I′
L )

∗cI′(x−�il )

= (jI′L )
∗cI′(sil (u) +

u − sil (u)
x−�il

x−�il )

= (jI′L )
∗cI′(u)

= vLl−1(u) = vLl (u).

The proof is �nished. �

Before computing the restriction formula of �L, we �rst consider an example.

Example 4.2. Consider the case of A2. Let {�1, �2} be the set of simple roots.
We consider theBott-Samelson variety X̂I = P1×BP2∕B for I = (1, 2). Following
Example 3.9, there are four torus-�xed points, denoted by P2 = {00, 01, 10, 11}.
Similarly, denote (P1∕B)T by P1 = {0, 1}. Denote jI ∶ ℰI ↪ X̂I and j1 ∶ P1 ↪
(P1∕B)T. Consider the following commutative diagram:

P1 ×B P2∕B

p2
��

P2 = {00, 01, 10, 11}
jI
oo

p′2
��

P1∕B
p1
��

�2

JJ

P1 = {0, 1}
j1

oo

pt

�1

JJ

.

Here �i are the zero sections, p′2 is induced by the projectionmap p2, so it maps
00, 01 to 0, and 10 and 11 to 1. Moreover, by de�nition, j10 = �1 and �2◦j1i = jIi0
for i = 0, 1. We have

�1 = p∗2(�1)∗(1), �2 = (�2)∗(1),
and

ℎT((X̂I)T) = S{f00, f01, f10, f11}, ℎT((P1∕B)T) = S{f0, f1}.
Denote c1 ∶ S → ℎT(P1∕B).

First of all, from the de�nition of p′2 and (4), we know

(p′2)
∗(f0) = f00 + f01, (p′2)

∗(f1) = f10 + f11.

Moreover, since j10 coincides with �1 and j
1
1(pt) ∉ �1(pt), so (j11)

∗(�1)∗ = 0 and

(j1)∗(�1)∗(1) = (j10)
∗(�1)∗(1) = �∗1(�1)∗(1) = x−�1f0,

where the last identity follows from the fact that the tangent space of P1∕B at 0
has weight −�1. Hence,

(jI)∗(�1) = (jI)∗p∗2(�1)∗(1) (14)

= (p′2)
∗(j1)∗(�1)∗(1) = (p′2)

∗(x−�1f0) = x−�1(f00 + f01). (15)
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We then compute (jI)∗(�2), by using the identity

(jI)∗(�2) =
∑

x∈P3

(jIx)∗(�2)fx.

Since 01, 11 ∉ �2(P1∕B), we have (jI01)
∗(�2) = (jI11)

∗(�2) = 0. From Lemma 2.5,
we know that �∗2(�2)∗(1) = c1(x−�2). So

(jI00)
∗(�2) = (jI00)

∗(�2)∗(1) = (j10)
∗�∗2(�2)∗(1) = (j10)

∗(c1(x−�2))
♯
= x−�2 ,

where ♯ follows from Lemma 4.1. Similarly, from jI10 = �2◦j11, we have

(jI10)
∗(�2) = (jI10)

∗(�2)∗(1)
= (j11)

∗�∗2(�2)∗(1)
= (j11)

∗(c1(x−�2))
= s1(x−�2) = x−�1−�2 .

Therefore,

(jI)∗(�2) = x−�2f00 + x−�1−�2f10. (16)

Now we compute the restriction formula of �L.

Theorem 4.3. Let I be a sequence of length l. For any two subsets L,M ⊂ [l]
denote Lc = [l]∖L and

aL,M =
∏

k∈L
vMk−1(x−�ik ).

Then

j∗(�L) =
∑

M⊂Lc
aL,MfM .

Proof. We �rst consider L = {k}, and prove the following identity

j∗(�k) =
∑

M⊂Lc
vMk−1(x−�ik )fM .

Write Ij = (i1, ..., ij) for j = k and j = k − 1. Firstly, we compute (jIkM)
∗(�k)∗(1)

for each M ⊂ [k], with �k ∶ X̂Ik−1 → X̂Ik . If k ∈ M, then the point jIkM(pt) ∉
�k(X̂Ik−1), so

(jIkM)
∗(�k)∗(1) = 0.

If k ∉ M, thenM ⊂ [k−1], vMk = vMk−1, andwe have the following commutative
diagram

pt
jIkM //

jIk−1M   

X̂Ik

X̂Ik−1 .

�k

OO
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Therefore

(jIkM)
∗(�k)∗(1) = (jIk−1M )∗�∗k(�k)∗(1) (17)

Lem.2.5
= (jIk−1M )∗cIk−1(x−�ik ) (18)

Lem.4.1
= vMk−1(x−�ik ). (19)

Here cIk−1 is the characteristic map on X̂Ik−1 . Then we consider the following
commutative diagram

(X̂I)T
jI //

p′
��

X̂I
p
��

(X̂Ik )
T jIk // X̂Ik .

We have

(jI)∗(�k) = (jI)∗p∗((�k)∗(1)) = p′∗(jIk )∗(�k)∗(1)

= p′∗[
∑

M⊂[k]
(jIkM)

∗(�k)∗(1)fM]

(17)
= p′∗[

∑

M⊂[k−1]
vMk−1(x−�ik )fM]

(4)
=

∑

M⊂[k−1]
vMk−1(x−�ik )

∑

M′⊂{k+1,...l}
fM∪M′

=
∑

M⊂([l]∖{k})
vMk−1(x−�ik )fM .

So the case L = {k} is proved.
Now for a general subset L ⊂ [l], we have

j∗(�L) =
∏

k∈L
j∗(�k)

=
∏

k∈L

∑

M⊂([l]∖{k})
vMk−1(x−�ik )fM

=
∑

M⊂Lc

∏

k∈L
vMk−1(x−�ik )fM .

�

For I of length l and L ⊂ [l], note the di�erence between

a[l],L =
∏

1≤k≤l
vLk−1(x−�ik ), xI,L =

∏

1≤k≤l
vLk (x−�ik ).

They are only related when L = [l], in which case we have

a[l],[l] =
∏

1≤k≤l
v[l]k−1(x−�ik ) =

∏

1≤k≤l
v[l]k (x�ik ), xI,[l] =

∏

1≤k≤l
v[l]k (x−�ik ).
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Corollary 4.4. The map j∗ ∶ ℎT(X̂I)→ ℎT(X̂T
I ) is an injection.

Proof. It follows from Theorem 4.3 that

j∗(�L) =
∑

M⊂Lc
aL,MfM .

So if we order {j∗(�L)|L ⊂ [l]}, {fM|M ⊂ [l]} by inclusion of subsets L′ ⊂ L, then
the transition matrix from fM to j∗(�L) will be skew-triangular. Moreover, the
entries on the skew-diagonal will be

aL,Lc =
∏

k∈L
vLck−1(x−�ik ),

which is regular in S. Therefore, j∗ is injective. �

Theorem 4.5. Let I be a sequence of length l. Then

im j∗ ⊂ {
∑

L⊂[l]
aLfL|

aL1 − aL2
vL1k−1(x−�ik )

∈ S, ∀L1, L2 such that L1 = L2 ⊔ {k}}.

Here ⊔ denotes the disjoint union.

Proof. Denote the right hand side by Ψ. We �rst show that Ψ is a ring. It is
clearly additively closed. For the multiplication, consider

f =
∑

L⊂[l]
aLfL, g =

∑

L′⊂[l]
bL′fL′ ∈ Ψ,

then
fg =

∑

L,L′⊂[l]
�L,L′aLbL′fL =

∑

L⊂[l]
aLbLfL.

For any L1, L2 such that L1 = L2 ⊔ {k}, by de�nition we have vL1k−1 = vL2k−1, so
vL1k−1(x−�ik ) = vL2k−1(x−�ik ). Therefore,

aL1bL1 − aL2bL2 = (aL1 − aL2)bL1 − (bL2 − bL1)aL2 ,

is divisible by vL1k−1(x−�ik ). We have fg ∈ Ψ.
We then show that im j∗ ⊂ Ψ. Since j∗ is multiplicative, it su�ces to show

j∗(�m) =
∑

L⊂[l]∖{m}
vLm−1(x−�im )fL

belongs to the RHS. Suppose L1 = L2 ⊔ {k}. Clearly k ≠ m. If k > m, then
by de�nition we have vL1m−1 = vL2m−1. Thus v

L1
m−1(x−�im ) = vL2m−1(x−�im ), which

implies that j∗(�m) ∈ Ψ.
If k < m, denote

L1 ∩ [m − 1] = {j1 < j2 <⋯ jt < k < jt+1 <⋯ < js},

L2 ∩ [m − 1] = {j1 < j2 <⋯ jt < k̂ < jt+1 <⋯ < js},
(in other words, k is omitted in L2). Then

vL1m−1(x−�im ) − vL2m−1(x−�im ) = sij1 sij2 ⋯ sijt siksijt+1 ⋯ sijs (x−�im )
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− sij1 sij2 ⋯ sijt ŝiksijt+1 ⋯ sijs (x−�im )

= vL1k−1sik (sijt+1 ⋯ sijs )(x−�im )

− vL1k−1(sijt+1 ⋯ sijs )(x−�im ).

According to Lemma 2.3, this is divisible by vL1k−1(x−�ik ). �

We can strengthen the conclusion in some cases. The proof essentially uses
the fact that the transition matrix from fL, L ⊂ [l] to j∗(�M),M ⊂ [l] is skew-
triangular, following from Theorem 4.3.

Theorem 4.6. If I = (i1, ..., il) with ij all distinct, then we have equality in Theo-
rem 4.5.

Proof. It su�ces to show that Ψ ⊂ im j∗. Suppose

f =
∑

L⊂[l]
aLfL ∈ Ψ, with aL = 0 unless L = ∅,

then for any k ∈ [l], a∅ = a∅ − a{k} is divisible by v∅k−1(x−�ik ) = x−�ik . Since
x�ij , 1 ≤ j ≤ l are all distinct, by [CZZ19, Lemma 2.7], we see that a∅ is divisible
by

∏
k∈[l] x−�ik . Note that by Theorem 4.3,

j∗(�[l]) =
∏

k∈[l]
x−�ikf∅,

so f is a multiple of j∗(�[l]), i.e., f ∈ im j∗.
Assume the conclusion holds for any f that can be written as a linear com-

bination of fL with |L| ≤ t − 1. Now let

f =
∑

L⊂[l]
aLfL ∈ Ψ, with aL = 0 unless |L| ≤ t.

Let L0 be a subset of [l] of cardinality t. For any k ∈ Lc0, we have aL0⊔{k} = 0, so
vL0k−1(x−�ik )|aL0 Now from Theorem 4.3, we know

j∗(�Lc0) =
∑

M⊂L0

aLc0,MfM , aLc0,L0 =
∏

j∈Lc0

vL0j−1(x−�ij ).

By Lemma 3.7, we have that vL0j−1(x−�ij ) are all distinct for j ∈ Lc0. By [CZZ19,
Lemma 2.7], we know that aLc0,L0|aL0 . Write aL0 = cL0aLc0,L0 with cL0 ∈ S. There-
fore,

f′ ∶= f −
∑

|L0|=t
cL0 j

∗(�Lc0) =
∑

|L|<t
a′LfL,

By induction hypothesis, f′ ∈ im j∗. Therefore, f ∈ im j∗. The proof is �n-
ished. �
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Remark 4.7. Let Ti be the subtorus of rank 1 corresponding to �i, i.e., Ti =
(ker�i)◦ where �i is viewed as a character T → k∗. If I = (i1, ..., il) is a sequence
such that ij are all distinct, it is not di�cult to see that for any 1 ≤ k ≤ l,

X̂
Tik
I = {[g1, ..., gl]|gjB ∈ {B, sijB} ∀ j ≠ k},

and
X̂T′
I = {[g1, ..., gl]| gjB ∈ {B, sijB} ∀j}

if T′ is any subtorus of corank 1 di�erent from Tij , j = 1, ..., l. In other words,
for any subtorus of corank 1, the irreducible component of the invariant sub-
variety has dimension at most one. This corresponds to the so-called Goresky-
Kottwitz-MacPherson (GKM) condition. In other words, in this case, the Bott-
Samelson variety is a GKM space. This corresponds to the conclusion of Theo-
rem 4.6.

On the other hand, if Pij are not distinct, the space X̂I will not be GKM. For
instance, if I = (1, 2, 1), the T1-�xed subspace contains the following subset

{[g1, e, g′1]|gi, g
′
i ∈ P1},

so the dimension condition is not satis�ed. Indeed, it follows from the proof of
Theorem 4.6 that in this case, the inclusion in Theorem 4.5 is strict. For more
detailed discussion of GKM spaces, see [GKM98, GHZ06].

5. Push-forward to cohomology of �ag varieties
In this section, we compute the push-forward of the basis �L along the canon-

ical map qI ∶ X̂I → G∕B, which generalizes the computation of Bott-Samelson
classes in [CZZ14].

Recall that the set of T-�xed points of G∕B is in bijection toW, so we have

ℎT((G∕B)T) ≅ ⊕w∈WS.

Denote by fw ∈ ℎT(W) the basis element corresponding to w ∈ W. Denote
i ∶ W → G∕B to be the embedding, and denote pte = (i|e)∗(1) ∈ ℎT(G∕B).
Let �i ∶ G∕B → G∕Pi be the canonical map, and denote Ai = �∗i ◦(�i)∗ ∶
ℎT(G∕B)→ ℎT(G∕B). For any sequence I, denote by Irev the sequence obtained
by reversing I.

Proposition 5.1. [CZZ14, Lemma 7.6] For any sequence I, we have

(qI)∗(1) = AIrev (pte).

The following is an easy generalization of Proposition 5.1.

Theorem 5.2. Let I be a sequence of length l and 1 ≤ k ≤ l. Denote by Ik the
subsequence of I obtained by removing the k-th term from I. Then (qI)∗(�k) =
AIrevk

(1).
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Proof. Denote the sequence by I = (i1, ..., il). For any k ≤ l, denote

Pi1 ×
B Pi2 ×

B ×... ×B Pik∕B
qk //

pk
��

G∕B

Pi1 ×
B Pi2 ×

B ×... ×B Pik−1∕B
qk−1 //

�k

JJ

G∕B.

Note that qI = ql and qk◦�k = qk−1. Denote byp the composition ofpk+1,⋯ , pl.
By using the base change formula from diagram (8), we have

(qI)∗(�k) = (ql)∗p∗((�k)∗(1))
= (ql)∗p∗l p

∗
l−1⋯p∗k+1(�k)∗(1)

= �∗�il (��il )∗(ql−1)∗p
∗
l−1⋯p∗k+1(�k)∗(1)

= (�∗�il (��il )∗)(�
∗
�il−1

(��il−1 )∗)⋯ (�∗�ik+1 (��ik+1 )∗)(qk)∗(�k)∗(1)

= AilAil−1⋯Aik+1(qk−1)∗(1)
= AilAil−1⋯Aik+1Aik−1⋯Ai1(pte) = AIrevk

(pte).

�

To compute (qI)∗(�L) for general L ⊂ [l], we need the following lemma.

Lemma 5.3. For any L ⊂ [l], we have

�L =
∑

L1⊂[l]

aL,L1
xI,L1

j∗(fL1),

where aL,L1 are de�ned in Theorem 4.3. Note that the coe�cients in this formula
belong to Q ∶= S[ 1

x�
|� ∈ Σ].

Proof. By Corollary 4.4, we know that j∗(�L) becomes a basis of Q ⊗S ℎT(W).
In other words, j∗ induces an isomorphism

j∗ ∶ Q⊗S ℎT(X̂I)→ Q⊗S ℎT(W).

Moreover, by Lemma 3.10, we know that j∗ is the inverse of the j∗ (after tensor-
ing with Q). Therefore, j∗(fL) is a Q-basis of Q⊗S ℎT(X̂I). Denote

�L =
∑

L1⊂[l]
bL,L1 j∗(fL1), bL,L1 ∈ Q.

Then by Theorem 4.3 and Lemma 3.10, we have
∑

L2⊂Lc
aL,L2fL2 = j∗(�L) =

∑

L1⊂[l]
bL,L1 j

∗j∗(fL1) =
∑

L1⊂[l]
bL,L1xI,L1fL1 .

Therefore, bL,L1 =
aL,L1
xI,L1

. �

The following is the main result of this section, which computes the push-
forward of �L to the cohomology of G∕B.
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Theorem 5.4. For any sequence I = (i1, ..., il), we have

i∗(qI)∗(�L) =
∑

L1⊂Lc

aL,L1 ⋅ v
L1(xΠ)

xI,L1
fvL1 , xΠ ∶=

∏

�<0
x� ∈ S.

Note that a priori the coe�cients of fvL1 belong to S.

Proof. Consider the following commutative diagram

X̂T
I

j //

q′

��

X̂I
qI
��

W i // G∕B.

Note that by de�nition, q′ maps the point corresponding to L ⊂ [l] to vL ∈ W.
Therefore,

(q′)∗(fL) = fvL ∈ ℎT(W).
Firstly, we have

i∗(qI)∗j∗(fL) = i∗i∗(q′)∗(fL) = i∗i∗(fvL) = vL(xΠ)fvL ,

where the last identity follows from [CZZ14, Corollary 6.4]. Consequently, by
Lemma 5.3, we have

i∗(qI)∗(�L) = i∗(qI)∗
∑

L1⊂Lc

aL,L1
xI,L1

j∗(fL1) =
∑

L1⊂Lc

aL,L1 ⋅ v
L1(xΠ)

xI,L1
fvL1 .

�

Remark 5.5. In case �L = �∅ or �k, as in Proposition 5.1 and Theorem 5.2, one
can express (qI)∗(�L) as the operators Ai applied on pte. By using the method
of formal a�ne Demazure algebra, started in [KK86, KK90] and continued in
[CZZ12, CZZ19, CZZ14], one will obtain a restriction formula of i∗(qI)∗(�L).
Roughly speaking, there is an algebraDF generated by algebraic analogue of the
push-pull operators Ai, whose dual is isomorphic to ℎT(G∕B). The algebra DF
acts on ℎT(G∕B), via two actions (denoted by ∙ and⊙ in [LZZ16]). Both actions
will give restriction formulas of AI(pte). Indeed, by using the two actions, one
will obtain two di�erent, but equivalent formulas, one of which coincides with
the one given by Theorem 5.4.

Corollary 5.6. Let I be any sequence of length l. For any L ⊂ [l], denote by
X̂L = (X̂I)L and qL ∶ X̂L → G∕B. Then (qI)∗(�L) = (qLc)∗(1).

Proof. From Theorem 5.4 we have

i∗(qI)∗(�L) =
∑

L1⊂Lc

aL,L1
∏

�<0 v
L1(x�)

xI,L1
fvL1 , (20)
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i∗(qLc)∗(1) =
∑

L1⊂Lc

∏
�<0 v

L1(x�)
xLc ,L1

fvL1 . (21)

By de�nition

xI,L1 =
∏

j∈I
vL1j (x−�ij ), xLc ,L1 =

∏

j∈Lc
vL1j (x−�ij ), aL,L1 =

∏

j∈L
vL1j−1(x−�ij ).

Since L ∩ L1 = ∅, so for any j ∈ L, vL1j = vL1j−1, and we have

xI,L1 =
∏

j∈Lc
vL1j (x−�ij )

∏

j∈L
vL1j (x−�ij )

=
∏

j∈Lc
vL1j (x−�ij )

∏

j∈L
vL1j−1(x−�ij )

= xLc ,L1aL,L1 .

Therefore, i∗(qI)∗(�L) = i∗(qLc)∗(1). By [CZZ14, Theorem 8.2], we know i∗ is
injective. So (qI)∗(�L) = (qLc)∗(1). �

Remark 5.7. This corollary shows that for any L ⊂ [l], the class in ℎT(G∕B)
determined by �L coincides with the Bott-Samelson class determined by I|Lc ,
in other words, for the class �L, the minimal parabolic subgroups Pij , j ∈ L are
‘omitted’.

By using this result, we can derive the Chevalley formula for equivariant ori-
ented cohomology. For each w ∈ W, we �x a reduced sequence Iw, then the
Bott-Samelson class �Iw is de�ned to be the push-forward class along the map
qIw ∶ X̂Iw → G∕B, i.e., �Iw = (qIw )∗(1). It is proved in [CZZ14, Proposition 8.1]
that {�Iw |w ∈ W} is a basis of ℎT(G∕B). Denote the characteristic maps from
ℎT(pt) to G∕B and to X̂Iw by c′ and cIw , respectively. By de�nition, cIw = q∗Iwc

′.

Corollary 5.8 (Chevalley Formula). For any u ∈ ℎT(pt), we have

c′(u) ⋅ �w =
∑

L⊂[l(w)]
�I,L(u)�Lc ,

where �Lc = (qLc)∗(1) and �I,L(u) was de�ned in Lemma 3.3.

Proof. We have

(qIw )∗(cIw (u)) = (qIw )∗(cIw (u) ⋅ 1) = (qIw )∗(q
∗
Iw
(c′(u)) ⋅ 1) = c′(u)�Iw ,

where the last identity follows from the projection formula. Then Lemma 3.3
and Corollary 5.6 imply that

(qIw )∗(cIw (u)) =
∑

L⊂[l(w)]
�Iw ,L(u)(qIw )∗(�L)

=
∑

L⊂[l(w)]
�Iw ,L(u)(qLc)∗(1)
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=
∑

L⊂[l(w)]
�Iw ,L(u)�Lc .

The conclusion then follows. �
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