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Potential density of projective varieties
having an int-ampli�ed endomorphism

Jia Jia, Takahiro Shibata and De-Qi Zhang

Abstract. We consider the potential density of rational points on an alge-
braic variety de�ned over a number �eld K, i.e., the property that the set of
rational points of X becomes Zariski dense after a �nite �eld extension of K.
For a non-uniruled projective variety with an int-ampli�ed endomorphism,
we show that it always satis�es potential density. When a rationally connected
variety admits an int-ampli�ed endomorphism, we prove that there exists
some rational curve with a Zariski dense forward orbit, assuming the Zariski
dense orbit conjecture in lower dimensions. As an application, we prove the
potential density for projective varieties with int-ampli�ed endomorphisms in
dimension ≤ 3. We also study the existence of densely many rational points
with the maximal arithmetic degree over a su�ciently large number �eld.
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1. Introduction
Let K be a number �eld with a �xed algebraic closure K. Given a variety

X over K, we are interested in the set of K-rational points X(K) of X. More
speci�cally, we study the potential density of varieties over K.

De�nition 1.1. A variety X de�ned over a number �eld K is said to satisfy
potential density if there is a �nite �eld extension K ⊆ L such that XL(L) is
Zariski dense in XL, where XL ∶= X ×SpecK SpecL.
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The potential density of varieties over number �elds has been investigated in
several papers. The potential density problem is attractive because the potential
density of a variety is pretty much governed by its geometry. See [Cam04]
for a conjecture characterising varieties satisfying potential density. However,
algebraic varieties for which the potential density is veri�ed are very few. See
[Has03] for a survey of studies on the potential density problem.

In this paper, we �rst study the potential density of varieties admitting int-
ampli�ed endomorphisms. For the de�nition of int-ampli�ed endomorphisms,
see 2.1(11). Recently, the equivariant minimal model program for varieties with
int-ampli�ed endomorphisms was established (cf. [MZ20]). It has been used to
study arithmetic-dynamical problems (cf. [MY19], [MMSZ20]). It turns out that
the equivariant minimal model program is also useful for the potential density
problem.

Our main conjecture is the following.

Conjecture 1.2 (Potential density under int-ampli�ed endomorphisms). Let X
be a projective variety de�ned over a number �eld K. Suppose that X admits an
int-ampli�ed endomorphism. Then X satis�es potential density.

The endomorphism being int-ampli�ed is a crucial assumption in Conjec-
ture 1.2 above. Indeed, consider X = X1 × C where X1 is any smooth projective
variety and C is any smooth projective curve of genus at least 2. Such X does not
satisfy potential density (cf. Remark 1.4(2)). It does not have any int-ampli�ed
endomorphisms either; this is because every surjective endomorphism f of
X, after iteration, has the form (x1, x2) ↦ (g(x1, x2), x2) for some morphism
g∶ X1 × C ⟶ X1 by [San20, Lemma 4.5], and hence descends to the identity
map idC on C via the natural projection X ⟶ C; thus, the iteration and hence
f itself are not int-ampli�ed (cf. [Men20, Lemma 3.7 and Theorem 1.1]).

One might think that Conjecture 1.2 is too strong. In fact, the following even
stronger conjecture has already been long outstanding. We refer to Medvedev–
Scanlon [MS14, Conjecture 7.13], and Amerik–Bogomolov–Rovinsky [ABR11]
for the details.

Conjecture 1.3 (Zariski dense orbit conjecture). Let X be a variety de�ned over
an algebraically closed �eld k of characteristic zero and f∶ X ⤏ X a dominant
rational map. If the f∗-invariant function �eld k(X)f is trivial, that is, k(X)f = k,
then there exists somex ∈ X(k)whose (forward)f-orbitOf(x) ∶= {fn(x) ∣ n ≥ 0}
is well-de�ned (i.e., f is de�ned at fn(x) for any n ≥ 0) and Zariski dense in X.

Note that Conjecture 1.3 with f being int-ampli�ed implies Conjecture 1.2
(cf. Lemmas 2.2 and 2.3).

Remark 1.4. We recall some known cases of the potential density problem and
Conjecture 1.3.
(1) Unirational varieties and abelian varieties over number �elds satisfy poten-

tial density (cf. [Has03, Corollary 3.3 and Proposition 4.2]).
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(2) Let X be a variety with a dominant rational map X ⤏ C to a curve of
genus ≥ 2 over a number �eld. Then X does not satisfy potential density
(cf. [Fal83] and [Has03, Proposition 3.1]).

(3) Conjecture 1.3 holds for any pair (X, f) with X being a curve (cf. [Ame11,
Corollary 9]).

(4) Conjecture 1.3 holds for any pair (X, f) with X being a projective surface
and f a surjective endomorphism of X (cf. [Xie19], [JXZ20]).

We �rst prove Conjecture 1.2 for rationally connected varieties in dimension
≤ 3.

Proposition 1.5. Let X be a rationally connected projective variety over the num-
ber �eldK. Suppose thatdimX ≤ 3 andX admits an int-ampli�ed endomorphism.
Then X satis�es potential density.

Conjecture 1.2 also has a positive answer for non-uniruled varieties in any
dimension:

Proposition 1.6. Let X be a non-uniruled projective variety over the number
�eld K. Suppose that X admits an int-ampli�ed endomorphism. Then X satis�es
potential density.

With the help of Propositions 1.5 and 1.6, we are able to show:

Theorem 1.7. Let X be a normal projective variety over the number �eld K with
at worstℚ-factorial klt singularities. Suppose that dimX ≤ 3 and X admits an
int-ampli�ed endomorphism. Then X satis�es potential density.

In the last section, we study Question 1.9 below, which is also arithmetic in
nature, initiated in [KS14] and further studied in [SS20] and [SS21].

De�nition 1.8 (cf. [SS20, De�nition 1.4]). Let X be a projective variety over a
number �eldK and f∶ X ⟶ X a surjectivemorphism. We recall the inequality

�f(x) ≤ d1(f)

between the arithmetic degree �f(x) at a point x ∈ X(K) and the �rst dynamical
degreed1(f) off (cf. 2.1(12) and (13)). LetL be an intermediate �eld: K ⊆ L ⊆ K.
We say that (X, f)has denselymanyL-rational points with themaximal arithmetic
degree if there is a subset S ⊆ X(L) satisfying the following conditions:

(1) S is Zariski dense in XL;
(2) the equality �f(x) = d1(f) holds for all x ∈ S; and
(3) Of(x1) ∩ Of(x2) = ∅ for any pair of distinct points x1, x2 ∈ S.
Following [SS21], we introduce the following notation. We say that (X, f)

satis�es (DR)L if (X, f) has densely many L-rational points with the maximal
arithmetic degree. We say that (X, f) satis�es (DR) if there is a �nite �eld
extension K ⊆ L (⊆ K) such that (X, f) satis�es (DR)L.
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Question 1.9. Let X be a projective variety over K and f∶ X ⟶ X a surjective
endomorphism. Assume that X satis�es potential density. Does (X, f) satisfy
(DR)?

Question 1.9 has a positive answer for smooth projective surfaces when
d1(f) > 1 (cf. [SS21, Theorem 1.5]). We generalise it to (possibly singular)
projective surfaces:

Theorem 1.10. Let X be a normal projective surface over the number �eld K
satisfying potential density, and f∶ X ⟶ X a surjective morphism with d1(f) >
1. Then (X, f) satis�es (DR).

The following is an a�rmative answer to Question 1.9 for int-ampli�ed endo-
morphisms on rationally connected threefolds.

Theorem 1.11. Let X be a rationally connected smooth projective threefold over
the number �eldK andf∶ X ⟶ X an int-ampli�ed endomorphism. Then (X, f)
satis�es (DR).

Acknowledgements. The authors would like to thank the referee for very
careful reading and the suggestions to improve the paper. The �rst, second
and third authors are supported, from NUS, by the President’s scholarship, a
Research Fellowship and an ARF, respectively.

2. Preliminaries
2.1. Notation and terminology
(1) Let K be a number �eld. We work over K when considering the potential

density. We �x an algebraic closure K of K.
(2) Let k be an algebraically closed �eld of characteristic zero. We work over k

when considering geometric properties.
(3) A varietymeans a geometrically integral separated scheme of �nite type

over a �eld.
(4) LetX be a variety overK and f∶ X ⟶ X a morphism (overK). We denote

XK ∶= X ×SpecK SpecK and fK ∶ XK ⟶ XK the induced morphism (over
K).

(5) The symbol ∼ℝ denotes the ℝ-linear equivalence on Cartier divisors.
(6) We refer to [KM98] for de�nitions ofℚ-factoriality and klt singularities.
(7) A variety X of dimension n is uniruled if there is a variety U of dimension

n − 1 and a dominant rational map ℙ1 ×U ⤏ X.
(8) LetX be a proper variety over a �eld k. We say thatX is rationally connected

if there is a family of proper algebraic curves U ⟶ Y whose geometric
�bres are irreducible rational curves with cycle morphism U ⟶ X such
thatU×YU ⟶ X×X is dominant (cf. [Kol96, Chapter IV, De�nition 3.2]).
When k is algebraically closed of characteristic zero, if X is rationally con-
nected, then any two closed points of X are connected by an irreducible
rational curve over k (by applying [Kol96, Chapter IV, Theorem 3.9] to a
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resolution ofX). The converse holds when k is also uncountable (cf. [Kol96,
Chapter IV, Proposition 3.6.2]).

(9) A normal projective variety X is said to be Q-abelian if there is a �nite
surjective morphism �∶ A⟶ X, which is étale in codimension 1, with A
being an abelian variety.

(10) For a morphism f∶ X ⟶ X and a point x ∈ X, the forward f-orbit of
x is the set Of(x) ∶= {x, f(x), f2(x),…}. We denote the Zariski closure
of Of(x) by Zf(x). More generally, for a closed subset Y ⊆ X, we denote
Of(Y) ∶=

⋃∞
n=0 f

n(Y) and its Zariski-closure Zf(Y) ∶= Of(Y). We say
that Of(Y) is Zariski dense if Zf(Y) = X.

(11) A surjective morphism f∶ X ⟶ X of a projective variety is called int-
ampli�ed if there exists an ample Cartier divisorH onX such that f∗H−H
is ample. In particular, polarised endomorphisms are int-ampli�ed.

(12) Let X be a projective variety and f∶ X ⟶ X a surjective morphism. The
�rst dynamical degree d1(f) of f is the limit

d1(f) ∶= lim
n→∞

((fn)∗H ⋅HdimX−1)1∕n,

where H is an ample Cartier divisor on X. This limit always converges
and is independent of the choice of H (cf. [DS05]). Dynamical degrees
are invariant under the conjugation by generically �nite maps (cf. [Zha09,
Lemma 2.6]).

(13) LetX be a projective variety overK and f∶ X ⟶ X a surjective morphism.
Fix a (logarithmic) height function ℎH ≥ 1 associated to an ample Cartier
divisorH on X. For x ∈ X(K), the arithmetic degree �f(x) of f at x is the
limit

�f(x) ∶= lim
n→∞

ℎH(fn(x))1∕n.

This limit always converges and is independent of the choices ofH and ℎH
(cf. [KS16]).

Lemma2.2. LetX be a projective variety overk andf∶ X ⟶ X an int-ampli�ed
endomorphism. Then k(X)f = k. In particular, if Conjecture 1.3 holds for (X, f),
then there exists some x ∈ X(k) such that Of(x) is Zariski dense in X.

Proof. Assume to the contrary that there is a nonconstant rational function
�∶ X ⤏ ℙ1 such that �◦f = �. Let Γ be the graph of the rational map �∶ X ⤏
ℙ1 with projections �1∶ Γ ⟶ X being birational and �2∶ Γ ⟶ ℙ1 being
surjective. Then f lifts to an endomorphism f|Γ on Γ such that �1◦f|Γ = f◦�1
and �2◦f|Γ = �2. It follows from [Men20, Lemmas 3.4 and 3.5] that id∶ ℙ1 ⟶
ℙ1 is int-ampli�ed, which is absurd. �

Lemma 2.3. Let X be a projective variety over K, f∶ X ⟶ X a surjective mor-
phism, and Z ⊆ X a subvariety which satis�es potential density (e.g., Z is an
abelian variety or unirational; see Remark 1.4(1)). If Of(Z) is Zariski dense, then
X satis�es potential density.
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Proof. Replacing K with a �nite extension, we may assume that Z(K) is Zariski
dense in Z. Then the union

⋃∞
n=0 f

n(Z(K)) is a Zariski dense set of K-rational
points of X. �

3. Rationally connected varieties: Proof of Proposition 1.5
Lemma 3.1. Let X be a rationally connected projective variety over k and of
dimension d ≥ 1, and f∶ X ⟶ X an int-ampli�ed endomorphism. Assume
Conjecture 1.3 in dimension ≤ d − 1. Then there is a rational curve C ⊆ X such
that Of(C) is Zariski dense.

Proof. If we have a Zariski dense f-orbit Of(x), take any rational curve C
passing through x. Clearly, Of(C) is Zariski dense. So we may assume that f
has no Zariski dense orbit.

Replacing f by some positive power, we can take a point x ∈ X(k) such
that Zf(x) is irreducible with dimension r < d (cf. e.g. [MMSZ20, Lemma 2.7]).
By [Fak03, Theorem 5.1], the subset of X(k) consisting of f-periodic points is
Zariski dense in X. Pick an f-periodic point y ∈ X(k) ⧵Zf(x). After iterating f,
wemay assume that y is anf-�xed point. Take a rational curveC ⊆ X containing
x and y. Set W ∶= Zf(C). If W = X, we are done. So we may assume that
W ⊊ X. If dimW = r, then W has its irreducible decomposition as W =
Zf(x) ∪W1 ∪⋯∪Wm. There is some n ≥ 0 such that fn(x) ∈ Zf(x) ⧵

⋃m
i=1Wi.

Then fn(C) ⊆ W but fn(C) ⊈ ⋃m
i=1Wi. Hence fn(C) ⊆ Zf(x). In particular,

y = fn(y) ∈ fn(C) ⊆ Zf(x), a contradiction. Thus r < dimW (< dimX = d).
Now there exists an f-periodic irreducible component W′ ⊆ W with r <

dimW′ < d. Replacing f by a positive power, we may assume that W′ is f-
invariant. Then f|W′ is an int-ampli�ed endomorphism on W′ (cf. [Men20,
Lemma 2.2]). By assumption, Conjecture 1.3 holds for (W′, f|W′). So there
exists some w ∈W′(k) such that Zf(w) = Zf|W′ (w) =W′ (cf. Lemma 2.2). In
particular, Zf(w) is irreducible with dimZf(w) > r. Continuing this process,
the lemma follows. �

Corollary 3.2. Let X be a rationally connected projective variety over k and of
dimension ≤ 3, and f∶ X ⟶ X an int-ampli�ed endomorphism. Then there is
a rational curve C ⊆ X such that Of(C) is Zariski dense.

Proof. This follows from Remark 1.4(3), (4), and Lemma 3.1. �

Proof of Proposition 1.5. By applying Corollary 3.2 to (XK , fK), we know that
there is a rational curve C ⊆ XK such that OfK (C) is Zariski dense. Replacing K
with a �nite extension, we may assume that C is de�ned over K. Then Of(C) is
Zariski dense in X. The theorem follows from Lemma 2.3. �
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4. Int-ampli�ed endomorphisms: Proofs of Proposition 1.6 and
Theorem 1.7

Lemma 4.1. (cf. [Men20, Theorem 1.9]) Let X be a normal projective variety
over k and f∶ X ⟶ X an int-ampli�ed endomorphism. Assume one of the
following conditions.

(i) X is non-uniruled.
(ii) X has at worstℚ-factorial klt singularities, and KX is pseudo-e�ective, i.e.,

KX is in the closure of the cone of e�ectiveℝ-divisors.
Then X is a Q-abelian variety. In particular, f has a Zariski dense orbit.

Proof. The �rst claim is [Men20, Theorem 1.9]. Now there is a �nite cover
�∶ A⟶ X (étale in codimension 1) from an abelian variety A with f lifted to
an int-ampli�ed endomorphism g on A (cf. [NZ10, Lemma 2.12] and [Men20,
Lemma 3.5]). Since Conjecture 1.3 holds for endomorphisms on abelian varieties
(cf. [GS16]), g has a Zariski dense orbitOg(a) for some a ∈ A(k) (cf. Lemma 2.2).
Then Of(�(a)) is a Zariski dense orbit of f. �

Lemma 4.2. Let X be a normal projective variety over k and of dimension ≤ 3
with at worst ℚ-factorial klt singularities. Let f∶ X ⟶ X be an int-ampli�ed
endomorphism. Then there exists a rational subvariety Z ⊆ X of dimension ≥ 0,
such that Of(Z) is Zariski dense.

Proof. ByRemark 1.4(3), (4), and Lemma2.2, the assertion holdswhen dimX ≤
2. Then by Corollary 3.2 and Lemma 4.1, we may assume that X is a threefold
that is uniruled but not rationally connected, and KX is not pseudo-e�ective.

By [MZ20], replacing f with an iteration, we can run an f-equivariant mini-
mal model program:

X = X0
�0 // X1

�1 //⋯ �m−1 // Xm = X′ � // Y,

where each �i is a birational map and � is a Mori �bre space with dimY <
dimX′ = 3. If dimY = 0, then X′ is klt Fano. Hence X′ and X are rationally
connected (cf. [Zha06, Theorem 1]), contradicting our extra assumption. Thus
dimY = 1, 2. Since dimY ≤ 2, the int-ampli�ed endomorphism g ∶= f|Y has
a Zariski dense orbit Og(y) by Remark 1.4(3), (4) and Lemma 2.2 (cf. [Men20,
Lemmas 3.4 and 3.5]). A general �bre of � is a klt Fano variety with dimension
dimX − dimY (cf. [KM98, Lemma 5.17(1)]). So, replacing y by gN(y) for a
suitable N ≥ 0, we may assume that F ∶= �−1(y) is a klt Fano variety of
dimension equal to dimX−dimY ∈ {1, 2}, and hence a rational variety. Clearly,
Of(F̃) is Zariski dense in X by construction, where F̃ ⊆ X is the strict transform
of F ⊆ X′. �

Proof of Proposition 1.6. Since being uniruled and the potential density are
birational properties (cf. 2.1(7) and [Has03, Proposition 3.1]), they are invari-
ant under the normalisation map. Also, since an int-ampli�ed endomorphism
on the variety X lifts to an int-ampli�ed endomorphism on its normalisation
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(cf. [Men20, Lemma 3.5]), we may assume that X is normal. Then the proposi-
tion follows from Lemmas 2.3 and 4.1. �

Proof of Theorem 1.7. This follows from Lemmas 2.3 and 4.2. �

5. The maximal arithmetic degree: Proofs of Theorems 1.10 and
1.11
In this section, we study Question 1.9. We �rst prepare some results and then

we prove Theorem 1.10. We begin with:

Lemma 5.1. Let X,Y be normal projective varieties over K, and f∶ X ⟶ X
and g∶ Y ⟶ Y surjective endomorphisms. Assume that there is a surjective
morphism �∶ X ⟶ Y such that �◦f = g◦�. Then we have:

(1) If � is generically �nite and (X, f) satis�es (DR), then (Y, g) also satis�es
(DR).

(2) Suppose � is birational. Then (X, f) satis�es (DR) if and only if so does
(Y, g).

Proof. Assume �rst that � is generically �nite. Let X
�′
,,→ X′ '

,→ Y be the
Stein factorisation of �, where �′ is a projective morphism with connected
�bres (indeed, �′∗OX ≃ OX′) to a normal variety X′, and ' is a �nite morphism
(cf. [Har77, Chapter III, Corollary 11.5]). Since �◦f = g◦� and ' is �nite, we
see that �′◦f contracts every �bre of �′. By the rigidity lemma (cf. [Deb01,
Lemma 1.15]), there is a morphism f′∶ X′ ⟶ X′ such that �′◦f = f′◦�′ and
'◦f′ = g◦�. By [SS21, Lemma 3.2], for (1), we only need to show that (X′, f′)
satis�es (DR), which can be deduced from (2); for (2), we only need to show
that if (X, f) satis�es (DR), then so does (Y, g).

Let Σ ⊆ Y be the subset consisting of points y such that dim�−1(y) > 0,
and E ∶= �−1(Σ) ⊆ X, which is a closed proper subset. Since � has connected
�bres by Zariski’s Main Theorem (cf. [Har77, Chapter III, Corollary 11.4]),
�|X⧵E ∶ X⧵E ⟶ Y⧵Σ is an isomorphism. Since g is �nite, both Σ andY⧵Σ are
g−1-invariant. There is an induced surjective morphism f|X⧵E ∶ X⧵E ⟶ X⧵E
such that �|X⧵E◦f|X⧵E = g|Y⧵Σ◦�|X⧵E . Let L be a �nite �eld extension of K
such that (X, f) satis�es (DR)L. Then there exists a sequence of L-rational points
SX = {xi}∞i=1 ⊆ X(L) ⧵ E such that

(i) SX is Zariski dense in XL;
(ii) �f(xi) = d1(f) for all i; and
(iii) Of(xi) ∩ Of(xj) = ∅ for i ≠ j.

Thus yi ∶= �(xi) is well-de�ned and SY ∶= {yi}∞i=1 satis�es the conditions
of (DR)L for (Y, g); note that d1(f) = d1(g) and �f(xi) = �g(yi) (cf. [Sil17,
Lemma 3.2] in the smooth case, or [MMSZ20, Lemma 2.8] in general). �

We need the following from [SS20].
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Lemma 5.2 (cf. [SS20, Theorem 4.1]). Let X be a projective variety over K and
f∶ X ⟶ X a surjective morphism with d1(f) > 1. Assume the following condi-
tion:
(†) There is a numerically non-zero nefℝ-Cartier divisor D on X such that
f∗D ∼ℝ d1(f)D, and for any proper closed subset Y ⊆ XK , there exists a

morphism g∶ ℙ1K ⟶ X such that g(ℙ1K) ⊈ Y and g∗D is ample.
Then (X, f) satis�es (DR)K .

We also need the following structure theorem of endomorphisms.

Proposition 5.3 (cf. [JXZ20, Theorem1.1]). Letf∶ X ⟶ X be anon-isomorphic
surjective endomorphism of a normal projective surface over k. Then, replacing f
with a positive power, one of the following holds.

(i) �(X) = 2; there is a ℙ1-�bration X ⟶ C to a smooth projective curve of
genus≥ 1, and f descends to an automorphism of �nite order on the curve
C.

(ii) f lifts to an endomorphism f|V on a smooth projective surface V via a
generically �nite surjective morphism V ⟶ X.

(iii) X is a rational surface.

Proof. We use [JXZ20, Theorem 1.1]. Cases (1), (3) and (8) imply our (ii). Cases
(4)∼ (7) and (9) lead to our (iii). Case (2) implies our (i), noting that f cannot be
polarised since it descends to an automorphism and hence �(X) = 2 by [MZ19,
Theorem 5.4]. �

Proof of Theorem 1.10. When f is an automorphism, we may take an equi-
variant resolution of (X, f) and assume that X is smooth (cf. Lemma 5.1). In
this case, the theorem follows from [SS21, Theorem 1.5].

Now we assume that deg(f) ≥ 2. We apply Proposition 5.3 to (XK , fK)
(cf. [SS21, Lemma 3.3]). In either case, we may replace K with a �nite �eld
extension so that the varieties and morphisms are de�ned over K.

In Case 5.3(ii), the theorem follows from Lemma 5.1 and [SS21, Theorem 1.5].
In Case 5.3(iii), the theorem is a consequence of [SS20, Theorem 1.11].

In Case 5.3(i), we may assume g(C) = 1; otherwise, X does not satisfy poten-
tial density (cf. Remark 1.4(2)). Note that �∶ X ⟶ C has a section S over K
(the classical Tsen’s theorem). After replacing K by a �nite extension, we may
assume that S is de�ned over K. Let F be a general �bre of �, which is a rational
curve over K since � is a ℙ1-�bration. Replacing K by a �nite extension, we
may assume that F is de�ned over K. Then S intersects F at a K-rational point.
Hence F ≃ ℙ1 over K. By [MMSZZ21, Theorem 6.4], there is a numerically
non-zero nef ℝ-Cartier divisor D on X such that f∗D ∼ℝ d1(f)D, after possibly
replacing K with a �nite �eld extension. The numerical equivalence class of
D is not a multiple of that of the �bre F since f∗F ∼ℝ F and d1(f) > 1. Then
(D ⋅ F) > 0, by the Hodge index theorem. Thus, (X, f) satis�es the condition
(†) in Lemma 5.2 and hence satis�es (DR). �
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Before proving Theorem 1.11, we need a stronger version of Corollary 3.2 in
dimension 3.

Lemma 5.4. Let X be a rationally connected smooth projective threefold over
k and f∶ X ⟶ X an int-ampli�ed endomorphism. Let D be a numerically
non-zero nef ℝ-Cartier divisor on X. Then there is a rational curve C ⊆ X such
that Of(C) is Zariski dense and (D ⋅ C) > 0.

Proof. By [Yos21, Corollary 1.4], X is of Fano type. Then there is a surjective
morphism �∶ X ⟶ Y to a projective variety Y such that D ∼ℝ �∗H for some
ample ℝ-divisor on Y by [Bir10, Theorem 3.9.1].

If f has a Zariski dense orbit Of(x), then there is a rational curve passing
through x (such a curve exists since X is rationally connected) and satisfying
the claims. So we may assume that f has no Zariski dense orbit.

Since Conjecture 1.3 is known for surfaces (cf. [JXZ20, Theorem 1.9]), we
can take a point x0 ∈ X such that dimZf(x0) = 2 (cf. Proof of Lemma 3.1).
Replacing f by a power and x0 by fN(x0) for some integer N ≥ 0, we may
assume that Zf(x0) is irreducible. We can take an f-periodic point x1 ∈ X such
that x1 ∉ Zf(x0) ∪ �−1(�(x0)) since the set of f-periodic points is Zariski dense
in X (cf. [Fak03, Theorem 5.1]). Take a rational curve C ⊆ X containing x0, x1.
We see that Of(C) is Zariski dense as in the proof of Lemma 3.1. Now �(C) is
not a point by construction, so

(D ⋅ C) = (�∗H ⋅ C) = (H ⋅ �∗C) > 0.

Thus C satis�es the claims. �

Proof of Theorem 1.11. By [MMSZZ21, Theorem 6.4], replacing K by a �nite
extension, there is a numerically non-zero nefℝ-Cartier divisorD onX such that
f∗D ∼ℝ d1(f)D. Lemma 5.4 implies that, replacing K with a �nite extension so
that the curve C there (and f) are de�ned over K, the pair (X, f) satis�es (†) in
Lemma 5.2. Hence (X, f) satis�es (DR). �
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