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Minimal genus Seifert surfaces for
alternating links

Jessica E. Banks

Abstract. We give a complete proof of results announced by Hirasawa and
Sakuma describing explicitly the Kakimizu complex of a non-split, prime,
special alternating link.
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1. Introduction
The Kakimizu complex of a link records the structure of the set of minimal

genus Seifert surfaces for the link. For a non-split, alternating link, the defi-
nition is analogous to that of the complex of curves of a compact, orientable
surface.

Definition 1.1 ([6] p225). For a non-split, alternating link 𝐿, the Kakimizu
complex MS(𝐿) of 𝐿 is a simplicial complex, the vertices of which are the am-
bient isotopy classes of minimal genus Seifert surfaces for 𝐿. Distinct vertices
𝑅0,… , 𝑅𝑛 span an 𝑛–simplex exactly when they can be realised disjointly.

Definition 1.2. A metric is defined on the vertices of MS(𝐿). The distance
between two vertices is the distance in the 1–skeleton of MS(𝐿) when every
edge has length 1.
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The Kakimizu complex can be defined for links in general, but not using
this form of the definition. It has been calculated explicitly in certain simple
cases (see, for example, [7]). However, doing so in general is complicated by the
difficulty of controlling themultiple surfaces that form the vertices of a simplex.
One way in which we might hope to do so is by expressing these surfaces in
terms of a diagram for 𝐿. With this in mind, alternating links are a natural
class to study, as applying Seifert’s algorithm to any alternating diagram gives
a minimal genus Seifert surface ([4] Theorem 4). In particular, the subclass of
special alternating links is very well behaved.

Definition 1.3. A special link diagram 𝐷 is one in which every Seifert circle
is innermost in 𝕊2. This determines a division of the regions of 𝐷 into black
regions (those which make up the Seifert surface given by Seifert’s algorithm)
and white regions. Thus the surface given by applying Seifert’s algorithm to 𝐷
is always uniquely defined.

In [5]Hirasawa and Sakuma give a complete description ofMS(𝐿) for a prime
link 𝐿 with a reduced, special alternating diagram 𝐷 via the following result.
The definition of the complex𝒦(𝐷) is given in Section 2.

Theorem 1.4 ([5] Theorems 1.5, 1.1). There is a natural isomorphism between
MS(𝐿) and𝒦(𝐷). In particular, every minimal genus Seifert surface for 𝐿 is given
by applying Seifert’s algorithm to some special alternating diagram for 𝐿.

From this they deduce contractibility ofMS(𝐿) for such links 𝐿, through the
following.

Theorem 1.5 ([5] Theorem 1.6). If 𝐿 is a prime link with a special alternating
diagram𝐷 thenMS(𝐿) is homeomorphic to a disc, the dimension of which can be
calculated from 𝐷.

Only ‘the idea of the proof’ of these theorems is included in [5]. In [13] it says
the following.

[Sakuma] proves the contractibility ofMS(𝐾) when 𝐾 is a spe-
cial arborescent link. In his joint paper with Hirasawa [[5]],
contractibility when 𝐾 is a prime, special, alternating link is
announced. Together, this partially verifies a challenging con-
jecture of Kakimizu’s, asserting among other things thatMS(𝐾)
is always contractible.

The question of the contractibility of the Kakimizu complex for a general
link has been answered by the following theorem of Przytycki and Schultens.

Theorem1.6 ([11] Theorem1.1). TheKakimizu complex of a link is contractible.

Here we provide a full proof of the results of [5], with a view to determining
MS(𝐿) for a general alternating link 𝐿. Theorem 1.6 is needed in this proof.
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1.1. Overview. Since the statement of the main result of this paper and its
proof are both technical in nature, here we will take a quick tour of the main
principles.
When dealing with diagrams of prime, alternating links, the Tait Flyping

Conjecture tells us that ‘everything is flypes’:

Theorem 1.7 ([9]). Any two reduced, alternating diagrams of the same prime
link differ by a sequence of flypes.

We therefore need to start from the questions ‘which crossings could be used
for flypes?’ and ‘where could there be crossings after doing flypes?’. Answer-
ing these questions is straight-forward, although simpler in practice than when
described in the abstract.
From each reduced, special alternating diagram𝐷 for a prime link 𝐿, we can

construct aminimal genus Seifert surface. The first thing that Theorem 1.4 tells
us is that this process produces all possible minimal genus Seifert surfaces for
𝐿. To show this, we need to start from a Seifert surface and use it to produce
instructions for a sequence of flypes to yield the corresponding diagram.

Remark 1.8. There is a subtlety to counting ‘diagrams’ when the link has sym-
metry. For example, the knot 74 has two minimal genus Seifert surfaces, given
by two diagrams that differ by a flype. However, the two diagrams look the
same as each other.

Having produced this list of surfaces, the next task is to eliminate duplicates
(up to isotopy). There are cases where it is easy to see that performing a partic-
ular combination of flypes gives the same surface as a result. If the flype circle
is in the white regions of the diagram where it passes through the flype cross-
ing (as in Figure 3c) then the flype simply turns over part of the Seifert surface.
Therefore only flype circles as in Figure 3d are of interest. In addition, the sur-
face is unchanged up to isotopy if the flype circle encloses only a line of white
bigons (as in Figure 1).

Figure 1

Perhaps the most intuitive interpretation of Theorem 1.4 is that there are no
other, ‘hidden’ pairs of equivalent surfaces. However, the theorem also gives
us information about exactly which collections of surfaces can be realised dis-
jointly. This could be thought of as establishing which combinations of flypes
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are ‘compatible’. Roughly speaking, the answer to this is that you canmove one
crossing from each flype-equivalence-class, so long as youmove them all in the
‘same direction’. The definition of the simplicial complex𝒦(𝐷), as given in [5],
encodes the precise details.
The proof that the definition is correct works by showing that𝒦(𝐷) is a cov-

ering space ofMS(𝐿). Since Theorem 1.6 tells us thatMS(𝐿) is contractible, the
covering map is a homeomorphism. To establish this we show firstly that the
map is surjective on the vertices, secondly that the diagrams for two adjacent
vertices do not give isotopic Seifert surfaces, and thirdly that the diagrams for
vertices at distance 2 from each other do not give isotopic Seifert surfaces. Prov-
ing that two surfaces cannot be isotoped to be disjoint involves first positioning
one surface in a ‘minimal position’ relative to the other, and then verifying that
none of the complementary regions in the link complement are ‘product re-
gions’ (which would enable further simplification).

This paper is organised as follows. In Section 2 we recall the definition of
𝒦(𝐷) from [5]. In Section 3 we define a method for describing minimal genus
Seifert surfaces relative to an alternating diagram. This enables us to compare
surfaces given by different diagrams. Section 4 addresses Theorem 1.1 of [5],
and Section 5 extends this to a proof of [5] Theorem 1.5. In Section 6 we prove
Theorem 1.2 of [5], which gives two families of examples showing that we can-
not remove the adjective ‘special’ from the hypotheses of Theorem 1.4. Finally,
in Section 7 we complete the verification that the Kakimizu complex is home-
omorphic to a disc for prime, special alternating links.
I wish to thank Marc Lackenby for helpful conversations and encourage-

ment. I am also grateful to RichardWebb and JacobRasmussen, throughwhom
I learned of [5].

2. The paper of Hirasawa–Sakuma
There are a number of definitions we will need from [5]. We will change

some of the notation and terminology. Throughout this paper wewill only con-
sider non-split, oriented links.

Let𝐿 be a prime linkwith a reduced, special alternating diagram𝐷. Consider
the planar graph 𝒢 that has a vertex in each black region and an edge through
each crossing of 𝐷. Note that 𝒢 contains no loops. It may be that distinct edges
𝑒, 𝑒′ ∈ E(𝒢) bound a bigon region of 𝕊2 ⧵ 𝒢. If this occurs, remove one of 𝑒, 𝑒′.
Repeat this until 𝕊2 ⧵ 𝒢 has no bigon regions.
Suppose there exists a simple closed curve 𝜌 in 𝕊2 such that 𝜌 consists of an

edge 𝑒 of 𝒢 together with an arc 𝜌′ that only meets 𝒢 at its endpoints and such
that 𝕊2 ⧵ (𝒢 ∪ 𝜌′) has no bigon regions. Add a new edge to 𝒢 along 𝜌′. Repeat
this as many times as possible. Since any two such arcs 𝜌′ can be made disjoint
on their interiors, the result of this process is well-defined given 𝐷.

Definition 2.1. Define 𝐺ℱ(𝐷) to be the graph that results from this process.
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Figure 2 shows a digram 𝐷𝛼 of a link 𝐿𝛼 together with the graph 𝐺ℱ(𝐷𝛼).

Figure 2

Definition 2.2. A flype circle 𝜙 is a simple closed curve in 𝕊2 that meets the
link diagram 𝐷 as shown in Figure 3a, where the tangles 𝐴 and 𝐵 each contain
at least one crossing. The flype circle 𝜙 determines a flype that changes 𝐷 to
another special alternating diagram of 𝐿, as shown in Figure 3b. This change
is realised by an isotopy of 𝕊3.

(a)

𝜙

(b)

(c) (d)

Figure 3

Let 𝜙 be a flype circle in 𝐷. Let 𝐷𝜙 be the diagram given by performing the
flype defined by 𝜙 on 𝐷. Let 𝑅, 𝑅𝜙 be the surfaces given by applying Seifert’s
algorithm to 𝐷,𝐷𝜙 respectively. Finally, let 𝑅′ be the preimage of 𝑅𝜙 under the
flype.

Definition 2.3. The flype circle 𝜙 is called inessential if 𝑅′ is ambient isotopic
to 𝑅, and essential otherwise.

If 𝜙 lies in the white regions of the diagram where it meets the crossing of 𝐷
(as in Figure 3c) then 𝜙 is inessential. From now on we will generally ignore
all such flype circles. That is, we assume that 𝜙 lies on the surface 𝑅 where it
meets the crossing (as in Figure 3d).
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Definition 2.4. We call the crossing through which 𝜙 passes the flype crossing,
and the arc of 𝜙 disjoint from 𝑅 the flype arc.

White bigons in a special alternating diagram signify plumbed onHopf bands
in the Seifert surface given by Seifert’s algorithm (see Lemma5.16). Because the
Hopf link is fibred, a flype that interchanges the two crossings of a white bigon
is inessential. Thus 𝜙 is inessential if the flype crossing and flype arc of 𝜙 differ
only by a line of white bigons. We will see later that the converse is also true.
If 𝜙 is essential, the flype crossing and flype arc correspond to distinct edges

𝑒, 𝑒′ of 𝐺ℱ(𝐷) with the same endpoints. We will also refer to the simple closed
curve 𝑒∪ 𝑒′ as the flype circle 𝜙, provided we retain knowledge of which edge is
the flype crossing and which the flype arc. Note that distinct flype circles 𝜙 and
𝜙′ in𝐷may give the same flype circle in𝐺ℱ(𝐷). In this case, the flype crossings
of 𝜙 and 𝜙′ differ by at most a line of white bigons, as do the flype arcs. Hence
the diagrams 𝐷𝜙 and 𝐷𝜙′ are the same.

Definition 2.5. Call such flype circles equivalent.

Definition 2.6. Let 𝑣, 𝑣′ ∈ V(𝐺ℱ(𝐷)) such that 𝑣, 𝑣′ are joined by at least two
edges of 𝐺ℱ(𝐷). Then the subgraph of 𝐺ℱ(𝐷) consisting of 𝑣, 𝑣′ and all edges
joining them is called a 𝜃–graph. For an edge 𝑒 of a 𝜃–graph, denote by 𝑒𝜃 the 𝜃–
graph containing 𝑒. Define 𝜃(𝐷) to be the subgraph of 𝐺ℱ(𝐷) that is the union
of all 𝜃–graphs in 𝐺ℱ(𝐷).

Definition 2.7. Each vertex of𝐺ℱ(𝐷) inherits an orientation (clockwise or an-
ticlockwise) from the Seifert circle it lies inside. This orientation extends to a
transverse orientation of each edge of 𝐺ℱ(𝐷). We define the positive and nega-
tive sides of each edge, such that the normal points from the negative side to the
positive side. See Figure 4. We similarly define the positive and negative sides of
each crossing in 𝐷.

−ve +ve

Figure 4

Definition 2.8. Given an essential flype circle 𝜙 in𝐷, define the positive side of
𝜙 to be the component of𝕊2⧵𝜙 that meets the positive side of the flype crossing
of 𝜙. The other component is called the negative side.

Each edge 𝑒 ∈ E(𝜃(𝐷)) inherits a weight𝑤(𝑒) ∈ ℕ∪{0}, given by the number
of crossings in 𝐷 that correspond to 𝑒. Define 𝑤𝜃(𝑒𝜃) =

∑
𝑒′∈𝑒𝜃 𝑤(𝑒

′). Number
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the edges of 𝜃(𝐷) as 𝑒1,… , 𝑒𝑛. These weights are used to define a simplicial
complex𝒦(𝐷). First, if 𝑛 ≥ 1, set

V(𝒦(𝐷)) = {(𝑤1,… , 𝑤𝑛) ∈ ℤ𝑛 ∶ 𝑤𝑖 ≥ 0 and

∑

{𝑗∶𝑒𝑗∈𝑒𝜃𝑖 }
𝑤𝑗 = 𝑤𝜃(𝑒𝜃𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛}.

If𝐷 contains no 𝜃–graphs, and so 𝜃(𝐷) is empty, take𝒦(𝐷) to consist of a single
vertex.

Definition 2.9. Let �̃�(𝐷) be the planar graph obtained from 𝜃(𝐷) by cutting
apart vertices to make the 𝜃–graphs disjoint.

Note that a region of 𝕊2⧵ �̃�(𝐷) corresponds to a union of regions of 𝕊2⧵𝜃(𝐷).
We will refer to these as a region of 𝜃(𝐷).

Definition 2.10. Let 𝑟 be a region of 𝜃(𝐷). Define the positive boundary 𝜕+𝑟
of 𝑟 to be the edges of 𝜃(𝐷) which 𝑟meets exactly on the negative side, and the
negative boundary 𝜕−𝑟 to be those it meets exactly on the positive side.
Using this, the region 𝑟 defines amap 𝑟𝜃 froma subset ofV(𝒦(𝐷)) toV(𝒦(𝐷)),

given by 𝑟𝜃(𝑤1,… , 𝑤𝑛) = (𝑤′
1,… , 𝑤

′
𝑛), where

𝑤′
𝑖 =

⎧

⎨
⎩

𝑤𝑖 + 1 if 𝑒𝑖 ∈ 𝜕+𝑟
𝑤𝑖 − 1 if 𝑒𝑖 ∈ 𝜕−𝑟
𝑤𝑖 else.

Thus 𝑟𝜃(𝑤1,… , 𝑤𝑛) is defined when 𝑤𝑖 > 0 for all 𝑒𝑖 ∈ 𝜕−𝑟.
We describe the process of applying 𝑟𝜃 to 𝑣 ∈ V(𝒦(𝐷)) as adding the region

𝑟 to 𝑣.

The higher-dimensional simplices of 𝒦(𝐷) are defined as follows. A set of
distinct vertices 𝑣0,… , 𝑣𝑘 spans a 𝑘–simplex if there is a choice of labelling of
the regions of 𝜃(𝐷) as 𝑟1,… , 𝑟𝑚 such that 𝑟𝜃𝑗 (⋯ 𝑟𝜃1(𝑣0)⋯) is defined for 1 ≤
𝑗 ≤ 𝑚 and each 𝑣𝑖 occurs as 𝑟𝜃𝑗 (⋯ 𝑟𝜃1(𝑣0)⋯) for some 𝑗. That is, every simplex
can be extended to an (𝑚 − 1)–simplex, and we can cycle through the vertices
of an (𝑚 − 1)–simplex by adding each region once, in some order. Note that
𝑟𝜃𝑚(⋯ 𝑟𝜃1(𝑣0)⋯) = 𝑣0.
A metric is defined on V(𝒦(𝐷)) in the same way as that defined onMS(𝐿).

That is, the distance between two vertices is the distance in the 1–skeleton of
𝒦(𝐷) when every edge has length 1.
Note that 𝒦(𝐷) depends only on 𝜃(𝐷). A vertex 𝑣 of 𝒦(𝐷) specifies a re-

duced, special alternating diagram 𝐷𝑣 of 𝐿, to which Seifert’s algorithm can be
applied. 𝐷𝑣 is obtained from𝐷 by a canonical set of flypes. A flype on𝐷 can re-
sult in either of two diagrams, which differ by turning over the whole diagram.
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However, the surface given by Seifert’s algorithm is independent of this choice.
This gives a map 𝒜 from V(𝒦(𝐷)) to V(MS(𝐿)).

(a)

𝑤3 = 2

𝑤1 = 1

𝑤4 = 0

𝑤2 = 0

𝑤5 = 1

(b)

Figure 5

Figure 5a shows the graph 𝜃(𝐷𝛼) for the diagram𝐷𝛼 in Figure 2, markedwith
the weights that come from 𝐷𝛼. Figure 5b shows �̃�(𝐷𝛼). The complex 𝒦(𝐷𝛼)
is 3–dimensional, and this vertex lies in four 3–simplices, corresponding to the
cycles
(1, 0, 2, 0, 1)→ (1, 0, 3, 0, 0)→ (0, 1, 3, 0, 0)→ (1, 0, 2, 1, 0)→ (1, 0, 2, 0, 1),
(1, 0, 2, 0, 1)→ (0, 1, 2, 0, 1)→ (0, 1, 3, 0, 0)→ (1, 0, 2, 1, 0)→ (1, 0, 2, 0, 1),
(1, 0, 2, 0, 1)→ (0, 1, 2, 0, 1)→ (1, 0, 1, 1, 1)→ (1, 0, 2, 1, 0)→ (1, 0, 2, 0, 1),
(1, 0, 2, 0, 1)→ (0, 1, 2, 0, 1)→ (1, 0, 1, 1, 1)→ (1, 0, 1, 0, 2)→ (1, 0, 2, 0, 1).

3. Special form
3.1. Definition. In this section we will focus on positioning a Seifert surface
nicely with respect to the diagram plane, so that we can encode it on the di-
agram. Let 𝐿 be a special alternating link with a special alternating diagram
𝐷 ⊂ 𝕊2 ⊂ 𝕊3.

Definition 3.1. Let 𝔹𝑎 be the 3–ball lying above 𝕊2 in 𝕊3, 𝔹𝑏 the 3–ball ly-
ing below 𝕊2, and 𝑃 the set of midpoints of edges of 𝐷. We call a section of 𝐿
between two consecutive points of 𝑃 an arc of 𝐿.

By an isotopy, 𝐿 can be arranged such that 𝐿 ∩ 𝕊2 = 𝑃, with overcrossing
arcs of 𝐿 lying in 𝔹𝑎 and undercrossing arcs lying in 𝔹𝑏 (as in [4]). Let 𝑅 be
the Seifert surface given by applying Seifert’s algorithm to 𝐷. Let 𝒩(𝐿) be a
regular neighbourhood of 𝐿 in 𝕊3 and𝒩𝐿(𝑅) a product neighbourhood of 𝑅 in
𝕊3 ⧵𝒩(𝐿). Then𝒩(𝑅) =𝒩(𝐿) ∪𝒩𝐿(𝑅) is a regular neighbourhood of 𝑅 in 𝕊3.
Consider an incompressible Seifert surface 𝑅′ for 𝐿 that is disjoint from 𝑅.

By an isotopy, 𝜕𝑅′ can be made to run along the opposite side of 𝜕𝒩(𝐿) to 𝜕𝑅
(again as in [4]). In a neighbourhood of a crossing, 𝜕𝑅 and 𝜕𝑅′ are as shown in
Figure 6.
Now isotope 𝑅′, keeping 𝜕𝑅′ fixed and keeping 𝑅′ disjoint from 𝑅, to min-

imise |𝑅′ ∩ 𝕊2|. Note that 𝑅′ ∩ 𝕊2 is disjoint from the black regions of 𝐷. Since
𝑅′ is incompressible and 𝕊3 ⧵𝒩(𝑅) is irreducible, 𝑅′ ∩ 𝕊2 contains no closed
components, so it consists of arcs with their endpoints on 𝜕𝑅′ ∩ 𝕊2. Similarly,
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𝑅 𝜕𝑅

𝜕𝑅′

Figure 6

no such arc has both endpoints at the same point of 𝑅′∩𝕊2. On the other hand,
every point of 𝑅′ ∩ 𝕊2 is an endpoint of at least one arc. We will identify these
points with 𝑃.
Suppose there exists 𝑝 ∈ 𝑃 such that at least two arcs of 𝑅′ ∩ 𝕊2 have an

endpoint at 𝑝. Then 𝑅′ can be isotoped to reduce the number of endpoints of
arcs at 𝑝 by 2. This reduces the number of arcs of 𝑅′ ∩ 𝕊2 and any closed curve
created can be removed, which contradicts the minimality of |𝑅′ ∩ 𝕊2|. Hence
each point 𝑝 ∈ 𝑃 is the endpoint of exactly one arc.

Definition 3.2. Call a set of disjoint arcs lying in the white regions of 𝐷 with
exactly one arc endpoint at each point of 𝑃 a set of 𝑃–arcs.

Consider the (probably disconnected) surface 𝑅′𝑎 = 𝑅′ ∩ 𝔹𝑎. Its boundary
𝜕𝑅′𝑎 projects to disjoint simple closed curves in 𝕊2, together composed exactly
of the set of 𝑃–arcs and the overcrossing arcs of 𝐿. Unless 𝐿 is the unknot,
each component includes both overcrossings and 𝑃–arcs, alternating around
the curve.
We wish to show that every component of 𝑅′𝑎 is a disc. To see this, first iso-

tope each component downwards so that its boundary lies in 𝕊2. Now choose a
closed curve 𝐶 in 𝜕𝑅′𝑎 that is innermost in 𝕊2. It bounds a disc in𝔹𝑎 that is oth-
erwise disjoint from 𝑅′𝑎, and so bounds a disc in 𝑅′. This disc cannot lie below
𝐶 in 𝑅′ since part of 𝐶 lies on 𝜕𝑅′, so it lies above 𝐶. If the interior of the disc
meets 𝕊2, then it also meets 𝜕𝑅′, which cannot be the case. Thus the disc lies in
𝔹𝑎. By isotoping it down towards 𝕊2, we see that for our current argument we
may discard this component of 𝑅′𝑎. Thus inducting on |𝜕𝑅′𝑎| gives the required
result.
A similar argument holds for 𝑅′𝑏 = 𝑅′ ∩ 𝔹𝑏 = 𝑅′ ⧵ int𝑅′(𝑅′𝑎). Hence 𝑅′ is

completely specified by the set of 𝑃–arcs 𝑅′ ∩ 𝕊2 added to the diagram 𝐷.

Definition 3.3. Wewill say that a surface defined in this way by a set of 𝑃–arcs
is in special form.
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Suppose𝐷 has 𝑛 crossings. Then there are 𝑛 𝑃–arcs. Let 𝑛𝑎 be the number of
discs in 𝑅′𝑎, and 𝑛𝑏 the number in 𝑅′𝑏. Then 𝜒(𝑅

′) = 2𝑛−(2𝑛+𝑛)+ (𝑛𝑎+𝑛𝑏) =
−𝑛 + 𝑛𝑎 + 𝑛𝑏.
Note that 𝑛𝑎 = |𝑅′ ∩𝔹𝑎| = |𝜕(𝑅′ ∩𝔹𝑎)|. Hence 𝑅′ has minimal genus if and

only if |𝜕(𝑅′ ∩ 𝔹𝑎)| + |𝜕(𝑅′ ∩ 𝔹𝑏)| (that is, the number of simple closed curves
formed from the 𝑃–arcs and the arcs of 𝐿) is maximised.

3.2. Some surfaces in special form. Fix a special alternating diagram 𝐷 of
a link 𝐿. Let 𝑅 be the Seifert surface given by applying Seifert’s algorithm to
𝐷. We can define a Seifert surface 𝑅′ in special form by putting a 𝑃–arc across
the negative side of each crossing, as show in Figure 7. By pushing each 𝑃–arc

Figure 7

close to the corresponding crossing, it is easy to see that 𝑅′ = 𝑅. Placing a 𝑃–arc
on the positive side of each crossing again gives a surface equivalent to 𝑅. It is
given by pushing 𝑅′ through the parallel surface 𝑅 to the other side.
Figure 8 shows two digrams𝐷𝛽 and𝐷∗

𝛽 of a link 𝐿𝛽 that differ by a flype along
the flype circle 𝜙 shown. Let 𝑅𝛽, 𝑅∗𝛽 be the surfaces given by applying Seifert’s

𝐷𝛽 𝜙 𝐷∗
𝛽 𝜙

Figure 8

algorithm to 𝐷𝛽, 𝐷∗
𝛽 respectively. Consider the effect on 𝑅

∗
𝛽 of an isotopy that

takes 𝐷∗
𝛽 to 𝐷𝛽 . By inspection, 𝑅

∗
𝛽 can be put into special form with respect to

𝐷𝛽 as shown in Figure 9a. Figure 9b shows 𝜕(𝑅∗𝛽 ∩ 𝔹𝑎).
The special form of 𝑅∗𝛽 has the following description. The flype arc of 𝜙 is a

𝑃–arc. Every crossing 𝑐 ≠ 𝑐𝜙 (where 𝑐𝜙 is the flype crossing of 𝜙) has a 𝑃–arc
across it. This 𝑃–arc crosses 𝑐 on its negative side if 𝑐 is on the positive side of
𝜙, and on its positive side if 𝑐 lies on the negative side of 𝜙.
We can extend this description to the case of more than one flype circle on a

link diagram 𝐷, provided we can consistently define the notion of being on the
positive/negative side of the flype circles.
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(a) (b)

Figure 9

Definition 3.4. Call a set of distinct flype circles with this property coherent.
Otherwise call them incoherent.

Remark 3.5. Coherent flype circlesmust be pairwise disjoint. Figure 10 shows
a set of incoherent disjoint flype circles on the diagram 𝐷𝛼.

Figure 10

Using the above description, a set of coherent flype circles gives a set of arcs
in the white regions of 𝐷. We need to check whether they form a set of 𝑃–arcs.

Lemma3.6. The arcs defined by a coherent set of flype circles forma set of𝑃–arcs.

Proof. This will be true if and only if exactly one endpoint of an arc lies on any
given edge 𝜀 of 𝐷. By counting the arcs we see that it is enough to check that at
least one arc has an endpoint on 𝜀.
If a flype circle crosses 𝜀, then an arc has an endpoint on 𝜀. Assume other-

wise. Let 𝑐1, 𝑐2 be the crossings at the ends of 𝜀 such that 𝜀 lies on the positive
side of 𝑐1 and on the negative side of 𝑐2. Then both, one or neither of 𝑐1, 𝑐2 is a
flype crossing. Since 𝜀 is not crossed by any flype circle, 𝑐1 and 𝑐2 cannot both
be flype crossings, as otherwise the flype circles would be incoherent (see Fig-
ure 11). Suppose neither is a flype crossing. They then lie on the same side of
the flype circles, say the negative side. Then the arc across the positive side of
𝑐1 has an endpoint on 𝜀. Finally suppose, without loss of generality, that 𝑐1 is
a flype crossing, while 𝑐2 is not. Then 𝑐2 lies on the positive side of the flype
circles, so has an arc across it on the negative side. This arc has an endpoint on
𝜀. □



456 JESSICA E. BANKS

𝜀
𝑐1 𝑐2

𝐺ℱ(𝐷)

Figure 11

Definition 3.7. Given a special alternating link diagram 𝐷, say that a Seifert
surface 𝑅 for 𝐷 is admissible at 𝐷 if 𝑅 can be put into special form with the
following description.

∙ There is a set of coherent flype circles in 𝐷.
∙ The flype arc of each flype circle is a 𝑃–arc.
∙ Every crossing of 𝐷 that is not a flype crossing has a 𝑃–arc across it, on
the negative side if it lies on the positive side of the flype circles, and on
the positive side if it lies on the negative side of the flype circles.

Call such a description of 𝑅 admissible.

Remark 3.8. We allow the case where there are no flype circles. We can then
take the crossings of 𝐷 to all lie on the positive side of the flype circles, or all
lie on the negative side. As we have seen, both these special forms describe the
surface given by applying Seifert’s algorithm to 𝐷.

To construct a set of 𝑃–arcs, it is in fact sufficient to specify a coherent set
of flype circles in 𝜃(𝐷), provided the edge of each such flype circle chosen as
a flype crossing has at least one crossing in 𝐷 corresponding to it. To see this,
notice by inspection that equivalent flype circles create the same set of 𝑃–arcs
(see Figure 12).

𝐴 𝐵 𝐴 𝐵

Figure 12

Lemma3.9. Let𝑅′ be a surface in admissible special format a special alternating
diagram𝐷. Let𝐷′ be the diagram given by applying all the flypes indicated by the
flype circles. Then 𝑅′ is the surface given by applying Seifert’s algorithm to 𝐷′.
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Proof. We prove this by induction on the number of flype circles. If there are
no flype circles in the admissible special form then the result holds.
Suppose there is at least one flype circle, and choose an innermost flype circle

𝜙. Then𝐷 has the form shown in Figure 13a, where𝐴 contains no flype circles.
The flype 𝜙 changes the diagram to that in Figure 13b. This also gives 𝑅′ in
admissible form. By induction, the result follows. □

(a)

𝜙

(b)

Figure 13

3.3. Relating𝒦(𝑫) and𝐌𝐒(𝑳). Our aim is to relate𝒦(𝐷) toMS(𝐿). We have
amap𝒜∶ V(𝒦(𝐷))→ V(MS(𝐿)), as described in Section 2. To study the prop-
erties of this map, we will establish a local description at each vertex of𝒦(𝐷).

Proposition 3.10. Let 𝑣0 ∈ V(𝒦(𝐷)). As above, 𝑣0 corresponds to a prime,
reduced, special alternating diagram 𝐷𝑣0 , and 𝑅0 = 𝒜(𝑣0) is given by applying
Seifert’s algorithm to 𝐷𝑣0 . Without loss of generality, we may assume 𝐷 = 𝐷𝑣0 .
Let 𝑣1 ∈ V(𝒦(𝐷)) with d𝒦(𝐷)(𝑣0, 𝑣1) = 1. Then dMS(𝐿)(𝑅0,𝒜(𝑣1)) ≤ 1.

Proof. Recall, for 𝑅, 𝑅′ ∈ V(MS(𝐿)), that dMS(𝐿)(𝑅, 𝑅′) ≤ 1 if and only if 𝑅 and
𝑅′ can be made disjoint.
Since d𝒦(𝐷)(𝑣0, 𝑣1) = 1, vertex 𝑣1 is obtained from 𝑣0 by adding a sequence

of distinct regions of 𝜃(𝐷). LetΛ be the union of these regions. Then 𝜕Λ is split
into its positive boundary 𝜕+Λ and its negative boundary 𝜕−Λ. The change
from 𝑣0 to 𝑣1 is achieved by subtracting 1 from the weight of all edges in 𝜕−Λ
and adding one to the weight of all edges in 𝜕+Λ.
Consider a 𝜃–graph in 𝜃(𝐷), with each edge labelled by the effect of adding

Λ (see, for example, Figure 14). The total of these labels is 0, and the 1s and

−1 0 1
Λ

Figure 14
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−1s must alternate. Pair each −1with the 1 on its positive side. Each such pair
defines a flype circle, whose crossing circle is the edgewith label−1, andwhose
flype arc is the edge with the label 1. Note that this is always possible, because
an edge with label −1must have at least one crossing in 𝐷 corresponding to it.
Doing this for each 𝜃–graph gives a set of disjoint flype circles in 𝐷. Note also
that these flype circles are coherent.
𝒜(𝑣1) is given by applying these flypes to 𝐷, yielding a diagram 𝐷1, and then

applying Seifert’s algorithm to𝐷1. By Lemma 3.9,𝒜(𝑣1) is the surface described
in admissible special form by this set of flype circles on 𝐷. Hence𝒜(𝑣1) can be
made disjoint from 𝑅0. □

Proposition 3.11. Let 𝑣0 and𝑅0 be as above. Let𝑅1 be a surface given in admissi-
ble special form at𝐷. Then there exists 𝑣1 ∈ V(𝒦(𝐷)) such that d𝒦(𝐷)(𝑣0, 𝑣1) ≤ 1
and𝒜(𝑣1) = 𝑅1.

Proof. Choose a set of flype circles showing that 𝑅1 is in admissible special
form. If there are no flype circles then 𝑅1 = 𝑅0 and 𝑣1 = 𝑣0. Assume there is at
least one flype circle.
Each flype circle gives a weight of −1 to one edge of 𝜃(𝐷) and a weight of 1

to another edge. Modifying 𝑣0 using these values gives another vector. Call this
vector 𝑣1. We aim to show that 𝑣1 has the required properties.
Consider the set of flype circles in 𝜃(𝐷). Note that a flype circle cannot run

over an edge of 𝜃(𝐷) twice. Suppose that two or more flype circles run over
an edge 𝑒 ∈ E(𝜃(𝐷)). Choose two such flype circles 𝜙, 𝜙′ that are adjacent in
𝑒. Since the flype circles are coherent, one must give 𝑒 a weighting of 1 while
the other gives it a weighting of −1. That is, 𝑒 is the flype crossing for 𝜙, say,
and the flype arc for 𝜙′. By combining 𝜙 and 𝜙′ as shown in Figure 15 to give
a new flype circle 𝜙′′, we can reduce the number of flype circles running over
𝑒 without changing the admissible form. Hence we may assume that at most
one flype circle runs over any edge of 𝜃(𝐷).

𝜙 𝜙′ 𝜙′′

Figure 15

Let Λ ⊆ 𝕊2 be the positive side of the flype circles, and 𝜆 ⊆ 𝕊2 the negative
side. If 𝑒 receives a weighting of 1 then a flype arc runs along 𝑒, and Λ lies on
the negative side of 𝑒. If 𝑒 receives a weighting of −1 then 𝑒 corresponds to a
flype crossing, and Λ lies on the positive side of 𝑒. If 𝑒 receives a weighting of
0, no flype circle runs along it, and it lies in the interior of either Λ or 𝜆.
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Each of Λ and 𝜆 is a non-empty union of regions of 𝜃(𝐷). We wish to show
that those in Λ can be ordered such that each partial composition of the cor-
responding maps is defined for 𝑣0. By symmetry, those in 𝜆 can then also be
suitably ordered so that the regions inΛ followed by those in 𝜆 define a simplex
in𝒦(𝐷). Then 𝑣1 ∈ 𝒦(𝐷) and d𝒦(𝐷)(𝑣0, 𝑣1) = 1. It is sufficient to find a single
region that can be added to 𝑣0. Induction on the number of regions in Λ then
completes the proof.
Suppose no such region exists. Then each region 𝑟 in Λ has a boundary edge

𝑒(𝑟) such that 𝑟 lies on the positive side of 𝑒(𝑟) and 𝑤(𝑒(𝑟)) = 0 (in 𝑣0). This
means 𝑒(𝑟) cannot lie on 𝜕Λ, so the region on the other side of 𝑒(𝑟) from 𝑟 is also
in Λ. Construct a digraph 𝒢Λ with an edge from 𝑟 across 𝑒(𝑟) for each 𝑟 in Λ.
There are only finitely many regions in Λ, so 𝒢Λ contains a simple closed curve
𝜌. Then there is a 𝜃–graph in 𝜃(𝐷) such that 𝜌 runs through every edge of the
𝜃–graph. Hence every edge of this 𝜃–graph has value 0 in 𝑣0. This contradicts
the construction of 𝜃(𝐷). □

Lemma 3.12. The complex𝒦(𝐷) is flag. That is, if the 1–skeleton of a simplex is
contained in the complex then so is the simplex.

Proof. Let 𝑣0,… , 𝑣𝑚 be distinct vertices of𝒦(𝐷) that are pairwise adjacent, for
some𝑚 ≥ 2. For 1 ≤ 𝑖 ≤ 𝑚, there is a unique set𝐴𝑖 of regions of 𝜃(𝐷) such that
𝑣𝑖 is obtained from 𝑣0 by adding the regions in 𝐴𝑖 in some order. Let 𝐴0 = ∅.
Then there is a partial order on the vertices 𝑣0,… , 𝑣𝑚 given by inclusion of the
sets 𝐴0,… , 𝐴𝑚. We wish to show that 𝑣0,… , 𝑣𝑚 span a simplex in𝒦(𝐷). From
the proof of Proposition 3.11 we see that it is sufficient to prove that this partial
ordering of the vertices is actually a total order.
Suppose otherwise. Then there are two vertices that are not comparable.

Without loss of generality, these are 𝑣1 and 𝑣2. Thus 𝐴1 ⧵ 𝐴2 and 𝐴2 ⧵ 𝐴1 are
non-empty. Let Λ1 be the union of the regions in 𝐴1 ⧵ 𝐴2, and Λ2 the union of
the regions in 𝐴2 ⧵ 𝐴1. Then Λ1 and Λ2 have disjoint interiors.
Suppose an edge 𝑒 of 𝜃(𝐷) lies on the boundary ofΛ1 and on the boundary of

Λ2. Then it lies on the positive boundary of one of Λ1,Λ2 and on the negative
boundary of the other. Thus the coordinates of 𝑣1 and 𝑣2 corresponding to the
edge 𝑒 differ by two. This contradicts that 𝑣1, 𝑣2 are adjacent.
As 𝑣1 is adjacent to 𝑣2 in𝒦(𝐷), there is a unique set 𝐵 of regions of 𝜃(𝐷) such

that 𝑣2 is obtained from 𝑣1 by adding the regions in 𝐵 in some order. Let Λ be
the union of the regions in 𝐵. The boundary ofΛ is the union of the boundaries
of Λ1 and Λ2, as these are the edges of 𝜃(𝐷) at which the coordinates of 𝑣1
and 𝑣2 differ. However, Λ lies on the outside of 𝜕Λ1 (that is, on the side away
fromΛ1) and on the inside of 𝜕Λ2, which is impossible. This gives the required
contradiction. □

The following proposition says thatMS(𝐿) is also flag. This means that each
complex is defined by its 1–skeleton, so in relating them we may restrict our
attention to comparing vertices and edges.
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Proposition3.13 ([12] Proposition 4.9). Let𝑣0,… , 𝑣𝑛 be distinct vertices ofMS(𝐿).
If 𝑣𝑖 and 𝑣𝑗 span an edge in MS(𝐿) whenever 𝑖 ≠ 𝑗, then 𝑣0,… , 𝑣𝑛 span an 𝑛–
simplex inMS(𝐿).

4. Putting surfaces into admissible special form
Consider a surface in special form. Pick a white region of the diagram. At

least one 𝑃–arc in this region will run across a crossing. Following Gabai ([4]),
we can cut both the diagram and the surface along this crossing, giving a Seifert
surface for a new link with fewer crossings than the original. The effect on
the diagram and 𝑃–arcs is as shown in Figure 16. This gives the basis for an
inductive argument.

Figure 16

Our inductive hypothesis in the proof of Proposition 4.10 will relate to prime
links. It is therefore useful to find a white region such that cutting along any
crossing of that region will result in a prime link diagram.

Definition 4.1. Say that such a region is cuttable.

Remark 4.2. We will call a link diagram prime if the link is prime. That is, we
do not require a ‘prime link diagram’ to be reduced.

Theorem 4.3 ([8] Theorem 1). Let 𝐷 be a reduced, alternating link diagram of
a link 𝐿. Then 𝐿 is not prime if and only if this is visible in 𝐷. That is, if 𝐿 is not
prime then there is a simple closed curve 𝜌 in 𝕊2 that is disjoint from the crossings
of 𝐷 and meets the edges of 𝐷 exactly twice transversely such that there is at least
one crossing on each side of 𝜌.

Lemma 4.4. If 𝐷 is a prime, reduced, special alternating diagram of a link 𝐿,
then there is a cuttable white region of 𝐷.

Proof. Suppose otherwise. Choose a white region of 𝐷. Then this region has a
crossing 𝑐 such that cutting along 𝑐 gives a connected sum. Since the original
diagram was prime, 𝐷 has the form shown in Figure 17a, where neither 𝐴 nor
𝐵 is trivial or consists of a single line of crossings surrounding black bigons.
In particular, 𝐴 and 𝐵 must each contain a white region. In this way, we can
choose a simple closed curve 𝜌𝑟 for eachwhite region 𝑟. Wewill allow twowhite
regions to share one suitable curve. Suppose, for regions 𝑟, 𝑟′, the curves 𝜌𝑟, 𝜌𝑟′
are distinct and cannot be isotoped to be disjoint. Then 𝐷 has the form shown
in Figure 17b. In this case, we could have chosen 𝜌𝑟 for both the regions 𝑟 and
𝑟′. Thus the simple closed curves can be chosen to be disjoint. Choose a region
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(a)
𝐵

𝐴

(b)

𝐴 𝐴′

𝐵′𝐵

Figure 17

𝑟 such that 𝜌𝑟 is innermost. Then no white region 𝑟′ lies entirely inside 𝜌𝑟. This
contradicts the choice of 𝜌𝑟. □
4.1. Reducing a diagram. Once we have cut the link and the surface along
a crossing, the resulting diagram may not be reduced; there could be one or
two lines of crossings that can be removed by a sequence of type I Reidemeister
moves. In the proof of Proposition 4.10 we will need to know how the set of
𝑃–arcs changes as we remove these crossings. In this section we consider the
specific situations that will arise because of this.
Let 𝐷,𝐷𝑐 be special alternating link diagrams such that 𝐷𝑐 is obtained from

𝐷 by removing a crossing 𝑐 by a single type I Reidemeister move. Let 𝑅 be an
incompressible Seifert surface given in special form at 𝐷. What changes need
to be made to give 𝑅 in special form at 𝐷𝑐?
Any 𝑃–arcs that are distant from 𝑐 can be copied to 𝐷𝑐. We consider those

close to 𝑐. The 𝑃–arcs around 𝑐 are as shown in Figure 18a. Let 𝑝 be the point
of𝐷𝑐 corresponding to 𝑐 in𝐷. One way to remove 𝑐 is to pull the undercrossing

(a) (b)

Figure 18

arc upwards into 𝔹𝑎 and then untwist. This leaves 𝑅 ∩ 𝕊2 as shown in Figure
18b, giving a set of 𝑃–arcs on 𝐷𝑐, possibly with a single simple closed curve
lying within the white region adjacent to 𝑝. Does this give a special form for
𝑅? One of the discs of 𝑅 ∩ 𝔹𝑏 has been moved, with a subdisc 𝑆 along part of
its boundary being pulled up into 𝔹𝑎. Clearly this still leaves a disc in 𝔹𝑏. The
disc 𝑆 is glued onto discs of 𝑅 ∩ 𝔹𝑎 along two disjoint subarcs of its boundary.
If these two arcs are glued to distinct discs in 𝔹𝑎, this again gives a disc, and
the 𝑃–arcs give a special form of 𝑅. Alternatively, the two arcs may be glued
to the same disc, in which case an annulus 𝑇 is formed. The core curve of 𝑇
bounds a disc in 𝔹𝑎 disjoint from 𝑅. As 𝑅 is incompressible, one component
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of 𝜕𝑇 bounds a disc in 𝑅 disjoint from the other. This component cannot run
along the link, so must be a simple closed curve 𝜌 of 𝑅 ∩ 𝕊2. In this case, the
𝑃–arcs around 𝑐 in𝐷must be as shown in Figure 19. The 𝑃–arcs in𝐷𝑐, without
𝜌, give a special form for 𝑅.

Figure 19

We could instead have removed 𝑐 by first pushing the overcrossing arc down-
wards into 𝔹𝑏. Similar reasoning applies in this case. If no annulus is formed
in either case then around 𝑐 the simple closed curves bounding the discs of 𝑅
in 𝔹𝑎 and 𝔹𝑏, which are made up of 𝑃–arcs and arcs of 𝐷, must be connected
as shown in Figure 20.

𝔹𝑎 𝔹𝑏

Figure 20

Definition 4.5. Call the change of 𝐷 to 𝐷𝑐 given by pushing 𝑐 into 𝔹𝑎 and
untwisting an 𝑎–reduction at 𝑐, and say that we 𝑎–reduce 𝐷. Similarly define a
𝑏–reduction and 𝑏–reducing.

Remark 4.6. If there is a 𝑃–arc across 𝑐 in 𝐷 then 𝑎–reducing 𝐷 at 𝑐 and 𝑏–
reducing it give the same result, and do not affect any of the other 𝑃–arcs.

For the rest of this section we assume 𝐷𝑐 is the 𝑎–reduction of 𝐷.

Lemma 4.7. Suppose 𝐷 and 𝐷𝑐 are prime, and 𝐷𝑐 is reduced. Suppose further
that the special form for 𝑅 at 𝐷𝑐 is admissible (and hence 𝑅 is minimal genus).
Then there is a 𝑃–arc in 𝐷 across 𝑐.

Proof. Consider the flype circles in the admissible special form. Let 𝐷𝑐
0 be the

diagram obtained from 𝐷𝑐 by performing all the flypes so as to leave 𝑝 fixed.
By Lemma 3.9, the surface given by the 𝑃–arcs on 𝐷𝑐

0 is 𝑅, and in particular is
minimal genus.
This process of changing the diagram by a flype 𝜙moves a 𝑃–arc only if it lies

strictly inside 𝜙 on the side that is moved. Since 𝑝 was not moved by any flype,
the 𝑃–arcs in 𝐷𝑐 that came from those adjacent to 𝑐 in 𝐷 were also not moved.
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This means we can perform the same changes to the diagram 𝐷 with its 𝑃–arcs
as were made to 𝐷𝑐, to give a diagram 𝐷0. These changes will correspond to
performing flypes on𝐷, but these flypes may not come from flype circles in the
special form on 𝐷. However, we see that 𝐷𝑐

0 is obtained from 𝐷0 by untwisting
𝑐, and the 𝑃–arcs in 𝐷𝑐

0 are those given by 𝑎–reducing 𝐷0 at 𝑐. Hence we may
assume that the admissible special form of 𝑅 at 𝐷𝑐 has no flype circles.
If either 𝑎–reducing or 𝑏–reducing 𝐷 at 𝑐 creates an annulus as described

above, there is a 𝑃–arc across 𝑐 in 𝐷. Hence we may assume no annulus is
formed. We use this to build up a picture of part of 𝐷𝑐, and so derive a contra-
diction.
From above (Figure 20), in 𝔹𝑎 the 𝑃–arcs on 𝐷𝑐 near 𝑝 are connected as

shown in Figure 21. Since there is no 𝑃–arc across 𝑐 in 𝐷, 𝜎1 cannot consist

𝜌1

𝜌2
𝜎1

𝑝

Figure 21

entirely of 𝑃–arcs. Then, since there are no flype circles in the admissible spe-
cial form on 𝐷𝑐, 𝜌1 and 𝜌2 each run across a single crossing. From this we have
Figure 22. There is a 𝑃–arc across 𝑐1, so a neighbourhood of 𝑐1 is as shown

𝑐1
𝜌1

𝜌2

𝜌3

𝑝

Figure 22

in Figure 23a. Consider the next crossing 𝑐2 around the black region 𝑟 that 𝜎2
meets. Again, there is a 𝑃–arc across 𝑐2, so we have the set-up shown in Figure
23b. Inductively we see that the arc 𝜎2 will return to 𝜕𝑟 after every crossing.
Thus 𝐷𝑐 has the structure shown in Figure 24. Because 𝐷𝑐 is reduced and al-
ternating, this contradicts that it is prime. □
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(a)

𝑐1

𝜌3
𝑟

𝜎2
(b)

𝑐2

𝑐1

𝑟

Figure 23

𝑐1

𝑟

𝑟

𝑝

Figure 24

Lemma 4.8. Suppose there is a reduced diagram𝐷𝑐,𝑐′ given by 𝑎–reducing𝐷𝑐 at
a crossing 𝑐′, where 𝑝 does not lie on the edge of 𝐷𝑐 connecting 𝑐′ to itself. Sup-
pose further that all the diagrams are prime and the special form of 𝑅 at 𝐷𝑐,𝑐′ is
admissible. Then in 𝐷 there are 𝑃–arcs across each of 𝑐 and 𝑐′.

Proof. By Lemma 4.7 there is a 𝑃–arc across 𝑐′ in𝐷𝑐. Suppose there is no 𝑃–arc
across 𝑐′ in 𝐷. Then 𝑐 and 𝑐′ lie on the same white region of 𝐷, and the 𝑃–arcs
around them are connected in one of the patterns shown in Figure 25. In the

(a)

𝑐′𝑐

(b)

𝑐′𝑐

Figure 25

first case, the 𝑃–arcs around 𝑐′ are not connected as in Figure 20. Therefore the
situation in Figure 25b occurs.
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Consider the set of flype circles in 𝐷𝑐,𝑐′ that show that the special form of 𝑅
is admissible. None of these can separate 𝑐 and 𝑐′ in 𝐷. Thus, as in the proof
of Lemma 4.7, we may assume that there are no flype circles needed and every
crossing in 𝐷𝑐 has a 𝑃–arc across it. Further following the proof of Lemma
4.7 shows that 𝐷 has the structure shown in Figure 26, contradicting that it is
prime.

Figure 26

Thus there is a 𝑃–arc across 𝑐′ in 𝐷. This means that untwisting 𝑐′ has no
impact on the rest of the picture, so Lemma 4.7 gives that there is a 𝑃–arc across
𝑐 in 𝐷. □
Lemma 4.9. Suppose 𝑝 lies on an edge of 𝐷𝑐 connecting a crossing 𝑐′ to itself, so
𝑐′ can be removed by a type I Reidemeister move. Suppose the special form of 𝑅 at
𝐷𝑐 has a 𝑃–arc across 𝑐′. Then there is a 𝑃–arc across 𝑐 in 𝐷.

Proof. Suppose otherwise. From above (Figure 20) the arcs of 𝑅 ∩ 𝔹𝑎 on 𝐷
must connect as in Figure 27a, where 𝜎 does not consist entirely of 𝑃–arcs. This
contradicts that there is a 𝑃–arc across 𝑐′ in 𝐷𝑐 (see Figure 27b). □

(a)

𝜎

𝑐

𝑐′

(b)

𝑐′

Figure 27
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4.2. Adjacent surfaces can be put into admissible special form.

Proposition 4.10. Let 𝐷 be a prime, reduced, special alternating diagram of a
link 𝐿. Let𝑅 be the (minimal genus) Seifert surface for 𝐿 given by applying Seifert’s
algorithm to 𝐷. Let 𝑅′ be a minimal genus Seifert surface for 𝐷 disjoint from 𝑅,
given in special form. Then this special form is admissible.

Proof. First suppose 𝐷 has no crossings. Then 𝐿 is the unknot, 𝑅′ = 𝑅 and the
special form of 𝑅′ is admissible with no 𝑃–arcs or flype circles.
Now suppose the result holds for any diagram with at most 𝑛 − 1 crossings,

and that 𝐷 has 𝑛 crossings. By Lemma 4.4, there is a cuttable region 𝑟 of 𝐷.
Choose a crossing 𝑐 of 𝑟 with a 𝑃–arc across it. Cut along this 𝑃–arc and 𝑐 as in
Figure 16 to give a new diagram 𝐷𝑐 and a new minimal genus Seifert surface
𝑅′𝑐 in special form at 𝐷𝑐. Since 𝑟 is cuttable, 𝐷𝑐 is prime. It is also special and
alternating, and has 𝑛 − 1 crossings. However, it may not be reduced.
Suppose 𝐷𝑐 is reduced. Then the inductive hypothesis holds, so the special

form of 𝑅′𝑐 is admissible. Take a flype circle 𝜙 in 𝐷𝑐, and consider 𝜙 in 𝐷. The
flype arc of 𝜙 is a 𝑃–arc in 𝐷𝑐, so also is in 𝐷. This means that 𝑐 and the 𝑃–arc
across it lie on one side of 𝜙, so 𝜙 is a flype circle in 𝐷. Thus the flype circles
in 𝐷𝑐 give a set of flype circles in 𝐷. These flype circles inherit coherence from
𝐷𝑐. Suppose 𝑐 does not lie between a crossing 𝑐′ and the 𝑃–arc that crosses it in
𝐷𝑐. Then each crossing in 𝐷 that is not a flype crossing or 𝑐 has a 𝑃–arc across
it on the required side. By counting the number of endpoints of 𝑃–arcs in each
white region of 𝐷 we find that the 𝑃–arc across 𝑐 also lies on the required side.
Thus the special form of 𝑅′ is admissible. Instead suppose 𝑐 does lie between a
crossing 𝑐′ and the 𝑃–arc that crosses it in 𝐷𝑐. We see that 𝑐 and 𝑐′ are as show
in Figure 28. Again, the special form of 𝑅′ at 𝐷 is admissible.

𝑐′ 𝑐

Figure 28

Now suppose 𝐷𝑐 is not reduced. Take a simple closed curve 𝜌 that shows
that 𝐷𝑐 is not reduced. That is, 𝜌 passes through a single crossing of 𝐷𝑐 and
otherwise lies in a white regions of𝐷𝑐. Since𝐷 is reduced, 𝜌must pass through
𝑐 in 𝐷, giving 𝐷 the form shown in Figure 29. As 𝐷 is reduced and 𝐷𝑐 is prime,
either 𝐴 or 𝐵 consists of a single line of crossings. Thus cutting along 𝑐 leaves
one or two lines of crossings joined by black bigons in a single white region of
what is otherwise a reduced diagram (for example as shown in Figure 30).
Repeatedly 𝑎–reduce the diagram until only one crossing from each of these

lines remain, giving a new diagram 𝐷1. Let 𝐷0 be the diagram given by 𝑎–
reducing the final one or two crossings of𝐷1. Then, by the inductive hypothesis,
the special form of𝑅′ at𝐷0 is admissible, so the hypotheses of either Lemma 4.7
or Lemma 4.8 hold in relation to𝐷1. One of these lemmas followed by repeated
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𝐴 𝐵
𝜌

𝑐

Figure 29

𝑐1
𝑐2

𝑐1 𝑐2

Figure 30

application of Lemma 4.9 gives that the special form of 𝑅′𝑐 at 𝐷𝑐 has a 𝑃–arc
across every crossing in the one or two lines. Thus 𝑎–reducing 𝐷𝑐 does not
affect the other 𝑃–arcs, and every flype circle in 𝐷0 is a flype circle in 𝐷.
Let 𝑐′ be a crossing of𝐷0. If 𝑐′ is a flype crossing in𝐷0 and in𝐷 then the flype

arc of the flype circle is a 𝑃–arc in 𝐷. Suppose 𝑐′ is not a flype crossing. Then
there is a 𝑃–arc 𝜌 across it on the required side in 𝐷0. Suppose that 𝜌 is not
across 𝑐′ in 𝐷. Then at least one of the crossings of 𝐷1 not in 𝐷0 lies between 𝑐′
and 𝜌. This thenmeans that in fact 𝑐 and all crossings in the line(s) of crossings
of 𝐷𝑐 lie between 𝑐′ and 𝜌. Hence there is at most one crossing in 𝐷0 for which
this occurs.
If no such crossing exists, we may again check that, for each crossing of 𝐷

that is not in 𝐷0, the 𝑃–arc across it lies on the required side. Suppose there is
such a crossing 𝑐𝜙. Then 𝑐𝜙 and the 𝑃–arc 𝜌𝜙 across it in 𝐷0 form a new flype
circle 𝜙 in 𝐷. Without loss of generality, 𝑐 lies on the positive side of 𝜙. It is
then easily checked that every crossing on the positive side of 𝜙 in 𝐷 has a 𝑃–
arc across it on the negative side. Since we know that 𝜌𝜙 lies on the positive
side of 𝑐𝜙 in 𝐷0, the crossing 𝑐𝜙 (and hence also the flype circle 𝜙) lies on the
negative side of the flype circles in 𝐷0. Hence these together with 𝜙 give a set
of flype circles in 𝐷 proving that the special form of 𝑅′ at 𝐷 is admissible. □

Corollary 4.11 ([5] Theorem 1.1). Let 𝐿 be a prime, special alternating link with
a reduced, special alternating digram𝐷. Let 𝑅 be a minimal genus Seifert surface
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for 𝐿. Then 𝑅 is given by doing a finite sequence of flypes on 𝐷 and then applying
Seifert’s algorithm to the resulting diagram.

Proof. This is a combination of Proposition 4.10, Lemma 3.9 and the fact that
MS(𝐿) is connected. □

Corollary 4.12. Every minimal genus Seifert surface for 𝐿 is connected.

5. Distinguishing surfaces in special form
Our current aim is to prove Theorem 1.4. To do so, we wish to show that the

map 𝒜∶ V(𝒦(𝐷)) → V(MS(𝐿)) extends to an isomorphism of the simplicial
complexes. By Proposition 3.10 we know that 𝒜 can be extended to a map on
the edges of the complexes. Since MS(𝐿) is flag, this gives a simplicial map
𝒜∶ 𝒦(𝐷)→ MS(𝐿). We will show that𝒜 is a local isomorphism at each point,
and so is a covering map. As MS(𝐿) is simply connected, 𝒜 is therefore an
isomorphism.
Because both MS(𝐿) and 𝒦(𝐷) are flag, we need only show that 𝒜 acts as

required on the 1–skeleton of 𝒦(𝐷). That is, we will consider the 1–skeleton
of the closure of the star of a vertex 𝑣 in 𝒦(𝐷), and show that this is mapped
bijectively under𝒜 to the corresponding subgraph ofMS(𝐿). From Proposition
4.10, together with Proposition 3.11, we already know that this is a surjection.
In this section we will show that the distances between the vertices are not
reduced. This will complete the proof of Theorem 1.4.

5.1. Product regions and product discs.

Definition 5.1. Let 𝑀 be a connected 3–manifold, and let 𝑆, 𝑆′ be surfaces
properly embedded in 𝑀 in general position. Say 𝑆 and 𝑆′ bound a product
region if the following holds. There is a compact surface 𝑇, a finite collection
𝜌 ⊆ 𝜕𝑇 of arcs and simple closed curves and a map of 𝑁 = (𝑇 × I)∕ ∼ into𝑀
that is an embedding on the interior of 𝑁 and has the following properties.

∙ 𝑇 × {0} = 𝑆 ∩𝑁 and 𝑇 × {1} = 𝑆′ ∩𝑁.
∙ 𝜕𝑁 ⧵ (𝑇 × 𝜕I) ⊆ 𝜕𝑀.

Here ∼ collapses {𝑥} × I to a point for each 𝑥 ∈ 𝜌.

Proposition 5.2 ([12] Proposition 4.8). Let𝑀 be aHakenmanifold with incom-
pressible boundary. Suppose 𝑆, 𝑆′ are incompressible, 𝜕–incompressible surfaces
properly embedded in𝑀 in general position. Suppose further either that 𝑆∩𝑆′ ≠ ∅
but 𝑆 can be isotoped to be disjoint from 𝑆′, or that 𝑆, 𝑆′ are isotopic. Then 𝑆, 𝑆′
bound a product region.

Remark 5.3. If 𝑀 = 𝕊3 ⧵𝒩(𝐿) for a non-split link 𝐿 other than the unknot
then 𝑀 is Haken and 𝜕–irreducible. Furthermore, if 𝑆, 𝑆′ are minimal genus
Seifert surfaces for 𝐿 then they are properly embedded, incompressible and 𝜕–
incompressible.
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Using this, we can show that two disjoint Seifert surfaces are not isotopic, or
that two non-disjoint surfaces cannot be made disjoint, by showing that they
do not bound a product region. In other words, we need to check whether
the pieces of the link complement given by cutting along the Seifert surfaces
have a particular form, which we can describe using the language of sutured
manifolds.

Definition 5.4. A sutured manifold (𝑀, 𝑠) is a compact, orientable 3–manifold
𝑀, together with a finite set 𝑠 of disjoint simple closed curves on 𝜕𝑀, called
the sutures. The sutures divide 𝜕𝑀 into two (possibly disconnected) compact,
oriented surfaces 𝑆+(𝑀) and 𝑆−(𝑀) such that 𝑆+(𝑀) ∩ 𝑆−(𝑀) = 𝑠 and, if 𝜌 is a
suture, 𝑆+(𝑀) and 𝑆−(𝑀)meet at 𝜌 with opposite orientations.

Definition 5.5. A product sutured manifold is a sutured manifold (𝑀, 𝑠) that
is homeomorphic to 𝑆+(𝑀) × [−1, 1] with 𝑠 = 𝜕𝑆+(𝑀) × {0}.

Remark 5.6. A product region is a product sutured manifold, with sutures
along the core curves of (𝑆∩𝑆′)∪𝜕𝑀, although the orientations of the boundary
of the sutured manifold may not agree with those of 𝑆 and 𝑆′.

Onemethod for establishingwhether a suturedmanifold is a product sutured
manifold is to relate the sutured manifold to a single Seifert surface for a link.

Definition 5.7. For a suturedmanifold (𝑀, 𝑠) embedded in𝕊3, the complemen-
tary sutured manifold (𝑀′, 𝑠′) is defined by𝑀′ = 𝕊3 ⧵ int𝕊3(𝑀) and 𝑠′ = 𝑠.
By the complementary sutured manifold to a Seifert surface 𝑅 we mean the

complementary sutured manifold to the product sutured manifold given by a
product neighbourhood of 𝑅.

Remark 5.8. A link 𝐿 with a Seifert surface 𝑅 is fibred with fibre 𝑅 if and only
if the complementary sutured manifold to 𝑅 is a product sutured manifold.

It will therefore be of interest to us to be able to tell whether a given link is
fibred.

Definition 5.9. Given a special alternating link diagram 𝐷, let 𝐺(𝐷) be the
planar graph with a vertex in each white region of 𝐷 and an edge through each
crossing.

Theorem 5.10 (see [10] Theorem 3(5) and [1] Theorem 5.1). Let𝐷 be a special
alternating diagram of a prime link 𝐿. Then 𝐿 is fibred if and only if the graph
𝐺(𝐷) can be reduced to a single vertex by a sequence of the following moves.

∙ Delete a loop (that is, an edge with both endpoints at the same vertex).
∙ Contract an edge, one endpoint of which is at a vertex with valence 2.

Informally, 𝐺(𝐷) satisfies this condition exactly when it is a ‘tree of loops’.

Corollary 5.11. If 𝐷 is a reduced, special alternating diagram of a prime link 𝐿,
other than the unknot, where 𝐿 is fibred then 𝐷 is as shown in Figure 31.



470 JESSICA E. BANKS

Figure 31

Proof. As 𝐿 is fibred, the description in Theorem 5.10 applies to 𝐺(𝐷). Since
𝐷 is reduced, the graph cannot contain a loop.
Suppose that𝐺(𝐷) contains a cut vertex. Consider a simple closed curve 𝜌 in

the diagram plane that passes through the cut vertex and is otherwise disjoint
from 𝐺(𝐷). Then at least one vertex lies on each side of 𝜌. By reconstructing
𝐷 from 𝐺(𝐷), we can see that the curve 𝜌 shows that 𝐿 is not prime. This is a
contradiction, so 𝐺(𝐷) cannot contain a cut vertex.
The graph 𝐺(𝐷) must therefore form a single simple closed curve divided

into at least two edges. This shows that 𝐷 is as required. □
To reach the point where the sutured manifold of interest can be viewed as

the complementary sutured manifold to a Seifert surface, and to simplify the
Seifert surface where we can, we will cut along product discs.

Definition 5.12. A disc 𝑇 properly embedded in a sutured manifold (𝑀, 𝑠) is a
product disc if 𝜕𝑇 meets 𝑠 at exactly two points, where it crosses 𝑠 transversely.

Definition 5.13. Let (𝑀, 𝑠) be a sutured manifold that contains a product disc
𝑇. Let 𝜌 be a simple arc on 𝑇 joining the two points of 𝜕𝑇 ∩ 𝑠 and let 𝑇 × [−1, 1]
be a product neighbourhood of 𝑇 in𝑀. The sutured manifold (𝑀′, 𝑠′) obtained
from (𝑀, 𝑠) by a product disc decomposition along 𝑇 has𝑀′ = 𝑀 ⧵ (𝑇 × (−1, 1))
and 𝑠′ = (𝑠 ∩𝑀′) ∪ (𝜌 × {±1}).

Remark 5.14. 𝑀′ is a product sutured manifold if and only if𝑀 is.

Remark 5.15. Suppose 𝑇′ is an incompressible surface properly embedded in
𝑀with 𝜕𝑇′ = 𝑠. By an isotopywe can ensure that𝑇′∩(𝑇×[−1, 1]) = 𝜌×[−1, 1].
Then 𝑇′ ⧵ (𝑇 × (−1, 1)) is a surface properly embedded in𝑀′ with boundary 𝑠′.

Lemma 5.16. Let 𝐷 be a special alternating diagram, and let 𝑟 be a white bigon
region of𝐷. Then 𝑟 defines a product disc in the complementary suturedmanifold
to the Seifert surface 𝑅 given by applying Seifert’s algorithm to 𝐷. The effect of the
product disc decomposition is to remove the region 𝑟, replacing the two crossings of
𝑟 with a single crossing. Such a change on 𝐷 has the effect of deplumbing a Hopf
band from 𝑅 (see Figure 32).

Proposition 5.17 ([7] Proposition 1.4). Let 𝑅 be a connected minimal genus
Seifert surface for a link 𝐿. Let 𝑅′ be the surface obtained from 𝑅 by a product
disc decomposition, and let 𝐿′ = 𝜕𝑅′. Then the link of the vertex 𝑅 in MS(𝐿) is
isomorphic to the link of 𝑅′ inMS(𝐿′). Furthermore, the isomorphism is induced
by the procedure described in Remark 5.15.
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Figure 32

We will use Lemma 5.20 in Section 6.

Definition 5.18. Say a product disc is inessential if it is separating and the disc
decomposition along it creates a component that is a 3–ball with a single suture.
Otherwise, it is essential.

Remark 5.19. If a product disc 𝑇 in a sutured manifold𝑀 is inessential then
𝜕𝑇 ∩ 𝑆+(𝑀) is inessential in 𝑆+(𝑀), and the same is true for 𝑆−(𝑀).

Lemma 5.20. Let (𝑀, 𝑠) be a sutured manifold, and let 𝜌 be an essential arc
properly embedded in 𝑆+(𝑀). Let 𝑇 be a product disc in𝑀 such that 𝜕𝑇 meets 𝜌
exactly once and such that 𝜌 cannot be isotoped to be disjoint from 𝜕𝑇. Let (𝑀′, 𝑠′)
be the result of the product disc decomposition along 𝑇, and let 𝜌1, 𝜌2 be the two
parts of 𝜌 in𝑀′. Suppose there is an essential product disc 𝑆 in𝑀 with 𝜌 ⊂ 𝜕𝑆.
Then there are essential product discs 𝑆1, 𝑆2 in𝑀′ with 𝜌1 ⊂ 𝜕𝑆1, 𝜌2 ⊂ 𝜕𝑆2.

Proof. Notice that we are free to change 𝑆, provided we always have 𝜌 ⊂ 𝜕𝑆.
A simple closed curve in 𝑇 ∩ 𝑆 that is innermost in 𝑇 bounds a disc both in
𝑇 and in 𝑆. Replacing the subdisc of 𝑆 with the subdisc of 𝑇 reduces |𝑇 ∩ 𝑆|.
Thus we can remove all simple closed curves from 𝑇 ∩ 𝑆. Exactly one arc of
𝑇∩𝑆 has an endpoint on 𝑆+(𝑀), at the point where 𝜕𝑇 crosses 𝜌, and the other
endpoint of this arc lies on 𝑆−(𝑀). Suppose there is at least one other arc of
𝑇 ∩ 𝑆. Choose such an arc that is outermost in 𝑇. This cuts off a subdisc of 𝑇
disjoint from 𝑆+(𝑀) with interior disjoint from 𝑆. It also cuts off a subdisc of
𝑆 that is disjoint from 𝑆+(𝑀). Replacing the subdisc of 𝑆 with the subdisc of
𝑇 again reduces |𝑇 ∩ 𝑆|. We may assume, therefore, that 𝑇 ∩ 𝑆 is a single arc,
running from 𝑆+(𝑀) to 𝑆−(𝑀). Since 𝑆 ∩ 𝑆+(𝑀) = 𝜌 has not changed, 𝑆 is still
essential.
Now the disc decomposition along 𝑇 cuts 𝑆 into two product discs 𝑆1, 𝑆2.

Suppose 𝑆1 is inessential. Then 𝜌1 = 𝜕𝑆1 ∩ 𝑆+(𝑀′) is inessential in 𝑆+(𝑀′).
Let 𝑇1 be a disc in 𝜕𝑀′ between 𝜌1 and 𝑠′. Then 𝑇∗1 = 𝑇1 ∩ 𝜕𝑀 is a disc. This
disc defines an isotopy of 𝜌 ∩ 𝑇∗1 in 𝜕𝑀 that makes 𝜌 disjoint from 𝜕𝑇. This
contradicts that no such isotopy exists. Thus 𝑆1 is essential. Similarly, so in
𝑆2. □
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5.2. Adjacent surfaces are distinct.

Definition 5.21. Given a special alternating diagram 𝐷, let 𝑅 be the Seifert
surface given by applying Seifert’s algorithm. Recall that 𝑅 is oriented. Divide
the black regions of 𝐷 into 𝑎–regions and 𝑏–regions according to whether the
normal to 𝑅 in a given region points into 𝔹𝑎 or into 𝔹𝑏.

Proposition 5.22. Let 𝐷 be a reduced, special alternating diagram for a prime
link 𝐿. Let 𝑣, 𝑣′ ∈ V(𝒦(𝐷)) such that d𝒦(𝐷)(𝑣, 𝑣′) = 1 and 𝑣 is given by 𝐷. Then
𝑅 = 𝒜(𝑣) is given by applying Seifert’s algorithm to 𝐷. Let 𝑅′ = 𝒜(𝑣′). Then
dMS(𝐿)(𝑅, 𝑅′) = 1.

Proof. Since d𝒦(𝐷)(𝑣, 𝑣′) = 1, the proof of Proposition 3.10 gives an admissible
special form for 𝑅′ at𝐷. This special form has at least one flype circle. Choose a
set of flype circles that minimises the number of flype circles (as in the proof of
Proposition 3.11). Together 𝑅 and 𝑅′ cut 𝕊3 ⧵𝒩(𝐿) into two sutured manifolds.
Fix an 𝑎–region 𝑟 of 𝐷. Call the two manifolds 𝑀+ and 𝑀−, where 𝑀+ lies
above 𝑟 and 𝑀− lies below it. We will show that neither of 𝑀+ and 𝑀− is a
product sutured manifold. By symmetry, it is sufficient to prove this for 𝑀+.
The result will then follow by Proposition 5.2.
We first consider where𝑀+ lies relative to 𝐷 and the special form of 𝑅′. As

𝑀+ always meets the same side of 𝑅, it lies above all 𝑎–regions of 𝐷, and below
all 𝑏–regions. In the white regions,𝑀+ lies on exactly one side of each 𝑃–arc.
Let 𝜌 be a 𝑃–arc. First suppose 𝜌 is the flype arc of a flype circle 𝜙. If 𝜙 and 𝜌
are as in Figure 33, where the black region 𝑟′ shown is an 𝑎–region, then 𝑀+

𝜙

𝐴 𝐵
∗

𝑟′

𝜌

Figure 33

lies on the positive side of 𝜙, as marked ∗. Instead suppose that 𝜌 lies across a
crossing 𝑐. If 𝑐 lies on the negative side of the flype circles, 𝜌 lies on the positive
side of 𝑐 and𝑀+ lies between 𝜌 and 𝑐. Otherwise, 𝜌 lies on the positive side of
the flype circles. In this case,𝑀+ does not lie between 𝑐 and 𝜌; it lies on the far
side of 𝑐 from 𝜌, and on the far side of 𝜌 from 𝑐.
Considering again Figure 33, the arcs shown in bold in Figure 34 form part

of the boundary of a single disc of 𝑅′ ∩ 𝔹𝑎. To see this, note that only two
overcrossing arcs of 𝐿 cross the boundary of 𝐴, given the positioning of the 𝑃–
arcs. Hence the arc 𝜌1 defines a product disc in 𝑀+ contained in 𝔹𝑎, and the
product disc in𝑀+ defined by 𝜌2 is contained in 𝔹𝑏. Decomposing𝑀+ along
these product discs, as well as the analogous discs from the other flype circles,
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𝐴 𝐵

𝜙 𝜌1

𝜌2

Figure 34

cuts it into pieces that each lie either on the positive side or on the negative
side of the flype circles. Each piece on the negative side of the flype circles is a
product region, since we have seen that 𝑅 and 𝑅′ are ‘parallel’ there with 𝑀+

lying between them. Thus we only need to consider the pieces of 𝑀+ left by
removing these product regions. We will see that at least one of the remaining
pieces is not a product sutured manifold.
Let Φ be the union of the flype circles. The remaining pieces of 𝑀+ cor-

respond to the components of 𝕊2 ⧵ Φ that lie on the positive side of the flype
circles. Let Λ be one such component, and𝑀+

Λ the corresponding piece of𝑀
+.

Create a new diagram 𝐷Λ from 𝐷 by changing it as shown in Figure 35 along

𝜙

𝐴 𝐵 𝐴′

Figure 35

each flype circle that boundsΛ. Let𝑅Λ be the surface given by applying Seifert’s
algorithm to 𝐷Λ, and 𝑅′Λ that given by the 𝑃–arcs. Since the special form of 𝑅′Λ
has no flype circles, 𝑅Λ and 𝑅′Λ are parallel through a product sutured manifold
𝑁. The complementary sutured manifold to 𝑁 is isotopic to𝑀+

Λ . Hence𝑀
+ is

a product sutured manifold if and only if every diagram 𝐷Λ′ constructed in this
way is of a fibred link with fibre given by the surface 𝑅Λ′ . Again by symmetry,
we need only consider 𝐷Λ.
Consider 𝐺(𝐷) and 𝐺(𝐷Λ) (as in Definition 5.9), and a fixed flype circle 𝜙Λ

that bounds Λ. As can be seen from in Figure 36, 𝐺(𝐷Λ) is obtained from 𝐺(𝐷)
by collapsing everything on the negative side of the flype circles. There may be
other flype circles in 𝐴 that are collapsed to give 𝐴′.
As 𝐷 is prime and reduced, the same is true of 𝐷Λ. Suppose 𝐷Λ is fibred.

Then itmust be as in Figure 31. Since the flype𝜙Λ is essential, at least one vertex
of 𝐺(𝐷Λ) in 𝐴′ comes from collapsing a flype circle in 𝐴. By ‘uncollapsing’ all
such vertices in𝐺(𝐷Λ)we see that𝐺(𝐷) decomposes as shown in Figure 37. We



474 JESSICA E. BANKS

𝜙Λ

𝐴 𝐵 𝐴′

Figure 36

can then combine two flype circles as in Figure 15, contradicting our choice of
flype circles. Thus 𝐷Λ is not fibred. □

𝐵1 𝐵2 𝐵𝑛 𝐵

Figure 37

Proposition 5.23. Let 𝐷 be a reduced, special alternating diagram for a prime
link 𝐿, and let 𝑣0 ∈ V(𝒦(𝐷)) be given by 𝐷. Let 𝑣−1, 𝑣1 ∈ V(𝒦(𝐷)) such that
d𝒦(𝐷)(𝑣−1, 𝑣0) = d𝒦(𝐷)(𝑣0, 𝑣1) = 1 and d𝒦(𝐷)(𝑣−1, 𝑣1) = 2. Let 𝑅𝑖 = 𝒜(𝑣𝑖). Then
dMS(𝐿)(𝑅−1, 𝑅1) = 2.

Remark 5.24. This proof requires careful consideration of the relative posi-
tions of the Seifert surfaces in𝕊3 and their interactionwith the projection plane
𝕊2. As such, it is more suited to being drawn in a specific case than described
in words for a general link. Therefore, a worked example is given in Appendix
A.

Proof. Let𝒩(𝐿) denote the regular neighbourhood of 𝐿. Following the proof
of Proposition 3.10, construct an admissible special form at 𝐷 for 𝑅−1 and for
𝑅1. These special forms will each have at least one flype circle. Position each
flype circle with the distance from the positive side of the flype crossing to the
negative side of the flype arc as small as possible. For 𝑖 = ±1, let Λ𝑖 be the
positive side of the flype circles for 𝑅𝑖, and 𝜆𝑖 the negative side. Note that each
of these is a union of regions of 𝜃(𝐷).
Suppose that at least one region of 𝜃(𝐷) lies in Λ−1 ∩ Λ1. As in the proof

of Proposition 3.11, there is at least one region 𝑟 of 𝜃(𝐷) in Λ−1 ∩ Λ1 such
that 𝑟𝜃 is defined at 𝐷. Adding 𝑟 to 𝑣0 gives a new vertex 𝑣′0 in 𝒦(𝐷) with
d𝒦(𝐷)(𝑣−1, 𝑣′0) ≤ 1 and d𝒦(𝐷)(𝑣′0, 𝑣1) ≤ 1. Thus d𝒦(𝐷)(𝑣−1, 𝑣′0) = d𝒦(𝐷)(𝑣′0, 𝑣1) =
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1 since d𝒦(𝐷)(𝑣−1, 𝑣1) = 2. Hence, without loss of generality, we may assume
Λ−1 ∩ Λ1 does not contain any region of 𝜃(𝐷). In particular this means that no
two flype arcs lie on any one edge of 𝜃(𝐷), and neither do two flype crossings.
In addition, we can isotope all flype circles to be mutually disjoint. Also choose
the number of flype circles to be minimal. Denote the set of all flype circles by
Φ.
We wish to apply Proposition 5.2 to 𝑅−1 and 𝑅1 to show that they cannot

be made disjoint. To do so, we must specify precisely how to position them
in 𝕊3 ⧵ 𝒩(𝐿). We will build up a description of the position of each disc in
the constructions of 𝑅−1 and 𝑅1 using the flype circles and the 𝑃–arcs, working
inwards from the edge of the disc. Figure 42 gives an example of the type of
picture we will build up.
First note that 𝜕𝑅−1 = 𝜕𝑅1. Let 𝜌 denote the closure of (𝑅−1 ∩ 𝑅1) ⧵ 𝜕𝑅1.

Since 𝑅−1, 𝑅1 are incompressible and 𝕊3 ⧵𝒩(𝐿) is irreducible, 𝜌 can be made
to consist only of properly embedded arcs. We will arrange that each such arc
is contained in a single disc from the construction of each of 𝑅−1, 𝑅1, with its
endpoints on 𝐿. Let 𝜕𝜌 denote the (as yet undefined) set of endpoints of these
arcs.
Let 𝜆 be a component of 𝜆−1. Create a new diagram 𝐷𝜆 by, for every flype

circle 𝜙 of 𝑅−1 on the boundary of 𝜆, changing 𝐷 as shown in Figure 38a. All
𝑃–arcs in 𝜆 can be copied to𝐷𝜆. If𝐷𝜆 together with the 𝑃–arcs is not connected,

(a)

𝜙

𝐴 𝐵 𝐵′

(b)

𝜓

𝜙

Figure 38

choose a simple closed curve 𝜓 around each component, separating it from the
other components. We can choose these curves to be disjoint and to have min-
imal intersection with the images of the flype circles. As 𝐷 is connected, each
curve 𝜓must run through the image of at least one flype circle of 𝑅−1 as shown
in Figure 38b. Repeat this process for each component of 𝜆−1. Let Ψ be the
union of the flype circles in𝐷 together with those sections of each curve 𝜓 con-
tained in 𝜆−1.
Colour the 𝑃–arcs of 𝑅−1 red, and those of 𝑅1 blue. Also colour the compo-

nents of 𝕊2 ⧵ Ψ. Colour Λ−1 red and Λ1 blue. Colour a component in 𝜆−1 ∩ 𝜆1
blue if it meets Λ1 anywhere along its boundary (that is, if it meets a compo-
nent already coloured blue), and colour it red otherwise. Thus a point 𝑥 on 𝐷
in 𝜆−1 ∩ 𝜆1 is in a blue component of 𝕊2 ⧵ Ψ if there is a path 𝜌 in 𝐷𝜆 from 𝑥 to
a flype circle of 𝑅1, where 𝜆 is the component of 𝜆−1 containing 𝑥, and is in a
red component if no such path exists.
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We now arrange the 𝑃–arcs of each surface. Let 𝑐 be a crossing in 𝐷. Our
positioning of the flype circles ensures that 𝑐 lies in the interior of either 𝜆−1 or
𝜆1, and so it has at least one 𝑃–arc across it on the positive side.

Definition 5.25. Given two special forms, and a crossing 𝑐′ such that the 𝑃–
arcs around 𝑐′ are disjoint, call the 𝑃–arc closest to 𝑐′ on the positive side inside
at 𝑐′, and the other 𝑃–arc(s) on the positive side of 𝑐′ outside.

If 𝑐 only has one 𝑃–arc across it on the positive side, this 𝑃–arc must be po-
sitioned inside to avoid any intersections of 𝑃–arcs. There are three ways that
𝑐 could come to have two 𝑃–arcs across it. One is that 𝑐 lies in the interior of
𝜆−1∩𝜆1. If the corresponding component of 𝕊2 ⧵Ψ has been coloured blue, put
the blue 𝑃–arc outside, and if it is coloured red then put the red 𝑃–arc outside.
The second possibility is that one, but not both, of the 𝑃–arcs across 𝑐 is a flype
arc of a flype circle 𝜙. Without loss of generality, 𝑐 is in the interior of 𝜆−1 and 𝜙
is a flype circle of 𝑅1. Then 𝑐 lies on the positive side of 𝜙, which contradicts the
choice of the position of 𝜙. Hence this case does not occur. The third possibility
is that the white region of 𝐷 on the positive side of 𝑐 is a bigon, and one 𝑃–arc
has been placed on the positive side of 𝑐, while the other 𝑃–arc has been placed
on the negative side of the other crossing. In this case, put the 𝑃–arc that is
paired with 𝑐 on the inside.
Consider a flype circle 𝜙 with flype crossing 𝑐, and the pattern of simple

closed curves in 𝐷 given by 𝜕(𝑅−1 ∩ 𝔹𝑎). Let 𝐶−1 be the curve that runs along
the overcrossing arc at 𝑐. After pushing the endpoints of 𝑃–arcs that lie on 𝜙 to
the positive side of 𝜙, as shown in Figure 39, we see that 𝐶−1 also runs along 𝜌0.
This is because each edge of 𝜃(𝐷) is only crossed by one overcrossing arc. The

𝐶−1 𝜌0
𝜙

𝑐

Figure 39

same is true of the analogous curve 𝐶1 in 𝜕(𝑅1 ∩ 𝔹𝑎).
Suppose 𝜙 is a flype circle of 𝑅−1, so that the positive side of 𝜙 is coloured

red. Then the two points where 𝐶−1 crosses 𝜙 lie on the boundary of the same
component of 𝕊2 ⧵ Ψ in 𝜆−1. Let 𝐴 be the set of all such points where this
component of 𝕊2 ⧵Ψ is coloured blue, and define an involution ⋅̂∶ 𝐴 → 𝐴 such
that if 𝑎1 ∈ 𝐴 then 𝑎1 is the other point of𝐴 on the same flype circle as 𝑎1. Note
that if points 𝑎1, 𝑎2 ∈ 𝐴 lie on the same simple closed curve 𝐶−1 of 𝜕(𝑅−1 ∩𝔹𝑎)
then the pairs 𝑎1, 𝑎1 and 𝑎2, 𝑎2 do not interleave on 𝐶−1.
We would like it to be the case that no two points of 𝐴 lie on the same over-

crossing arc of 𝐷. However, this is not in general true (see, for example, Figure
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40). We therefore create a subset 𝑎 of 𝐴 with a new involution where this does

𝑎1

𝑎1

𝑎2

𝑎2

Figure 40

not occur, as follows. Given points 𝑎1 and 𝑎2 of𝐴 that lie on a single overcross-
ing arc of 𝐷, remove 𝑎1 and 𝑎2 and change the involution to pair 𝑎1 with 𝑎2.
Repeat this as many times as possible. Note that it is possible, as in Figure 40,
to reach a pair where 𝑎1 = 𝑎2. In such a case the two points are simply deleted
from𝐴. Since𝐴 is finite, this process will terminate. Notice that the final result
will not depend on the order in which pairs of points are chosen. Let 𝑎 be the
resulting set of points, and ⋅∶ 𝑎 → 𝑎 the resulting involution. The following
three properties of𝐴 are also true in 𝑎. If 𝑎1 ∈ 𝑎 then 𝑎1 and 𝑎1 lie on the same
curve 𝐶−1 of 𝜕(𝑅−1 ∩𝔹𝑎) and on the same curve 𝐶1 of 𝜕(𝑅1 ∩𝔹𝑎). Additionally,
𝑎1 and 𝑎1 lie on the boundary of the same component of 𝕊2 ⧵ Ψ in 𝜆−1 ∩ 𝜆1.
Furthermore, if 𝑎2 ∈ 𝑎 then the pairs 𝑎1, 𝑎1 and 𝑎2, 𝑎2 do not interleave on
𝐶−1 or on 𝐶1. In addition, 𝑎 has the property that the inside 𝑃–arcs at the two
crossings adjacent to a point of 𝑎 have different colours.
The same process in 𝔹𝑏 gives another set 𝑏 with involution ⋅∶ 𝑏 → 𝑏. We

will end up with 𝜕𝜌 = 𝑎 ∪ 𝑏.
Armedwith these, we next connect the ends of the𝑃–arcs to give the position

of the neighbourhood of the boundary of every disc in the construction of 𝑅−1
and 𝑅1. For each disc, this neighbourhood is an annulus, one boundary compo-
nent of which we have already positioned (as 𝜕𝑅−1 and 𝜕𝑅1 are the same fixed
curve on 𝜕𝒩(𝐿)). We describe the relative positions of the annuli by drawing
on 𝐷 the other boundary curve of each annulus. We will describe this process
in 𝔹𝑎. That in 𝔹𝑏 is analogous.
Consider two crossings 𝑐 and 𝑐′ of𝐷 that are adjacent in𝐷. Suppose the same

colour 𝑃–arc lies inside at each, as shown in Figure 41a. We can then connect
the 𝑃–arcs along the overcrossing arc at 𝑐′ without them crossing (see Figure
41a). Suppose instead that the 𝑃–arcs inside at 𝑐 and 𝑐′ are not the same colour.
Then one of the crossings lies in Λ−1 whereas the other is either in Λ1 or in a
blue region of 𝜆−1 ∪ 𝜆1. Hence exactly one point 𝑎1 of 𝑎 lies between 𝑐 and 𝑐′.
This time we connect the 𝑃–arcs so that the curves created cross once at 𝑎1, as
shown in Figure 41b. Note that, since there are crossings where the blue 𝑃–arc
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(a)

𝑐′
𝑐

(b)

𝑐′
𝑐

Figure 41

is inside, and crossings where the red 𝑃–arc is inside, we know that 𝑎 ≠ ∅. In
this way we can connect all the 𝑃–arcs to form two sets of simple closed curves,
as required. Figure 42 is an example of the result of this process.

Figure 42

Finally we position the interior of each disc of 𝑅−1 and 𝑅1. We may view
those of 𝑅−1 as fixed, and vary those of 𝑅1. In 𝔹𝑎 we wish to arrange the discs
such that an arc of 𝜌 connects points 𝑎1, 𝑎2 ∈ 𝑎 if and only if 𝑎1 = 𝑎2. Recall
that 𝑎1 and 𝑎1 lie on the same curves of 𝜕(𝑅−1 ∩ 𝔹𝑎) and 𝜕(𝑅−1 ∩ 𝔹𝑎) for any
𝑎1 ∈ 𝑎, and for 𝑎3 ∈ 𝑎 the pairs 𝑎1, 𝑎1 and 𝑎3, 𝑎3 do not interleave along these
curves. The same holds in 𝔹𝑏. Thus there is no obstruction to our choice of 𝜌.
This completes the construction of 𝑅−1 ∪ 𝑅1.

It now remains to check that 𝑅−1 and 𝑅1 do not bound a product region.
Then, since 𝑅−1 and 𝑅1 are not disjoint, it follows from Proposition 5.2 that
dMS(𝐿)(𝑅−1, 𝑅1) > 1. Let𝑀 be the complement in 𝕊3 ⧵𝒩(𝐿) of a regular neigh-
bourhood of 𝑅−1 ∪ 𝑅1.
Suppose a component𝑀′ of𝑀 does not meet 𝕊2. Then 𝜕𝑀′ is composed of

sections of the discs in the construction of 𝑅−1 and 𝑅1, with at least one from
each surface. Consider a disc 𝑆 of 𝑅1 that meets 𝜕𝑀′. Then 𝜕(𝑆 ∩ 𝜕𝑀′) is a
collection of simple closed curves in𝑅−1∩𝑅1. Without loss of generality, assume
𝑀′ ⊂ 𝔹𝑎. Then 𝜕(𝑆 ∩ 𝜕𝑀′) is made up of overcrossing arcs of 𝐿 and arcs in 𝜌.
As 𝐿 is not the unknot, any simple closed curve of 𝜕(𝑆 ∩ 𝜕𝑀′) includes both
types of arc. This is not possible, since no overcrossing arc includes more than
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one point of 𝜕𝜌. Hence every component of 𝑀 meets 𝕊2. This means that, in
checking whether any component is a product region, it is enough to consider
those that meet each region of 𝐷.
Consider a point of 𝜕𝜌 on 𝜕𝒩(𝐿). Near this point,𝑀 has three components,

only one of which, 𝑀𝐿, meets 𝜕𝒩(𝐿). On 𝜕𝑀𝐿 we see the pattern shown in
Figure 43. Suppose𝑀𝐿 is a product region between 𝑅−1 and 𝑅1. Then a closed

𝑅−1 𝑅1

𝜕𝒩(𝐿)

𝑅1 𝑅−1

Figure 43

regular neighbourhood of 𝜌 ∪ 𝜕𝒩(𝐿) in 𝜕𝑀𝐿 is of the form 𝜕𝑆𝐿 × I for some
surface 𝑆𝐿, and in particular is a collection of annuli. Since any component of
𝜕𝒩(𝐿) ∩ 𝜕𝑀𝐿 is an annulus, and each endpoint of an arc of 𝜌 lies on 𝜕𝒩(𝐿),
this cannot be the case. Hence𝑀𝐿 is not a product region.
Let 𝑟 be a black region of 𝐷, and let 𝑀𝑟 be the component of 𝑀 that meets

𝑟. Then 𝑀𝑟 meets the Seifert surface 𝑅0. Since 𝑅0 is disjoint from 𝑅−1 ∪ 𝑅1
and connected, 𝑅0 is entirely contained in𝑀𝑟. The manifold𝑀𝐿 also meets 𝑅0.
This shows that𝑀𝑟 = 𝑀𝐿, so𝑀𝑟 is not a product region. The same is true if 𝑟
is instead a section of a white region of 𝐷 that meets 𝐿. We are therefore left to
consider those sections of white regions of 𝐷 that are entirely bounded by 𝑃–
arcs. These components of 𝑀 form sutured manifolds, where the sutures are
𝑅−1 ∩ 𝑅1.
First let 𝑟 be a section of a white region of𝐷 that lies between 𝑃–arcs inΛ−1∪

Λ1, and let𝑀𝑟 be the component of𝑀 that meets it. Let Λ be the component
of 𝕊2 ⧵ Ψ containing 𝑟. Inside Λ, the discs of 𝑅−1 and 𝑅1 are parallel to 𝑅0, and
𝑀𝑟 is isotopic to the complement of 𝑅0 there. As in the proof of Proposition
5.22, we aim to decompose𝑀𝑟 along product discs, and to edit the diagram 𝐷
to find a special alternating link diagram 𝐷′ such that one piece of 𝑀𝑟 is the
complement of the surface given by applying Seifert’s algorithm to 𝐷′. Again
we will see that the link with diagram𝐷′ is not fibred, and hence that𝑀𝑟 is not
a product sutured manifold.
Let 𝑐 be the flype crossing of a flype circle 𝜙 in the boundary of Λ. Let 𝐶−1

be the curve of 𝜕(𝑅−1 ∩ 𝔹𝑎) that crosses 𝑐 and 𝐶1 the corresponding curve of
𝜕(𝑅1 ∩ 𝔹𝑎). Then 𝐶−1 and 𝐶1 also cross the flype arc of 𝜙 together. Let 𝑆𝑖 be
the disc of 𝑅𝑖 ∩ 𝔹𝑎 with boundary 𝐶𝑖 for 𝑖 = ±1. Choose a point 𝑥 on 𝐶−1 ∩ 𝐶1
slightly inside Λ from 𝑐, and a similar point 𝑥′ near the flype arc of 𝜙.
From the construction of𝐴, it is clear that there is no point 𝑎1 ∈ 𝐴 such that

𝑥 and 𝑥′ interleave with 𝑎1 and 𝑎1 on 𝐶−1 or 𝐶1. It follows that there is no point
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𝑎2 ∈ 𝑎 such that 𝑥 and 𝑥′ interleave with 𝑎2 and 𝑎2 on 𝐶−1 or 𝐶1. Therefore
there is a product disc in 𝑀𝑟 between 𝑆−1 and 𝑆1 meeting 𝑅−1 ∩ 𝑅1 at 𝑥 and
𝑥′. Similarly there is a corresponding product disc in 𝑀𝑟 ∩ 𝔹𝑏. Cut 𝑀𝑟 along
these product discs, and retain the component that meets 𝑟. The corresponding
change in𝐷 is to collapse the negative side of 𝜙 to a single crossing, as in Figure
35. After so collapsing all flype circles that bound Λ, we arrive at a diagram 𝐷′

as described above. By the same reasoning as in the proof of Proposition 5.22,
the remaining section of𝑀𝑟 is not a product region, and so𝑀𝑟 is not.
Finally, let 𝑟 be a section of a white region of 𝐷 that lies between 𝑃–arcs in

𝜆−1 ∩ 𝜆1. Then 𝑟 lies between a red 𝑃–arc and a blue 𝑃–arc parallel to it. Let𝑀𝑟
be the component of 𝑀 that meets it. In this case, we show by contradiction
that𝑀𝑟 also meets 𝕊2 in a white region between 𝑃–arcs in Λ−1 ∪Λ1, and hence
it has already been shown to not be a product region.
Suppose𝑀𝑟 does not meet 𝕊2 in any such white region. Let 𝜆 be the compo-

nent of𝕊2⧵Ψ containing 𝑟. Note that every crossing in the interior of 𝜆 has both
a red 𝑃–arc and a blue 𝑃–arc across it on the positive side. Since𝐷 is connected,
there is a path 𝜎, that is contained in𝐷 and the 𝑃–arcs, from 𝑟 to a flype circle 𝜙
on the boundary of 𝜆. If 𝜎 passes between an overcrossing and an undercross-
ing at a crossing 𝑐 in the interior of 𝜆, change it to instead switch between the
two via the 𝑃–arcs across the positive side of 𝑐. After such changes, 𝜎 gives a
path in 𝜕𝑀𝑟.
Given that 𝑀𝑟 does not meet the white region between the 𝑃–arcs on the

other side of the flype crossing or flype arc, the endpoint of 𝜎must be a point of
𝜕𝜌 = 𝑎∪𝑏. From this we see that this is a flype circle of 𝑅−1. It also tells us that
𝜆 is coloured blue, which means there is a path 𝜎, contained in 𝐷𝜆′ with the 𝑃–
arcs, from 𝑟 to a flype circle of 𝑅1, where 𝜆′ is the component of 𝜆−1 containing
𝜆. Again we can make this path run along 𝑃–arcs rather than moving directly
between overcrossings and undercrossings. Our aim is to show that 𝜎 gives a
path in 𝜕𝑀𝑟. Then𝑀𝑟 will meet a white region of 𝐷 between the 𝑃–arcs in Λ1,
contradicting our assumption.
We know that 𝜎 gives a path in 𝜕𝑀𝑟 until it first reaches a flype circle of 𝑅−1,

as 𝐷 and 𝐷𝜆′ are the same in the interior of 𝜆−1. Without loss of generality,
suppose 𝜎 meets a flype circle 𝜙 of 𝑅−1 on an overcrossing arc of 𝐷. There it
meets a point 𝑎1 ∈ 𝑎. Then 𝜕𝑀𝑟 contains the arc of 𝜌 that runs from 𝑎1 to 𝑎1.
Note that the path 𝜎must also run through the point of𝐷𝜆′ that corresponds to
𝑎1. In this way, we can see that 𝜎 defines a path in 𝜕𝑀𝑟 as required. Therefore
𝑀𝑟 is not a product region. □

6. Non-special links
Theorem 1.2 of [5] gives two families of links that illustrate the importance

of assuming, in Theorem 1.4, that the link 𝐿 has a special alternating diagram,
and not just an alternating diagram. These families of links are the subjects of
the next two propositions.
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Proposition 6.1. If 𝐿𝛾𝑛 is the link shown in Figure 44 thenMS(𝐿𝛾𝑛) contains an
(𝑛−1)–simplex in which exactly one vertex is given by applying Seifert’s algorithm
to an alternating diagram.

1 𝑛 − 1 𝑛

Figure 44

Proof. There is only one non-trivial flype possible on the diagram given, and it
is not an essential flype. Hence only one minimal genus Seifert surface, 𝑅, for
𝐿𝛾𝑛 comes from an alternating diagram.
There is a product disc decomposition of 𝑅 that removes the plumbed on

Hopf band. The resulting surface, 𝑅′, is given by applying Seifert’s algorithm to
the special alternating link 𝐿′𝛾𝑛 shown in Figure 45. By Theorem 1.4 the link of
the vertex 𝑅′ inMS(𝐿′𝛾𝑛) is an (𝑛 − 2)–simplex, and so the same is true of 𝑅 in
MS(𝐿𝛾𝑛) by Proposition 5.17. □

1 𝑛 − 1 𝑛

Figure 45

Proposition 6.2. If 𝐿𝛿𝑛 is the link shown in Figure 46 thenMS(𝐿𝛿𝑛) is as shown
in Figure 47, where a white circle represents a surface given by applying Seifert’s
surface to an alternating diagram, and a black circle represents a surface that
cannot be so constructed.

Proof. Again there are no essential flypes of this diagram, so only oneminimal
genus Seifert surface comes from an alternating diagram.
The surface 𝑅𝑚, for 0 ≤ 𝑚 ≤ 𝑛, is the surface given by applying Seifert’s al-

gorithm to the special (but not alternating) diagram𝐷𝑚 shown in Figure 48. In
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1 𝑛

Figure 46

𝑅0 𝑅1 𝑅2 𝑅𝑛−1 𝑅𝑛

Figure 47

Figure 46 wemay see each of the horizontal twisted bands (which are plumbed
on Hopf bands) as lying either above or below the rest of the surface. This does
not change the ambient isotopy class of the Seifert surface because the Hopf
link is fibred. From this we can see that 𝑅0 is the surface shown in Figure 46
(see Figure 49).

1 𝑚 𝑚 + 1 𝑛 1 𝑛

Figure 48

isotopic

surfacesslide slide

band below band above

Figure 49
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Consider the diagram 𝐷0. We can express 𝑅1 on this diagram as a surface in
special form on an alternating diagram, with another surface attached in the
obvious way as shown in Figure 50. Thus we see that 𝑅1 is disjoint from 𝑅0. We

∗

Figure 50

want to show that 𝑅0 ≠ 𝑅1, and that no other minimal genus Seifert surface is
disjoint from 𝑅0. To do this, we show that the link of 𝑅0 inMS(𝐿𝛿𝑛) consists of
only one vertex, and this vertex is 𝑅1.
Thewhite regionmarked ∗ in Figure 50 defines a product disc in the comple-

mentary sutured manifold to 𝑅0. Doing the product disc decomposition gives
the same diagram, but with one fewer twisted bands in the right-hand surface.
After 𝑛 such decompositions, we arrive at a surface 𝑅(𝑛)0 given by just the al-
ternating section of the diagram. By Theorem 1.4 the link of 𝑅(𝑛)0 is a single
vertex. Hence, by repeated application of Proposition 5.17, the link of 𝑅0 is also
a single vertex, as required. By following the constructions in Theorem 1.4 and
Proposition 5.17 we find that this single vertex is 𝑅1.
We now show, for 1 ≤ 𝑚 ≤ 𝑛 − 1, that the link of 𝑅𝑚 is {𝑅𝑚−1, 𝑅𝑚+1}. Again

we find that these surfaces can be expressed as a surface in special form on an
alternating diagram togetherwith a second surface attached in the obviousway,
as shown in Figure 51a and b respectively. Also as before, after 𝑛 product disc
decompositions wemay apply Theorem 1.4, giving that the link of 𝑅(𝑛)𝑚 contains
exactly two vertices and no edges. This shows that the link of 𝑅𝑚 is as required.
It remains to consider the surface 𝑅𝑛. We now know that 𝑅𝑛−1 is in the link

of 𝑅𝑛. Thus we need only show that the link of 𝑅𝑛 contains only one vertex.
Each white bigon region of 𝐷𝑛 defines a product disc in the complement of
𝑅𝑛. Using 𝑛 − 1 such product disc decompositions, removing all but one of
the once-twisted bands, and an isotopy, we arrive at the diagram and surface
shown in Figure 52, where the horizontal twisted band lies above the rest of
the surface. Thus we are interested in a plumbing of two surfaces, 𝑆𝑎 and 𝑆𝑏,
shown in Figure 53. Call the plumbed surface 𝑆𝑎𝑏.
𝑆𝑎 is an annuluswith two full twists, bounding a torus link𝐿𝑎. After𝑛 further

disc decompositions, removing the twisted bands from the right-hand side of
the diagram, 𝑆𝑏 is also reduced to an annulus with two full twists. From this
we see that both 𝑆𝑎 and 𝑆𝑏 are unique minimal genus Seifert surfaces for 𝐿𝑎
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(a)
1 𝑚 𝑚 + 1 𝑛 1 𝑛

(b)
1 𝑚 𝑚 + 1 𝑛 1 𝑛

Figure 51

Figure 52

𝑆𝑎

𝜌𝑎

𝑆𝑏

𝜌𝑏

Figure 53

and 𝐿𝑏 = 𝜕𝑆𝑏 respectively, and also that neither link is fibred. This is enough
to show there is at least one minimal genus Seifert surface for 𝜕𝑆𝑎𝑏 in the link
of 𝑆𝑎𝑏. However, we already knew that such a surface exists (the image of 𝑆𝑛−1
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under the product disc decompositions), and we have not yet shown there are
no others.
To do this, we consider the arcs 𝜌𝑎 and 𝜌𝑏 shown in Figure 53. These should

be seen as lying in the boundary of the complementary sutured manifolds to
the surfaces 𝑆𝑎, 𝑆𝑏. Note that 𝜌𝑎, 𝜌𝑏 both lie on the upper side of the surfaces as
shown. By [7] Proposition 3.4, the proof will be complete if we show that there
is no product disc with either 𝜌𝑎 or 𝜌𝑏 as part of its boundary. Since 𝜌𝑎 and 𝜌𝑏
are essential, any such product disc will be essential. This result is clear for 𝜌𝑎
as there are no essential product discs in the complement of 𝑆𝑎.
As we reduce 𝑆𝑏 to an annulus by product disc decompositions, what is the

effect on 𝜌𝑏? Figure 54 shows the result of the first decomposition. This leaves

Figure 54

two copies of the arc 𝜌′𝑏, the curve in 𝑆
′
𝑏 analogous to 𝜌𝑏 in 𝑆𝑏. Inductively,

we are therefore only concerned with the curve 𝜌(𝑚)𝑏 in 𝑆(𝑚)𝑏 . The final pair(
𝑆(𝑛)𝑏 , 𝜌(𝑛)𝑏

)
is the same as (𝑆𝑎, 𝜌𝑎), so there is no essential product disc with 𝜌

(𝑛)
𝑏

contained in its boundary. By 𝑛 applications of Lemma 5.20, there is no product
disc 𝑇 with 𝜌𝑏 ⊂ 𝜕𝑇. □
Remark 6.3. These two propositions together complete the proof of [5] Theo-
rem 1.2.

7. The realisation of𝐌𝐒(𝑳)
Let 𝐿 again be a prime link with a reduced, special alternating diagram 𝐷.

In this section we turn our attention to Theorem 1.6 of [5], which asserts that
MS(𝐿) is homeomorphic to a ball in ℝ𝑛 for some 𝑛. We will show, firstly, that
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each 𝜃–graph in 𝜃(𝐷) gives us a simplicial complex that is a subdivision of a
single simplex and, secondly, that combining these gives a product simplicial
complex. The results we will use refer to simplicial complexes with a partial
ordering on the vertices. Thus we will need to give such an ordering to the
vertices of𝒦(𝐷).
Note that the simplices of𝒦(𝐷) already have a cyclic ordering on their ver-

tices. We need to break this circle to give a linear order. To do this, pick a region
𝑟 of 𝜃(𝐷). We break each circle in the ordering at the region 𝑟. That is, if 𝑣1 is
obtained from 𝑣0 by adding the region 𝑟 then we remove the relation 𝑣0 < 𝑣1.
Note that the order this gives to the vertices of a face of a simplex matches that
induced by the ordering of the vertices of the whole simplex. This method also
orders the edges of each 𝜃–graph in 𝜃(𝐷).

Imagine cutting up an 𝑛–simplex using cuts parallel to the faces, such that
each edge is cut into 𝑚 equal pieces. It is straight-forward to identify the loca-
tions of the vertices. The following definition sets outwhichhigher-dimensional
simplices need to be included.

Definition 7.1 ([2]). Fix 𝑚, 𝑛 ∈ ℕ, and let 𝑣0,… , 𝑣𝑛 be the (ordered) vertices
of an 𝑛–simplex [𝑣0,… , 𝑣𝑛].
A colour scheme is an 𝑚 × (𝑙 + 1) matrix 𝐗 = (𝑥𝑖𝑗) for some 𝑙 ≤ 𝑛 with

𝑥𝑖𝑗 ∈ {0,… , 𝑛}. In addition, 𝐗 must have pairwise distinct columns, and its
entries must satisfy 𝑥10 ≤ 𝑥11 ≤⋯ ≤ 𝑥1𝑙 ≤ 𝑥20 ≤⋯ ≤ 𝑥𝑚𝑙. For 𝑘 ≤ 𝑙, column
𝑘 of 𝐗 defines a point 𝑣′𝑘 of [𝑣0,… , 𝑣𝑛] by 𝑣

′
𝑘 = (𝑣𝑥1𝑘 +⋯ + 𝑣𝑥𝑚𝑘 )∕𝑚. Thus 𝐗

defines an 𝑙–simplex [𝑣′0,… , 𝑣
′
𝑙 ].

The edgewise subdivision Esd𝑚([𝑣0,… , 𝑣𝑛]) of [𝑣0,… , 𝑣𝑛] is made up of all
simplices given by colour schemes.

Remark 7.2. In [2] Section 3 it is proved that Esd𝑚([𝑣0,… , 𝑣𝑛]) is indeed a
subdivision of [𝑣0,… , 𝑣𝑛].

Proposition 7.3 ([5] Theorem 1.6(1)). Suppose 𝜃(𝐷) consists of a single 𝜃–graph
with 𝑛+1 edges and total weight𝑚. Then𝒦(𝐷) is the edgewise subdivision of an
𝑛–simplex.

That is, themore places there are that we could put a crossing, the higher the
dimension of the simplex, and themore crossingswe have to distribute between
those places, the finer the subdivision.

Proof. Fix a region 𝑟0 of 𝜃(𝐷) to give an ordering on the vertices of 𝒦(𝐷) as
above (note that in this case �̃�(𝐷) is 𝜃(𝐷)). Label the edges of 𝜃(𝐷) as 𝑒0,… , 𝑒𝑛
where 𝑒0 < 𝑒1 < ⋯ < 𝑒𝑛. Label the other regions of 𝜃(𝐷) in order around the
𝜃–graph in the positive direction, so that 𝜕−𝑟𝑖 = 𝑒𝑖−1 and 𝜕+𝑟𝑖 = 𝑒𝑖.
Let 𝑣0,… , 𝑣𝑛 be the (ordered) vertices of an 𝑛–simplex [𝑣0,… , 𝑣𝑛]. Given a

vertex 𝑢 = (𝑤0,… , 𝑤𝑛) of 𝒦(𝐷), we may define an 𝑚 × 1 matrix 𝐗 = (𝑥𝑖𝑗) by
taking 𝑥𝑖0 = 𝑘 where

∑
𝑗<𝑘 𝑤𝑗 < 𝑖 ≤

∑
𝑗≤𝑘 𝑤𝑗. That is, the number of times 𝑘

occurs in𝐗 is theweight that𝑢 assigns to 𝑒𝑘, and the entries of𝐗 are arranged so
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as to be non-decreasing. The matrix 𝐗 is then a colour scheme, and so defines
a vertex of Esd𝑚([𝑣0,… , 𝑣𝑛]). Thus there is a map 𝐵 from the vertices of𝒦(𝐷)
to the vertices of Esd𝑚([𝑣0,… , 𝑣𝑛]). It is clear that 𝐵 is a bijection. We will show
that 𝐵 induces a bijection on the 𝑛–simplices of the two complexes. This will
complete the proof as in each of the complexes every simplex is a face of an
𝑛–simplex.
Let 𝑢0,… , 𝑢𝑛 be the vertices of an 𝑛–simplex in 𝒦(𝐷) with 𝑢0 < 𝑢1 < ⋯ <

𝑢𝑛. Then there is a permutation 𝜋∶ {1,… , 𝑛} → {1,… , 𝑛} such that 𝑢𝑖 is ob-
tained from 𝑢𝑖−1 by adding the region 𝑟𝜋(𝑖). Let 𝐗 be an 𝑚 × (𝑛 + 1) matrix,
where column 𝑘 of 𝐗 is the column vector defined by 𝑢𝑘 in the construction of
the map 𝐵. The column vectors from 𝑢𝑘 and 𝑢𝑘+1 differ exactly in one coordi-
nate, which changes from 𝜋(𝑘) − 1 to 𝜋(𝑘). Because 𝑢0,… , 𝑢𝑛 is an 𝑛–simplex,
we also know that 𝑢0 is obtained from 𝑢𝑛 by adding 𝑟0. This has the effect of
dropping the last coordinate of the column vector, moving the remaining en-
tries down one place, and inserting a 0 in the top coordinate. Hence 𝐗 is a
colour scheme defining an 𝑛–simplex of Esd𝑚([𝑣0,… , 𝑣𝑛]).
Conversely, choose an 𝑛–simplex of Esd𝑚([𝑣0,… , 𝑣𝑛]) and let𝐗 be the colour

scheme defining it. Let 𝑢𝑘 be the vertex of𝒦(𝐷) given by column 𝑘 of 𝐗. That
is, 𝑢𝑘 assigns a weight of 1 to 𝑒𝑖 for each time 𝑖 occurs in the column vector. As
the columns of 𝐗 are pairwise distinct, at least one element changes between
𝑢𝑘 and 𝑢𝑘+1. The ordering of the values of the elements of 𝐗 ensure this is
an increase in each case, and that the sum of the sizes of these increases is
at most 𝑛. Thus exactly one coordinate increases between 𝑢𝑘 and 𝑢𝑘+1 and
this coordinate increases by 1. Moreover, for each 𝑘 ≤ 𝑛, exactly one of these
changes is from 𝑘 − 1 to 𝑘, and 𝑥(𝑘−1)𝑛 = 𝑥𝑘0 for 1 < 𝑘 ≤ 𝑚 while 𝑥10 = 0
and 𝑥𝑚𝑛 = 𝑛. Define a permutation 𝜋∶ {1,… , 𝑛} → {1,… , 𝑛} by 𝜋(𝑗) = 𝑘 if
the move from 𝑢𝑗−1 to 𝑢𝑗 sees a coordinate change from 𝑘 − 1 to 𝑘. Then 𝑢𝑗
is obtained from 𝑢𝑗−1 by adding the region 𝑟𝜋(𝑗) for 𝑗 ≤ 𝑛 and adding 𝑟0 to 𝑢𝑛
gives 𝑢0. This shows that 𝑢0,… , 𝑢𝑛 span an 𝑛–simplex in𝒦(𝐷).
Each of these two maps is an injection, as simplices are defined by their ver-

tices. As there are only finitely many 𝑛–simplices in either complex, bothmaps
are therefore bijections. □
Definition 7.4 ([3] Chapter II Definition 8.7). A simplicial complex 𝒳 is or-
dered if there is a binary relation ≤ on the vertices of 𝒳 with the following
properties.
(P1) (𝑢 ≤ 𝑣 and 𝑣 ≤ 𝑢) ⇒ 𝑢 = 𝑣.
(P2) If 𝑢, 𝑣 are distinct, (𝑢 ≤ 𝑣 or 𝑣 ≤ 𝑢)⇔ 𝑢 and 𝑣 are adjacent.
(P3) If 𝑢, 𝑣, 𝑤 are vertices of a 2–simplex then (𝑢 ≤ 𝑣 and 𝑣 ≤ 𝑤) ⇒ 𝑢 ≤ 𝑤.

Remark 7.5. It is clear that in searching for such a relation we may use the
following weaker version of (P2).
(P2)′ If 𝑢, 𝑣 are adjacent then (𝑢 ≤ 𝑣 or 𝑣 ≤ 𝑢).

To see this, note that we can remove all relationships between non-adjacent
vertices.
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Definition 7.6 ([3] Chapter II Definition 8.8). Let𝒳1,𝒳2 be ordered simplicial
complexes. We define the simplicial complex 𝒳1 × 𝒳2. Its vertices are given
by the set V(𝒳1) ×V(𝒳2). Vertices (𝑢0, 𝑣0),… , (𝑢𝑛, 𝑣𝑛) span an 𝑛–simplex if the
following hold.

∙ {𝑢0,… , 𝑢𝑛} is an𝑚–simplex of 𝒳1 for some𝑚 ≤ 𝑛.
∙ {𝑣0,… , 𝑣𝑛} is an𝑚–simplex of 𝒳2 for some𝑚 ≤ 𝑛.
∙ The relation defined by (𝑢, 𝑣) ≤ (𝑢′, 𝑣′) ⇔ (𝑢 ≤ 𝑢′ and 𝑣 ≤ 𝑣′) gives a
total linear order on (𝑢0, 𝑣0),… , (𝑢𝑛, 𝑣𝑛).

Remark 7.7. The projection maps on the vertices extend to simplicial maps of
the complexes.

Theorem 7.8 ([3] Chapter II Lemma 8.9). The map |𝒳1 × 𝒳2| → |𝒳1| × |𝒳2|
induced by projection is a homeomorphism.

Remark 7.9. With the ordering on the vertices defined above, 𝒦(𝐷) is an or-
dered simplicial complex.

Theorem 7.10 ([5] Theorem 1.6(2)). The realisation |𝒦(𝐷)| of𝒦(𝐷) is home-
omorphic to a ball of dimension

∑
(𝑛𝜃(𝑒𝜃) − 1), where the sum is taken over all

𝜃–graphs 𝑒𝜃 in 𝜃(𝐷) and 𝑛𝜃(𝑒𝜃) is the number of edges in 𝑒𝜃.

Proof. We proceed by induction on the number of 𝜃–graphs in 𝜃(𝐷). If there
are no 𝜃–graphs then𝒦(𝐷) is a single vertex. The case of one 𝜃–graph is covered
by Proposition 7.3.
The construction of the simplicial complex𝒦(𝐷) is dependent only on �̃�(𝐷)

together with a choice of positive direction and total weight on each 𝜃–graph.
Let Θ be the set of such graphs. That is, each element of Θ is a finite collection
of disjoint 𝜃–graphs in 𝕊2, with a choice of positive direction and total weight
on each. Then for every such graph 𝜃 we can construct a simplicial complex
𝒦(𝜃). It is on this set of complexes that we will induct. Note that the base cases
hold in this more general setting.
Now suppose that the result holds for all elements ofΘwith at most (𝑚−1)

𝜃–graphs. Let 𝜃0 be one with 𝑚 𝜃–graphs. Choose a region 𝑟 of 𝕊2 ⧵ 𝜃0 that
meets at least two 𝜃–graphs, and pick a simple closed curve 𝜌 contained in 𝑟
that separates the 𝜃–graphs of 𝜃0. This gives two new elements of Θ, each with
at most (𝑚 − 1) 𝜃–graphs. Call these 𝜃1, 𝜃2. Use the region 𝑟 to order the ver-
tices of𝒦(𝜃),𝒦(𝜃1),𝒦(𝜃2) as above. Then, by Theorem 7.8, |𝒦(𝜃1)×𝒦(𝜃2)| ≅
|𝒦(𝜃1)|×|𝒦(𝜃2)|. The inductive hypothesis gives that |𝒦(𝜃1)|, |𝒦(𝜃2)| are balls
of the relevant dimension, and so the result holds for |𝒦(𝜃1) ×𝒦(𝜃2)|.
It remains to show that𝒦(𝜃1) ×𝒦(𝜃2) is𝒦(𝜃0). Clearly the obvious map on

the vertices is a bijection. Again we will check that it induces a bijection on the
top-dimensional simplices.
Consider an ordered 𝑛–simplex [𝑤0,… , 𝑤𝑛] in 𝒦(𝜃0). Then 𝑤0 assigns a

weight to each edge of 𝜃0. There is an ordering of the regions of 𝕊2 ⧵ 𝜃0 with
𝑟 last such that the vertices of [𝑤0,… , 𝑤𝑛] are given by adding these regions
in turn in order. This induces similar orderings of the regions of 𝕊2 ⧵ 𝜃𝑖. For
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0 ≤ 𝑖 ≤ 𝑛, write 𝑤𝑖 = (𝑢𝑖, 𝑣𝑖), where 𝑢𝑖 gives the weights on the edges of 𝜃1 and
𝑣𝑖 gives the weights on the edges in 𝜃2. If 𝑖 < 𝑗 then 𝑢𝑖 ≤ 𝑢𝑗 and 𝑣𝑖 ≤ 𝑣𝑗. Thus
[(𝑢0, 𝑣0),… , (𝑢𝑛, 𝑣𝑛)] is a simplex in𝒦(𝜃1) ×𝒦(𝜃2).
Conversely, consider an 𝑛–simplex [(𝑢0, 𝑣0),… , (𝑢𝑛, 𝑣𝑛)] in 𝒦(𝜃1) × 𝒦(𝜃2),

where the 𝑢𝑖 are vertices of 𝒦(𝜃1), the 𝑣𝑖 are vertices of 𝒦(𝜃2) and (𝑢0, 𝑣0) <
(𝑢1, 𝑣1) < ⋯ < (𝑢𝑛, 𝑣𝑛). For 0 < 𝑖 ≤ 𝑛, as 𝑢𝑖−1 ≤ 𝑢𝑖, either 𝑢𝑖−1 = 𝑢𝑖 or
𝑢𝑖 is given by adding some regions of 𝕊2 ⧵ 𝜃1 other than 𝑟 to 𝑢𝑖−1. Similarly,
either 𝑣𝑖−1 = 𝑣𝑖 or 𝑣𝑖 is given by adding some regions of 𝕊2 ⧵ 𝜃2 other than 𝑟
to 𝑣𝑖−1. Since there are only 𝑛 regions of 𝕊2 ⧵ 𝜃0 other than 𝑟, for 0 < 𝑖 ≤ 𝑛
either 𝑢𝑖 = 𝑢𝑖−1 and 𝑣𝑖 is given by adding a single region to 𝑣𝑖−1 or instead
𝑣𝑖 = 𝑣𝑖−1 and 𝑢𝑖 is given by adding a single region to 𝑢𝑖−1. Because [𝑢0,… , 𝑢𝑛]
is a simplex in𝒦(𝜃1), adding 𝑟 to 𝑢𝑛 gives 𝑢0. Likewise, adding 𝑟 to 𝑣𝑛 gives 𝑣0.
Thus there is an ordering on the regions of 𝕊2 ⧵ 𝜃0 with 𝑟 last that shows that
[(𝑢0, 𝑣0),… , (𝑢𝑛, 𝑣𝑛)] is an 𝑛–simplex in𝒦(𝜃0). □

Appendix A. Proof by picture: an example of Proposition 5.23
Let 𝐿𝜀 be the link with minimal genus Seifert surfaces 𝑅−1 and 𝑅1 given in

admissible special form in Figure 55a and b respectively. We show the steps of
the proof of Proposition 5.23 in this case, as follows.

i. Construct aminimal set of flype circles. Performflypes to removeΛ−1∩
Λ1. Change flype circles to equivalent ones where needed. This gives
Figure 55c.

ii. For each region 𝜆 of 𝜆−1, construct the diagram 𝐷𝜆 and, if it has more
than one component, choose a curve 𝜓 around each component. The
two new diagrams are shown in Figure 56a and b.

iii. Colour the components of𝕊2⧵Ψ. Define𝑎 and 𝑏, and the corresponding
involutions. See Figure 56c (the pairs of points in 𝑎 are marked with
stars).

iv. Position the 𝑃–arcs and connect them. Figure 57 shows the resulting
picture in 𝔹𝑎.
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(a)

(b)

(c)

Figure 55
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(a)

(b)

(c) red blue

Figure 56
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Figure 57
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