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On families of imaginary abelian �elds with
pseudo-null unrami�ed Iwasawa modules

Satoshi Fujii

Abstract. Let p be a prime number. We show that, there exists an in�nite
family of imaginary abelian �elds such that, the Iwasawamodule of the max-
imal multiple ℤp-extension is non trivial and pseudo-null for each �eld in
the family. We also discuss on an application to non-abelian Iwasawa theory
in the sense of Ozaki.
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1. Introduction
All algebraic extensions of the �eld of rational numbersℚ are assumed to be

contained in a �xed algebraic closure of ℚ. Let k∕ℚ be a �nite extension. For
a prime number p, letℤp be the ring of p-adic integers. Let k̃ be the composite
�eld of all ℤp-extensions of k. Then, by theorem 3 of [Iwa73] (see also theo-
rem 13.4 of [Was97]), there exists a non negative integer � such that Gal(k̃∕k)
is isomorphic to ℤr2+1+�

p as a topological group, here r2 denotes the number of
complex primes of k. We should remark that if Leopoldt’s conjecture for p and
k holds then � = 0. It is known from Brumer’s result [Bru67] that if k is con-
tained in an abelian extension of an imaginary quadratic �eld then Leopoldt’s
conjecture for p and k holds, and hence k̃∕k is a ℤr2+1

p -extension.
Let Lk̃∕k̃ be the maximal unrami�ed abelian pro-p extension and put Xk̃ =

Gal(Lk̃∕k̃), which is often called the unrami�ed Iwasawa module of k̃. The
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Galois group Gal(k̃∕k) acts on Xk̃ via the inner automorphism, and then, the
complete group ring

Λ = ℤp[[Gal(k̃∕k)]] = lim←,,
k⊆k′⊆k̃,[k′∶k]<∞

ℤp[Gal(k′∕k)]

ofGal(k̃∕k)with coe�cients inℤp acts onXk̃, the projective limit is taken with
respect to restriction maps of Galois groups. It is shown that Xk̃ is a �nitely
generated torsion Λ-module, see theorem 1 of [Gre73]. A �nitely generated
torsion Λ-module M is called pseudo-null if the annihilator ideal of M over
Λ is not contained in any height one prime ideals of Λ, and write M ∼ 0 for
pseudo-null Λ-modulesM. For example,M = 0 is a pseudo-null module since
the annihilator ideal of 0 is Λ. In [Gre01], Greenberg proposed the following
conjecture.
Conjecture (Greenberg’s generalized conjecture, [Gre01]). For each prime
number p and each number �eld k, it holds that Xk̃ ∼ 0.

In [Gre76], Greenberg originally proposed so called Greenberg’s conjecture
(GC for short), which asserts the �niteness of the unrami�ed Iwasawa mod-
ule of the cyclotomic ℤp-extension of totally real �elds. Thereafter, Greenberg
proposed the above conjecture. Forℤp-extensions, on the unrami�ed Iwasawa
module, it is well known that the �niteness is equivalent to the pseudo-nullity.
If Leopoldt’s conjecture holds for a totally real �eld k and a prime number
p, then the cyclotomic ℤp-extension is the unique ℤp-extension of k. Hence,
Greenberg’s generalized conjecture (GGC for short) is in fact a generalization
of GC in this sense. No counterexamples of GC and GGC have been found yet.

In this article, we will discuss on families of prime numbers p and number
�elds k such thatXk̃ ∼ 0. As wewill see in section 2, it has been shown that, for
each prime number p, there exist in�nitely many imaginary quadratic �elds k
such that Xk̃ = 0. The main result of this article is as follows.

Main Theorem (Theorem 2.7 of Section 2). Let p be a prime number.
Then there exist in�nitely many imaginary abelian �elds k such that Xk̃ ≠ 0 and
Xk̃ ∼ 0.

From theorem 1 of [Oza04], for each prime number p, there exist in�nitely
many cyclotomicℤp-extensions k∞ of totally real �elds k such that the Iwasawa
module of k∞∕k is non trivial and �nite, namely pseudo-null. In fact Ozaki has
obtained a much stronger conclusion about the structure of Iwasawa modules.
Although we cannot mention on the structure of Xk̃ here, we will prove that
at least there is an in�nite family of imaginary abelian �elds with non trivial
pseudo-null Iwasawa modules.

2. Examples of prime numbers and number �elds
In this section, �rst, we introduce some results (propositions 2.2, 2.5, and

2.6, and corollary 2.3), which can be deduced directly from combining known
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results. Second we present our main result (theorem 2.7). Let ℎk be the class
number of a number �eld k. Let P be a prime number or a �nite prime of a
number �eld. When P divides an integer b we write P ∣ b, if not, we write
P ∤ b.

Lemma 2.1 (See [Iwa56]). Let p be a prime number. Let L∕K be a �nite p-
extension of a �nite extension K∕ℚ. Suppose that L∕K is rami�ed at only one
prime of K and is totally rami�ed. If p ∤ ℎK then p ∤ ℎL.

Let p be a prime number. It is known thatXk̃ is also de�ned to be the projec-
tive limit with respect to the norm maps of the p-Sylow subgroups of the ideal
class groups of intermediate �elds k′ of k̃∕k which are �nite over k. Hence if
p ∤ ℎk′ for each k′ then Xk̃ = 0. Assume that the prime number p does not
split in k∕ℚ and p ∤ ℎk. Then, k̃∕k is totally rami�ed at the unique prime of k
lying above p. By lemma 2.1 and p ∤ ℎk, we have p ∤ ℎk′ . Hence we have the
following.

Proposition 2.2. Let p be a prime number and k∕ℚ a �nite extension. If p does
not split in k∕ℚ and if p ∤ ℎk, then Xk̃ = 0. In particular, Xk̃ ∼ 0.

Let k∕ℚ be a �nite cyclic extension. There exist in�nitely many prime num-
bers p such that, p does not divide the discriminant of k, p ∤ ℎk, and that the
Frobenius of p in k∕ℚ generatesGal(k∕ℚ). For such prime numbers p, it holds
that Xk̃ = 0 by proposition 2.2. Thus we have the following.

Corollary 2.3. Let k∕ℚ be a �nite cyclic extension. Then there exist in�nitely
many prime numbers p such that Xk̃ = 0.

In the rest of Section 2, we discuss on the existence of families of number
�elds with pseudo-null Iwasawa modules for each prime number. Minardi
proved the following result.

Proposition 2.4 (Minardi [Min86]). Let p be a prime number and k an imagi-
nary quadratic �eld. If p ∤ ℎk, then Xk̃ ∼ 0.

In particular, if k is an imaginary quadratic �eld of class number 1, then
Xk̃ ∼ 0 for all prime numbers p.

Letp = 2. ByDirichlet’s theorem, there exist in�nitelymany prime numbers
q such that q ≡ 7 mod 8. Put k = ℚ(

√
−q). Then, the prime 2 splits in k, and

by genus theory we have 2 ∤ ℎk. Let p = 3. By Nakagawa–Horie’s theorem
[NH88], there exist in�nitely many imaginary quadratic �elds k such that the
prime 3 splits in k and that 3 ∤ ℎk. Let p ≥ 5. By Horie–Ônishi’s theorem
[HO88], there exist in�nitely many imaginary quadratic �elds k such that the
prime p splits in k and that p ∤ ℎk. Therefore, for each prime number p, there
exist in�nitely many of imaginary quadratic �elds k in which p splits such that
p ∤ ℎk. We then have the following by proposition 2.4.

Proposition 2.5. Let p be a prime number. Then, there exist in�nitely many
imaginary quadratic �elds k such that p splits in k and that Xk̃ ∼ 0.
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By the way, in general, to understand whether Xk̃ = 0 or not is di�cult. For
each prime number p, we can �nd an in�nite family of imaginary quadratic
�elds k inwhichp splits such thatXk̃ = 0. Let �p(k) be the Iwasawa �-invariant
of the cyclotomic ℤp-extension of k. When p = 2, let q be a prime number
with q ≡ 7 mod 16 and let k = ℚ(

√
−q). As explained in the above, the prime

number 2 splits in k, and it holds that 2 ∤ ℎk. By the result proved by Ferrero
[Fer80] and by Kida [Kid79] independently, it holds that �2(k) = 1. For odd
prime numbers p, thanks to works of Jochnowitz [Joc94], Byeon [Bye05] and
Ito [Ito15], we can see that there exist in�nitelymany imaginary quadratic �elds
k in which p splits such that �p(k) = 1. It is known that, if a prime number p
splits in an imaginary quadratic �eld k and if �p(k) = 1, thenXk̃ = 0. Thus, we
have the following.

Proposition 2.6. Letp be aprimenumber. Then there exist in�nitelymany imag-
inary quadratic �elds k in which p splits such that Xk̃ = 0.

Weare then interested in �nding families of number �elds k such thatXk̃ ≠ 0
and Xk̃ ∼ 0. In this article, we show the following.

Theorem 2.7. Let p be a prime number. Then there exist in�nitely many imagi-
nary abelian �elds k such that Xk̃ ≠ 0 and Xk̃ ∼ 0.

Some results on su�cient conditions of the pseudo-nullity of Xk̃ for abelian
�elds or CM-�elds k under elementary situations have been obtained, see
[Min86], [Itoh11] and [Fuj17]. However, as stated in the above, even if we know
the pseudo-nullity ofXk̃, further to knowwhetherXk̃ = 0 or not is basically dif-
�cult. Hence, the author thinks that what the existence of families of imaginary
abelian �elds of theorem 2.7 are guaranteed is important in the study of GGC.
As we will see in the proof of theorem 2.7, we choose k as imaginary quadratic
�elds if p = 2, and as imaginary cyclic �elds of degree 2p if p > 2. For each
odd prime number p, to �nd an in�nite family of imaginary quadratic �elds k
such that Xk̃ ≠ 0 and Xk̃ ∼ 0 is an interesting problem.

In section 3, we will give the proof of theorem 2.7. In section 4, we will give
an application to non-abelian Iwasawa theory in the sense of Ozaki [Oza07].

3. Proof of theorem 2.7
In this section, we prove theorem 2.7. For a number �eld K and a prime

number p, let K∞∕K be the cyclotomic ℤp-extension and �p(K) the Iwasawa
�-invariant of K∞∕K. We need the following well known lemma.

Lemma3.1. Letp be a primenumber andK∕ℚa�nite extension. Suppose thatp
splits completely in K∕ℚ. Then K̃∕K∞ is an unrami�ed abelian pro-p extension.

Proof. Let p be a prime of K lying above p and I the inertia subgroup of p
in K̃∕K. Then p is unrami�ed in K∕ℚ and has degree 1. This implies that
I ≃ ℤp. SinceK∞ = Kℚ∞ andℚ∞∕ℚ is totally rami�ed at p,K∞∕K is rami�ed
at p. Thus the restriction map I → Gal(K∞∕K) is injective, and hence K̃∕K∞ is
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unrami�ed at all primes lying above p. Since K̃∕K is unrami�ed outside primes
lying above p, we can conclude that K̃∕K∞ is unrami�ed at all primes. �

First, suppose that p = 2. Let q be a prime number such that q ≡ 15 mod 16
and put k = ℚ(

√
−q). Then, the prime 2 splits in k, and by genus theory, we

have 2 ∤ ℎk. Thus Xk̃ is a pseudo-null Λ-module by proposition 2.4. Further-
more, by the result of Ferrero [Fer80] and Kida [Kid79], it holds that �2(k) ≥ 3.
Since k̃∕k∞ is an unrami�ed ℤ2-extension by lemma 3.1, there is a surjective
morphism Xk̃ → ℤ2

2. Therefore it holds that Xk̃ ≠ 0.
Next, suppose that p ≥ 3. We show the following.

Theorem 3.2. Let p be an odd prime number. Then there exist in�nitely many
imaginary cyclic �elds k of degree 2p inwhichp splits completely such thatXk̃ ≠ 0
and Xk̃ ∼ 0.

In principle, for each odd prime number p, we can �nd an imaginary abelian
�eld k which satis�es the conditions of theorem 3.2.

Fromhere, we begin the proof of theorem3.2. Letp be an odd prime number.
We need the following.

Proposition 3.3 (Theorem 1 of [Fuj17]). Let p be an odd prime number, k a
CM-�eld of degree greater than 2 and k+ the maximal totally real sub�eld of k.
Suppose that, the prime number p splits completely in k∕ℚ, p ∤ ℎk, and all of the
Iwasawa �-, �- and �-invariants of the cyclotomic ℤp-extension k+∞ of k+ are 0.
Then Xk̃ ∼ 0.

Remark 3.4. (1) In [Itoh11], Itoh showed a result for quartic imaginary abelian
�elds precisely analogous to proposition 2.4. Proposition 3.3 is a generalization
of Itoh’s result.
(2) In theorem 1 of [Fuj17], the author put the assumption that Leopoldt’s con-
jecture holds for p and k+. The author must remark here that, if an odd prime
number p splits completely in k+∕ℚ, Leopoldt’s conjecture for p and k+ is im-
plied by the vanishing of Iwasawa invariants � and � of k+∞∕k+, that is, GC for
p and k holds. For this, see proposition 1 of [Oza97]. Hence, in theorem 1 of
[Fuj17], the assumption on Leopoldt’s conjecture is not needed.

By proposition 3.3, to prove theorem 3.2, it su�ces to �nd in�nitely many
imaginary abelian �elds k of degree 2p which satisfy the conditions of propo-
sition 3.3 and Xk̃ ≠ 0.

When p = 3, putF = ℚ(
√
−47). It is known that ℎF = 5 (the author checked

by using Pari/gp [Par18]). When p ≥ 5, By Horie-Ônishi’s result [HO88], there
is an imaginary quadratic �eld F such that the prime p splits in F∕ℚ and that
p ∤ ℎF . Alternatively, Ito [Ito15] showed that the class numbers of imaginary
quadratic �elds ℚ(

√
1 − p) and ℚ(

√
4 − p) are not divisible by p, see lemma

2.4 of [Ito15], hence we can choose F asℚ(
√
1 − p) orℚ(

√
4 − p). We �x once

such an imaginary quadratic �eld F for each odd prime number p.
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For a positive integer n, let �n be the group of n-th roots of unity. For each
non-negative integer n and a number �eld K, let Kn be the n-th layer of the
cyclotomic ℤp-extension K∞∕K.

Lemma 3.5. Restrictions of Galois groups induce the following isomorphism

Gal(Fℚ1ℚ(�p, p
√
p)∕ℚ) ≃ Gal(F∕ℚ) × Gal(ℚ1∕ℚ) × Gal(ℚ(�p, p

√
p)∕ℚ),

whereℚ1 denotes the 1-st layer of the cyclotomic ℤp-extension ofℚ.

Proof. Since [F ∶ ℚ] = 2 and [ℚ1 ∶ ℚ] = p > 2, it holds that F ∩ ℚ1 = ℚ.
Note that ℚ(�p)∕ℚ is abelian and ℚ(�p, p

√
p)∕ℚ is non-abelian. This implies

that
(Fℚ1) ∩ℚ(�p, p

√
p) = (Fℚ1) ∩ℚ(�p).

Since [ℚ(�p) ∶ ℚ] = p − 1, it holds that ℚ1 ⊈ (Fℚ1) ∩ ℚ(�p). By the choice
of F, if F ⊆ (Fℚ1) ∩ ℚ(�p), then F is a sub�eld of ℚ(�p) decomposed at p.
This is a contradiction because ℚ(�p)∕ℚ is totally rami�ed at p. Hence F ⊈
(Fℚ1) ∩ℚ(�p). Therefore, it holds that

(Fℚ1) ∩ℚ(�p, p
√
p) = (Fℚ1) ∩ℚ(�p) = ℚ.

This completes the proof. �

By theChebotarev density theoremand lemma3.5, there exist in�nitelymany
prime numbers l such that all of the following three conditions are satis�ed:

(1) l is inert in F∕ℚ,
(2) l is inert in ℚ1∕ℚ,
(3) l splits completely in ℚ(�p, p

√
p)∕ℚ.

We �x once such a prime number l. For a �nite prime q of a number �eld,
we identify �nite primes and prime numbers when a number �eld is ℚ, let Fq
be the residue class �eld at q.

Lemma 3.6. A prime number l splits completely inℚ(�p, p
√
p)∕ℚ if and only if

the following two conditions are satis�ed.
∙ l ≡ 1 mod p.
∙ p mod l ∈ (F×l)

p.

Proof. Let L be a prime of ℚ(�p) lying above l. The prime number l splits
completely inℚ(�p) if and only if l ≡ 1 mod p. The prime L splits completely
in ℚ(�p, p

√
p) if and only if the equation Xp − p ≡ 0 mod L has a root in FL

since ℚ(�p, p
√
p)∕ℚ(�p) is unrami�ed at L. This assertion is equivalent to that

p mod L ∈ (F×L)
p. Since L has degree 1, we have Fl ≃ FL. Hence p mod L ∈

(F×L)
p if and only if p mod l ∈ (F×l)

p. �

By the condition (3) and lemma 3.6, there is the unique sub�eld k+ ofℚ(�l)
such that [k+ ∶ ℚ] = p in which p splits completely. Since k+∕ℚ is unrami�ed
outside l, it holds that p ∤ ℎk+ by lemma 2.1.
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Let n ≥ 0 be an integer. It is well known that p ∤ ℎℚn by lemma 2.1. By the
condition (2), the prime l remains a prime of ℚn for each n. Since k+n ∕ℚn is
rami�ed at only the unique prime of ℚn lying above l, it holds that p ∤ ℎk+n by
lemma 2.1 for all n. This implies that all of Iwasawa invariants �, � and � of
k+∞∕k+ are 0.

Put k = Fk+. From the choices of F and k+, p splits completely in k∕ℚ.
From the condition (1), the prime l is inert in F∕ℚ. Since k∕F is rami�ed
at only the unique prime of F lying above l and since p ∤ ℎF , it holds that
p ∤ ℎk by lemma 2.1. By combining all of the above arguments, we have seen
that the imaginary cyclic �eld k of degree 2p satis�es all of the assumptions of
proposition 3.3.

Finally, we show that Xk̃ ≠ 0. Since p splits completely in k∕ℚ, Leopoldt’s
conjecture holds for k andp, and since [k ∶ ℚ] = 2p, by lemma 3.1, it holds that
k̃∕k∞ is an unrami�edℤp

p-extension. Suppose that p = 3. By usingMizusawa’s
software [MizWeb], we �nd that �3(F) = �3(ℚ(

√
−47)) = 2. By Kida’s formula

[Kid80], one sees that �3(k) = 6. As stated in the above, it holds that k̃∕k∞
is an unrami�ed ℤ3

3-extension, and therefore, there is a surjective morphism
Xk̃ → ℤ3

3. In particular, we have Xk̃ ≠ 0.
Suppose that p > 3. For an algebraic extension K∕ℚ and a prime number p,

let XK be the Galois group of the maximal unrami�ed abelian pro-p extension
of K. When K∕ℚ is �nite, let  be a topological generator of Gal(K∞∕K), and
put R = ℤp[[Gal(K∞∕K)]]. We need the following two lemmas.

Lemma 3.7. Let p be a prime number and let K∕ℚ be a �nite extension. Let
r1 and r2 be the number of real primes and the number of complex primes of K
respectively. For each non negative integer n, let En be the unit group of Kn. Let
E = lim←,,n En ⊗ ℤp be the projective limit of modules En ⊗ ℤp with respect to the
normmaps. Suppose thatK∞∕K is totally rami�ed at all primes ofK lying above
p. Then the ℤp-rank of E∕( − 1)E is r1 + r2.

Remark 3.8. Lemma 3.7 can be deduced from theorem 10.3.25 and theorem
11.3.11 of [NSW08]. Because we need only to know the ℤp-rank of E∕( − 1)E
here, we prefer to prove lemma 3.7 brie�y.

Proof. For a R-moduleM, letMGal(K∞∕K) be the maximal submodule ofM on
which Gal(K∞∕K) acts trivially. For each non negative integer n, let Upn be
the principal local unit group at a prime pn of Kn lying above p, and let U =
lim←,,n⊕pn∣pUpn be the projective limit of modules ⊕pn∣pUpn with respect to the
normmaps. By theorem 25 of [Iwa73], we can see thatU is a �nitely generated
R-module of rank [K ∶ ℚ] = r1 + 2r2, and UGal(K∞∕K) = 0. Let X be the Galois
group of the maximal abelian pro-p extension over K∞ unrami�ed outside all
primes lying above p. By class �eld theory and by remark 2 of theorem 4.2 of
[Kuz73], there is the following exact sequence

0→ E → U → X→ XK∞ → 0
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of R-modules. It is well known that the R-rank of X is r2, see theorem 17 of
[Iwa73] (see also theorem 13.31 of [Was97]). Combining the above, since XK∞
is a torsion R-module, we �nd that E is a �nitely generated R-module of rank
r1 + r2, and that EGal(K∞∕K) = 0. In particular, E has no non trivial �nite R-
submodules.

Let TRE be the R-submodule of E which consists of all R-torsion elements
of E. By the structure theorem of R-modules, we have an injective morphism
E → Rr1+r2 ⊕ TRE with a �nite cokernel. Then we have an exact sequence

(�nite)→ E∕( − 1)E → ℤr1+r2
p ⊕ TRE∕( − 1)TRE → (�nite)

of ℤp-modules. Since EGal(K∞∕K) = 0, we �nd that TRE∕( − 1)TRE is �nite.
Therefore the ℤp-rank of E∕( − 1)E is r1 + r2. �

Lemma 3.9. Let p be a prime number and K∕ℚ a totally imaginary �nite ex-
tension in which the prime number p splits completely. Assume that Leopoldt’s
conjecture for p and K holds. Then we have [K ∶ ℚ] ≤ 6 if XK̃ = 0.

Proof. For an algebraic extensionL∕ℚ, not necessary �nite, letGL be theGalois
group of the maximal unrami�ed pro-p extension of L. It holds that [K ∶ ℚ] =
2r2. By lemma 3.1, GK̃ is a closed normal subgroup of GK∞ , and it holds that

GK∞∕GK̃ ≃ Gal(K̃∕K∞).

Assume that XK̃ = 0. By pro-p version of Burnside’s basis theorem, if XK̃ = 0
then GK̃ = 1. By lemma 3.1, it holds that

GK∞ = XK∞ = Gal(K̃∕K∞) ≃ ℤr2
p ,

since Leopoldt’s conjecture for p and K holds. Note that Gal(K∞∕K) acts on
XK∞ trivially since K̃∕K is abelian.

By theorem C of [Oza07] for i = 2, since GK∞ = XK∞ , we have a surjective
morphism

E → H2(XK∞ ,ℤp) ≃ XK∞ ∧ XK∞ ,
of R-modules, where the exterior product ∧ is taken over ℤp. The action of 
on x ∧ y ∈ XK∞ ∧ XK∞ is given by

(x ∧ y) = (x) ∧ (y).

Since Gal(K∞∕K) acts on XK∞ trivially, the above morphism factors through
E∕( − 1)E. Thus, since

XK∞ ∧ XK∞ ≃ ℤ
r2(r2−1)

2
p ,

we also have a surjective morphism

E∕( − 1)E → ℤ
r2(r2−1)

2
p .
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By the assumption that K is totally imaginary and by lemma 3.7, the ℤp-rank
of E∕( − 1)E is equal to r2. This implies that

r2(r2 − 1)
2 ≤ r2.

Therefore we have [K ∶ ℚ] = 2r2 ≤ 6. �

We �nish the proof of theorem 3.2. By our assumption that p > 3, it holds
that [k ∶ ℚ] = 2p > 6. By lemma 3.9, we haveXk̃ ≠ 0. Since there are in�nitely
many prime numbers such as l, this completes the proof of theorem 3.2. �

Remark. Okano [Oka12] has obtained a result stricter than lemma 3.9 for
certain imaginary abelian �elds. In fact, the non-triviality ofXk̃ is also deduced
from theorem 1.2 of [Oka12] when p > 3.

4. Non-freeness conjecture
We give an application to non-abelian Iwasawa theory in the sense of Ozaki

[Oza07]. Let p be a prime number and k∞∕k the cyclotomic ℤp-extension of a
number �eld k. Recall we have denoted by Gk∞ the Galois group of themaximal
unrami�ed pro-p extension over k∞ in the proof of lemma 3.9. In his lecture
[OzaSem], Ozaki proposed the following conjecture.

Conjecture (Non-freeness Conjecture [OzaSem]). For each prime number p
and each �nite extension k∕ℚ, the group Gk∞ never be a non-abelian free pro-p
group.

Each abelian free pro-p group is isomorphic to ℤp. We have checked that
there exist in�nitely many imaginary quadratic �elds k in which p splits such
that Xk∞ ≃ ℤp for each prime number p, and hence Gk∞ ≃ ℤp, see proposition
2.6.

In [Fuj11], the author showed following.

Lemma 4.1 ([Fuj11]). Let p be a prime number and k∕ℚ a �nite extension. If a
prime number p splits completely in k and Xk̃ ∼ 0, then Gk∞ is not a non-abelian
free pro-p group.

As a consequence of lemma 4.1, the proof of theorem 2.7 and results given
by several authors, we have the following.

Corollary 4.2. Let p be a prime number. Then there exist in�nitely many imag-
inary abelian �elds k satisfying the following three conditions.
(1) The prime number p splits completely in k∕ℚ.
(2) Gk∞ is a non-abelian pro-p group.
(3) Gk∞ is not a free pro-p group.

Proof. Let p = 2 and q be a prime number with q ≡ 31 mod 32. Put k =
ℚ(
√
−q). Then, by proposition 2.4, Xk̃ is a pseudo-null Λ-module. Hence, by

lemma 4.1, Gk∞ is not a non-abelian free pro-2 group. Further, by theorem 2 of
[MO10], Gk∞ is not abelian.
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Let p ≥ 3. We have checked that Xk̃ is a pseudo-null Λ-module. By lemma
4.1, Gk∞ is not a non-abelian free pro-p group. By theorem 1.2 of [Oka12], Gk∞
is not abelian, since �3(F) = 2 when p = 3. �
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