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Dynatomic polynomials, necklace operators,
and universal relations for dynamical units

John R. Doyle, Paul Fili and Trevor Hyde

Abstract. For a generic polynomial f(x), the generalized dynatomic poly-
nomial Φf,c,d(x) vanishes at precisely those � such that fc(�) has period ex-
actly d under iteration of f(x). We show that the shifted dynatomic polyno-
mials Φf,c,d(x) − 1 often have generalized dynatomic factors, and that these
factors are in correspondencewith certain cyclotomic factors of necklace poly-
nomials. These dynatomic factors of Φf,c,d(x) − 1 have an interpretation in
terms of newmultiplicative relations between dynamical unitswhich are uni-
form in the polynomial f(x).
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1. Introduction
Let f(x) ∈ K[x] be a polynomial with coe�cients in a �eldK. For an integer

k ≥ 0, we denote by fk(x) the k-fold iterated composition of f with itself. The
dth dynatomic polynomial Φf,d(x) ∈ K[x] of f is de�ned by the product

Φf,d(x) ∶=
∏

e∣d

(fd∕e(x) − x)�(e),

where � is the standard number-theoretic Möbius function on ℕ. We refer the
reader to [12, §4.1] for background on dynatomic polynomials. For generic
f(x), the dth dynatomic polynomial Φf,d(x) vanishes at precisely the periodic
points of f with primitive period d. In this paper we consider the polynomial
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equation Φf,d(x) = 1 and show that it often has f-preperiodic solutions de-
termined by arithmetic properties of d, independent of f. Moreover, these f-
preperiodic solutions are detected by cyclotomic factors of thedth necklace poly-
nomial:

Md(x) =
1

d

∑

e∣d

�(e)xd∕e ∈ ℚ[x].

Our results extend earlier work of Morton and Silverman [9], but our tech-
niques are quite di�erent and apply more broadly.

We begin by recalling some notation and terminology. The cocore of a posi-
tive integer d is d∕d′ where d′ is the largest squarefree factor of d. Ifm ≥ 0 and
n ≥ 1, then the (m, n)th generalized dynatomic polynomial Φf,m,n(x) of f(x) is
de�ned by Φf,0,n(x) ∶= Φf,n(x) and

Φf,m,n(x) ∶=
Φf,n(f

m(x))

Φf,n(f
m−1(x))

form ≥ 1. The roots of Φf,m,n for generic f are those preperiodic points which
enter into an n-cycle after exactlym iterations under f.

Theorem 1.1 is our main result; it is proved in Section 3.

Theorem 1.1. LetK be a �eld, let f(x) ∈ K[x] be a polynomial of degree at least
2, and let c, d,m, n be integers with c,m ≥ 0 and d, n ≥ 1. Suppose that

(1) eitherm > c or n ∤ d,
(2) the cocore of d is at leastm −max(c − 1, 0), and
(3) xn − 1 divides the dth necklace polynomialMd(x) inℚ[x].

ThenΦf,m,n(x) dividesΦf,c,d(x)−1. Alternatively, if d > 1, c−1 ≥ m, and n = 1,
then Φf,m,n(x) divides Φf,c,d(x) − 1.

Remark 1.2. While we generally discuss polynomials over arbitrary �elds, the
polynomial Md will always be considered to be a polynomial over ℚ; in par-
ticular, all statements regarding divisibility or factorizations of Md should be
interpreted in characteristic zero.

1.1. Dynamical units. Let R be an integral domain with �eld of fractions F
and letR denote the integral closure ofR in the algebraic closureF ofF. Morton
and Silverman [9] de�ne dynamical units to be elements of R

×

constructed in
one of several closely related ways from di�erences of preperiodic points of a
given monic polynomial f(x) ∈ R[x]. If Φf,m,n(x) divides Φf,c,d(x) − 1, then
for each root � ∈ R of Φf,m,n(x),

1 = Φf,c,d(�) =
∏

�

(� − �), (1.1)

where the product ranges over all the roots � of Φf,c,d(x) with multiplicity.
The di�erences � − � are dynamical units and (1.1) is a multiplicative rela-
tion between dynamical units. If the conditions of Theorem 1.1 are satis�ed for
m, n, c, d, then (1.1) holds for all f(x) with degree at least 2; we view these as
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universal relations for dynamical units. Thus we have the following immediate
corollary of Theorem 1.1.

Corollary 1.3. Let c, d,m, n be integers with c,m ≥ 0 and d, n ≥ 1. Suppose that
(1) eitherm > c or n ∤ d,
(2) the cocore of d is at leastm −max(c − 1, 0), and
(3) xn − 1 divides the dth necklace polynomialMd(x) inℚ[x],

or, alternatively, suppose that d > 1, c − 1 ≥ m, and n = 1. Let R be an integral
domain. If f(x) ∈ R[x] is a monic polynomial of degree at least 2, then for each
root � ∈ R of Φf,m,n(x),

∏

�

(� − �) = 1,

where the product is taken over all roots � ∈ R of Φf,c,d(x) with multiplicity. In

particular, � − � ∈ R
×

for each pair of roots �, � of Φf,m,n(x) and Φf,c,d(x),
respectively.

Examples of universal relations for dynamical units have been found byMor-
ton and Silverman [9, Thm. 7.5] and Benedetto [1, Thm. 2]. We give some
results on universal relations, and relate them to previous work, in Section 3.2.

1.2. Cyclotomic factors ofnecklacepolynomials. Of the conditions inThe-
orem 1.1, (3) is themost subtle. Necklace polynomialsMd(x) have several com-
binatorial interpretations; for example, if q is a prime power, thenMd(q) is the
number of irreducible degree-d monic polynomials in Fq[x]. These interpre-
tations give no indication as to when, if ever, Md(x) will vanish at all the nth
roots of unity. However, as observed in [6], necklace polynomials are gener-
ally divisible by many cyclotomic polynomials. Recall that the nth cyclotomic
polynomialΦn(x) is theℚ-minimal polynomial of a primitive nth root of unity.

Example 1.4. M105(x) factors over ℚ as

M105(x) =
1

105
(x105 − x35 − x21 − x15 + x7 + x5 + x3 − x)

= e(x) ⋅ Φ8 ⋅ Φ6 ⋅ Φ4 ⋅ Φ3 ⋅ Φ2 ⋅ Φ1 ⋅ x, (1.2)

where e(x) ∈ ℚ[x] is a degree 92, irreducible, non-cyclotomic polynomial.
Since

xn − 1 =
∏

m∣n

Φm(x),

the factorization (1.2) implies thatM105(x) is divisible by xn − 1 for

n = 1, 2, 3, 4, 6, 8.

Note that d = 105 = 3 ⋅ 5 ⋅ 7 is squarefree, hence the cocore of d is 1. Thus
Theorem 1.1 implies that for any polynomial f(x) ∈ K[x] of degree at least 2,
Φf,105(x) − 1 is divisible by Φf,1,n(x) for n = 1, 2, 3, 4, 6, 8 and Φf,0,n for n =

2, 4, 6, 8.
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Figure 1. Pairs (d, n) with d, n ≤ 1000 for which xn − 1 dividesMd(x).

In light of Theorem 1.1 one might naturally ask how often xn − 1 divides
Md(x). Figure 1 suggests thatMd(x) is divisible by several xn − 1 for all d ≥ 1.
Hyde [6] characterized the cyclotomic factors of necklace polynomials in terms
of hyperplane arrangements in �nite abelian groups. Let

Ûn ∶= Hom((ℤ∕(n))×,ℂ×)

denote the group of Dirichlet characters of modulus n. If q is a unit modulo n,
then the hyperplaneℋq ⊆ Ûn is de�ned to be the set

ℋq ∶= {� ∈ Ûn ∶ �(q) = 1}.

The following theorem gives an alternative to condition (3) in Theorem 1.1
in terms of hyperplanes in the group of Dirichlet characters. We prove Theorem
1.5 in Section 3.3.

Theorem 1.5. Let d, n ≥ 1. Then xn − 1 dividesMd(x) if and only if

Ûn ⊆
⋃

p∣d

p∤n

ℋp.

Theorem 1.5 says xn − 1 dividesMd(x) if and only if the �nite abelian group
Ûn of modulus n Dirichlet characters is covered by an arrangement of “hyper-
planes” determined by the prime factors of d. In Example 3.12 we explain how
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the 5 distinct prime factors of

d = 440512358437 = 472 ⋅ 73 ⋅ 79 ⋅ 151 ⋅ 229

correspond to the 5 lines in (ℝ∕4ℤ)2 in Figure 2, and how the fact that the lines
cover all of the lattice points translates, via Theorem1.5, into the fact that x65−1
dividesM440512358437(x). Since the cocore of d is 47, Theorem 1.1 implies that

Φf,m,65(x) divides Φf,440512358437(x) − 1,

for all f(x) ∈ K[x] with deg(f) ≥ 2 and 0 ≤ m ≤ 47.

Figure 2.

1.3. Cyclotomic factors of shifted cyclotomicpolynomials. Cyclotomic fac-
tors of necklace polynomials are also closely related to cyclotomic factors of
shifted cyclotomic polynomials Φd(x) − 1. For example, if d = 105, then

Φ105(x) − 1 = ẽ(x) ⋅ Φ8 ⋅ Φ6 ⋅ Φ4 ⋅ Φ3 ⋅ Φ2 ⋅ Φ1 ⋅ x,

where ẽ(x) ∈ ℚ[x] is a degree 35, irreducible, non-cyclotomic polynomial.
Note that the cyclotomic factors dividing Φ105(x) − 1 are precisely the same as
those dividingM105(x). In general,Md(x) andΦd(x)−1 have most, but not all,
cyclotomic factors in common. See [6] for a detailed analysis of the cyclotomic
factors in these two sequences.

Cyclotomic factors of Φd(x) − 1 are also detected by cyclotomic factors of
Md(x) and have an interpretation in terms of multiplicative relations between
cyclotomic units analogous to the situationwith dynamical units discussed above.
Thus the cyclotomic factors of necklace polynomials give explicit structural par-
allels between these two analogous families of units.
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1.4. Necklace operators. LetℤΨ denote the ring generated by formal expres-
sions [m] with m ∈ ℕ subject only to the multiplicative relations [m][n] =
[mn]. The dth necklace operator 'd ∈ ℤΨ is de�ned by

'd ∶=
∑

e∣d

�(e)[d∕e].

The cyclotomic factors ofMd(x), cyclotomic factors ofΦd(x)−1, and dynatomic
factors of Φf,d(x) − 1 ultimately trace back to the necklace operator 'd. The
polynomialsMd(x), Φd(x) and Φf,d(x)may be expressed as images of 'd with
respect to di�erent ℤΨ-module structures. Suppressing the details of the mod-
ule structures for now, we have

Md(x) =
1

d

∑

e∣d

�(e)xd∕e = 'd(x∕d),

Φd(x) =
∏

e∣d

(xd∕e − 1)�(e) = (x − 1)'d ,

Φf,d(x) =
∏

e∣d

(fd∕e(x) − x)�(e) = (f(x) − x)'d . (1.3)

As the notation suggests,Md(x) is an image in an additiveℤΨ-module while
Φd(x) and Φf,d(x) arise from multiplicative ℤΨ-modules. Much of the work
that goes into proving Theorem 1.1 involves constructing the appropriate ℤΨ-
module in which to realize the above expression of Φf,d(x) as an image of 'd.

All of the cyclotomic and dynatomic factors of the polynomials discussed
above, as well as the connection to hyperplane arrangements in the group of
Dirichlet characters, ultimately traces back to the following factorization of the
necklace operator (in a localization of ℤΨ):

'd = [d]
∏

p∣d

(
1 −

1

[p]

)
,

where the product is taken over all primes p dividing d.

1.5. Acknowledgements. Wearehappy to thankValentinHuguin, Rafe Jones,
Patrick Morton, and Joe Silverman for feedback and corrections on an earlier
draft. We also thank the anonymous referee for helpful comments. John Doyle
was partially supported by NSF grant DMS-2112697. Trevor Hyde was partially
supported by the NSF Postdoctoral Research Fellowship DMS-2002176 and the
Jump Trading Mathlab Research Fund.

2. Preliminary results
In this section we prove preliminary results leading up to the proofs of Theo-

rem 1.1 and Theorem 1.5 in Section 3. Our main goal is to make sense of (1.3).
We accomplish this by introducing the notions of composition rings and their
algebras. In Section 2.4, we prove a statement on the generic separability of
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(generalized) dynatomic polynomials; this result is folklore in the arithmetic
dynamics community but we were unable to �nd a suitable reference.

2.1. Composition rings. Suppose R is a commutative ring and S is a monoid
of ring endomorphisms of R with respect to composition. The monoid S gen-
erates a (non-unital) subring CS of the ring of all R-valued functions on R, with
pointwise ring operations. Furthermore,CS has an extra layer of structure com-
ing from the composition operation on S. We abstract this situation into the
notion of a composition ring.

De�nition 2.1. A composition ringC is a (potentially non-unital) commutative
ring together with an associative operation ◦ such that for all f, g, ℎ ∈ C

(1) (f + g)◦ℎ = (f◦ℎ) + (g◦ℎ),
(2) (f ⋅ g)◦ℎ = (f◦ℎ) ⋅ (g◦ℎ), and
(3) there exists a two-sided compositional identity x ∈ C.

A morphism � ∶ C → D of composition rings is a ring homomorphism which
respects the composition operator and preserves compositional identities.

All of the composition rings we consider are constructed as follows.

De�nition 2.2. Let S be a multiplicative monoid. The free S-composition ring
ℤ{S} is the composition ring generated by expressions [s] with s ∈ S where
the composition operation ◦ is determined by the following relations: for all
f, g ∈ ℤ{S} and s, t ∈ S

(i) [s]◦(f + g) = ([s]◦f) + ([s]◦g),
(ii) [s]◦(f ⋅ g) = ([s]◦f) ⋅ ([s]◦g), and
(iii) [s]◦[t] = [st].

Note that the compositional identity is x ∶= [1] where 1 ∈ S is the multiplica-
tive identity.

To see that the composition operation on ℤ{S} is determined by these prop-
erties, �rst observe that De�nition 2.1 (1) and (2) reduce the computation of
f◦g for f, g ∈ ℤ{S} to [s]◦g with s ∈ S. Then De�nition 2.2 (i) and (ii) reduce
us further to [s]◦[t] for s, t ∈ S, and �nally (iii) tells us that [s]◦[t] = [st]. This
reduction is illustrated in the following example.

Example 2.3. Let S ∶= ⟨f, g⟩ be the free monoid on two generators. Consider
the elements

� ∶= 3[f2][f] + 2[1][g]

� ∶= [f][g] + [fg]

of ℤ{S}. Then by De�nition 2.1 (1) and (2),

�◦� = (3[f2][f] + 2[1][g])◦�

= 3([f2]◦�)([f]◦�) + 2([1]◦�)([g]◦�).
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De�nition 2.2 (i) and (ii) imply that

[f2]◦� = [f3][f2g] + [f3g],

[f]◦� = [f2][fg] + [f2g],

[1]◦� = [f][g] + [fg],

[g]◦� = [gf][g2] + [gfg].

Thus �◦� is equal to

3
(
[f3][f2g] + [f3g]

) (
[f2][fg] + [f2g]

)
+2 ([f][g] + [fg])

(
[gf][g2] + [gfg]

)
.

Remark 2.4. The composition ringℤ{S} is closely related to the more familiar
monoid ringℤ[S]. The latter is the ring generated by [s] for s ∈ Swithmultipli-
cation determined by [s] ⋅ [t] = [st]. Themonoid ringℤ[S] embeds intoℤ{S} as
linear combinations of the “degree one” elements with product structure given
by ◦.

If �̃ ∶ S → T is a monoid homomorphism, then there is a unique compo-
sition ring homomorphism � ∶ ℤ{S} → ℤ{T} which lifts �̃. In fact, the map
S ↦ ℤ{S} gives a functor from monoids to composition rings.

We further restrict our attention to monoids S which are quotients of the
free cyclic monoid on one generator ⟨f⟩. For each m, n ∈ ℕ with n ≥ 1, let
ℤ{f} ∶= ℤ{⟨f⟩} and let

ℤm,n{f} ∶= ℤ{⟨f ∶ fm+n = fm⟩}.

The monoid quotient
⟨f⟩ → ⟨f ∶ fm+n = fm⟩

induces, by functoriality, a map of composition ringsℤ{f}→ ℤm,n{f}. If �, � ∈
ℤ{f} are elements with the same image in ℤm,n{f}, then we write

� ≡ � mod ℤm,n{f}.

2.2. 	-module structure onℤ{f}. Let ℕ◦ denote the multiplicative monoid
of natural numbers and letΨ ∶= ℕ[ℕ◦] denote themonoid semiring ofℕ◦. That
is, Ψ is the semiring additively spanned by formal expressions [m] for m ∈ ℕ

such that form, n ∈ ℕ,
[m][n] = [mn].

For eachm ∈ ℕ there is a unique endomorphism [m] of the cyclic semigroup
⟨f⟩ expressed in exponential notation as f[m] ∶= fm. This gives, by functori-
ality, an endomorphism [m] ∶ ℤ{f} → ℤ{f} of composition rings. We extend
this action to a multiplicative Ψ-module structure on ℤ{f}.

Example 2.5. If  = 3[5] + 2[4] ∈ Ψ, then

([f] − [1]) = ([f] − [1])3[5]+2[4] ∶= ([f5] − [1])3([f4] − [1])2.
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Ifm ≥ 0 and n ≥ 1 are natural numbers, the semiring quotient

ℕ→ ℕ∕(m + n = m)

induces a quotient on multiplicative monoids ℕ◦ → (ℕ∕(m + n = n))◦. Let
Ψm,n denote the semiring quotient of Ψ induced by this quotient of monoids.
If  1,  2 ∈ Ψ are two elements with the same image under this map, then we
write

 1 ≡  2 [mod m + n = m],

or simply
 1 ≡  2 [mod n],

when m = 0. This notation is meant to suggest that the quotient takes place
inside the brackets.

Example 2.6. Ifm = 0 and n = 3, then

5[1] − 3[2] + 4[5] ≡ 5[1] + [2] ≢ 2[1] + [2] [mod 3].

The �rst congruence holds because [2] ≡ [5] [mod 3]. The second congruence
does not hold because the congruence does not extend to the coe�cients, thus
2[1] ≢ 5[1] [mod 3].

The action of ℕ◦ on the cyclic monoid ⟨f ∶ fm+n = fm⟩ factors through
the quotient ℕ◦∕(m+ n = m), hence the multiplicative Ψ-module structure on
ℤm,n{f} factors through Ψm,n. Lemma 2.7 formally states this observation.

Lemma 2.7. If � ∈ ℤ{f} and  1,  2 ∈ Ψ are elements such that

 1 ≡  2 [mod m + n = m],

then � 1 ≡ � 2 mod ℤm,n{f}.

2.3. Necklace operators. If R is a semiring, then let RΨ ∶= R ⊗ℕ Ψ denote
the extension of scalars of Ψ from ℕ to R.

De�nition 2.8. If d ≥ 1 is a natural number, then the dth necklace operator 'd
is

'd ∶=
∑

e∣d

�(e)[d∕e] ∈ ℤΨ,

where � is the usual number theoretic Möbius function.

There is a unique cancellation-free way to write the dth necklace operator as
a di�erence 'd = '+

d
−'−

d
of elements '±

d
∈ Ψ. Now letΦ±

f,d
∈ ℤ{f} be de�ned

by
Φ
±

f,d
= ([f] − [1])'

±

d .

Note that Ψ and Ψm,n have no additive torsion, hence embed into ℚΨ and
ℚΨm,n, respectively. Lemma 2.9 constructs a simple polynomial model of the
freeℚΨm,n-modulewhich allows us to relate the vanishing of'd inℤΨm,n to cy-
clotomic factors ofMd(x). The polynomial ringℚ[x] carries a natural additive
ℚΨ-module structure determined by [k]g(x) ∶= g(xk) for g(x) ∈ ℚ[x]. Here
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xk denotes a monomial and not the kth compositional power of the identity
function (which would again be the identity).

Lemma 2.9. Letm ≥ 0 and n ≥ 1. The additive ℚΨ-module structure on ℚ[x]
de�ned by [k]g(x) ∶= g(xk) descends toℚ[x]∕(xm+n − xm) and factors through
ℚΨm,n. Furthermore,

ℚ[x]∕(xm+n − xm) ≅ ℚΨm,n

asℚΨm,n-modules.

Proof. LetMm,n ∶= ℚ[x]∕(xm+n − xm). To see that the ℚΨ-module structure
onℚ[x] descends toMm,n it su�ces to check that if f(x) ≡ g(x) mod (xm+n −

xm), then f(xk) ≡ g(xk) mod (xm+n − xm). This follows from the observation
that xmk(xnk − 1) is divisible by xm(xn − 1) for all k ∈ ℕ. The ℚΨ-action on
Mm,n clearly factors through ℚΨm,n. Observe that Mm,n is cyclic as a ℚΨm,n-
module and is generated by x. Note that bothMm,n andℚΨm,n have dimension
m + n over ℚ, henceMm,n is free. �

De�nition 2.10. The core of a positive integer d is the largest squarefree factor
d′ of d and the cocore of d is d∕d′. Note that the core of d is the product of all
distinct primes dividing d.

De�nition 2.11. The dth necklace polynomialMd(x) ∈ ℚ[x] for d ≥ 1 is de-
�ned by

Md(x) ∶=
1

d

∑

e∣d

�(e)xd∕e.

Proposition 2.12. Letm, n, d ∈ ℕ be such that n, d ≥ 1. If
(1) the cocore of d is at leastm, and
(2) xn − 1 dividesMd(x) inℚ[x],

then 'd = 0 in ℤΨm,n and

Φ+
f,d

≡ Φ−
f,d

mod ℤm,n{f}.

Proof. Lemma 2.9 implies thatℚ[x]∕(xm+n−xm) is a freeℚΨm,n-module gen-
erated by x. Hence'd = 0 inℤΨm,n if and only if'dx = 0 inℚ[x]∕(xm(xn−1)).
Since

'dx =
∑

e∣d

�(e)[d∕e]x =
∑

e∣d

�(e)xd∕e = dMd(x),

'd = 0 inℤΨm,n if and only if xm and xn −1 both divideMd(x). Since �(e) = 0

when e is not squarefree, the exponent of the largest power of x dividingMd(x)

is the cocore of d. Therefore (1) and (2) imply that 'd = 0 in ℤΨm,n.
If 'd = 0 in ℤΨm,n, then '+d ≡ '−

d
[mod m + n = m] and, by Lemma 2.7,

Φ+
f,d

= ([f] − [1])'
+

d ≡ ([f] − [1])'
−
d = Φ−

f,d
mod ℤm,n{f}. �
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2.4. Dynatomic polynomials are generically squarefree.We step aside
from the theory developed in the previous sections to prove a dynamical lemma.

Lemma 2.13. LetK be a �eld and letf(x) be the generic degree k ≥ 2 polynomial
over K,

f(x) = akx
k + ak−1x

k−1 + … + a1x + a0 ∈ K(a0, a1,… , ak)[x].

Then for anym, n ∈ ℕ such that n ≥ 1, fm+n(x) − fm(x) has nonzero discrimi-
nant.

Proof. It su�ces to prove the claim after specializing some subset of the coe�-
cients of f. We consider two specializations depending the characteristic p ≥ 0

of K.
First, suppose that p ∤ k. Morton [7, Lemma 2] shows that for ft(x) ∶=

xk + t, the polynomial fn
t
(x) − x is separable over K(t) for all n ≥ 1, and, using

similar techniques, the same is shown in [2, Lemma 4.2] for fm+n
t

(x) − fm
t
(x)

withm ≥ 0 and n ≥ 1.
Now suppose that p ∣ k, and consider the polynomial ft(x) ∶= xk + tx ∈

K(t)[x]. Then f′
t
(x) = t, hence (fl

t
)′(x) = tl for all l ≥ 1 by the chain rule.

This implies that the polynomial fm+n
t

(x) − fm
t
(x) has derivative tm+n − tm, a

nonzero constant in K(t). Since its derivative is nowhere vanishing, the poly-
nomial fm+n

t
(x) − fm

t
(x) is separable for allm ≥ 0 and n ≥ 1. �

Remark 2.14.
(1) In characteristic 0, Lemma 2.13 predates [7]. Indeed, for a ∈ ℂ and

fa(x) = xk + a, the polynomial fm+na (x) − fma (x) has a multiple root
if and only if either fa has fewer than kn points of period dividing n,
or m ≥ 1 and the critical point 0 is a root of fm+na (x) − fma (x). The set
of such a ∈ ℂ is contained in the degree-k “Multibrot set”ℳk, which
is a compact subset of ℂ, hence one can further specialize ft to any
a ∈ ℂ ⧵ℳk. See also [4]—especially [4, §3]—for related results.

(2) In [2, Lemma 4.2], which we refer to in the proof of Lemma 2.13, it was
assumed that K is a �nite �eld, since that was the only case for which
the result was needed. However, the proof that fm+n

t
(x) − fm

t
(x) is

separable over K(t) only requires that the characteristic of K does not
divide k.

De�nition 2.15. If f(x) ∈ K[x] is a polynomial, then the nth dynatomic poly-
nomial Φf,n(x) ∈ K[x] for n ≥ 1 is de�ned by the product

Φf,n(x) ∶=
∏

j∣n

(fn∕j(x) − x)�(j).

If m ≥ 0, then the (m, n)th generalized dynatomic polynomial Φf,m,n(x) is de-
�ned by Φf,0,n(x) ∶= Φf,n(x) and, form ≥ 1,

Φf,m,n(x) ∶=
Φf,n(f

m(x))

Φf,n(f
m−1(x))

.
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Despite their appearance, dynatomic polynomials are indeed polynomials,
as was �rst proven by Morton and Patel [8]. See Silverman [12, Sec. 4.1] for a
general introduction to dynatomic polynomials and [12, Thm. 4.5] for a proof
that Φf,d(x) is a polynomial. As a special case of Hutz [5, Thm. 1] we get that
Φf,m,n(x) is a polynomial; we may also deduce this quickly from Lemma 2.13.

The following factorization of fm+n(x) − fm(x) is well-known and is often
used without proof. We prove it here for the reader’s convenience.

Lemma 2.16. Let f(x) ∈ K[x] be a polynomial of degree at least 2, then

fm+n(x) − fm(x) =
∏

i≤m
j∣n

Φf,i,j(x).

Proof. Recall that the de�nition of the dynatomic polynomials is equivalent to

fn(x) − x =
∏

j∣n

Φf,j(x), (2.1)

byMöbius inversion. Substitutingfm(x) for x in (2.1) and using the telescoping
product identity

Φf,j(f
m(x)) =

Φf,j(f
m(x))

Φf,j(f
m−1(x))

Φf,j(f
m−1(x))

Φf,j(f
m−2(x))

⋯
Φf,j(f(x))

Φf,j(x)
Φf,j(x)

=
∏

i≤m

Φf,i,j(x),

gives us the desired factorization of fm+n(x) − fm(x). �

Together Lemma 2.13 and Lemma 2.16 imply that the generic generalized
dynatomic polynomial Φf,m,n(x) is also squarefree.

2.5. Composition algebras. Next we introduce the notion of an algebra for a
composition ring.

De�nition 2.17. Let C be a composition ring. A C-composition algebra is a
commutative ring R together with an operation ◦ ∶ R ×C → R such that for all
r ∈ R and g, ℎ ∈ C we have

(1) r◦(g◦ℎ) = (r◦g)◦ℎ,
(2) r◦(g + ℎ) = (r◦g) + (r◦ℎ),
(3) r◦(g ⋅ ℎ) = (r◦g) ⋅ (r◦ℎ), and
(4) r◦x = r,

where x is the compositional identity in C.

Suppose that a monoid S acts (on the right) by ring endomorphisms on a
commutative ring R. If r ∈ R and s ∈ S, then we denote this action by rs. By
construction there is a unique way to extend this action to a ℤ{S}-composition
algebra structure on R so that

r◦[s] = rs

for all r ∈ R and s ∈ S.
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Let K be a �eld. The polynomial ring K[x] is the free K-algebra on one
generator. This implies that for any element f in a K-algebra R, there is a
unique map of K-algebras �f ∶ K[x] → R such that �f(x) = f. In partic-
ular, for each polynomial f(x) ∈ K[x] there is a K-algebra endomorphism
�f ∶ K[x] → K[x] such that g(x)�f ∶= g(f(x)) for all g(x) ∈ K[x]. Thus
K[x] carries a K{f}-composition algebra structure where K{f} ∶= K ⊗ ℤ{f}

and g(x)◦f ∶= g(f(x)).

Example 2.18. We demonstrate these notions with a simple explicit example:
For any g(x) ∈ K[x], we have

g(x)◦([f5] − [1])([f3] − [1]) = (g(f5(x)) − g(x))(g(f3(x)) − g(x)).

De�nition 2.19. A polynomial q(x) ∈ K[x] is f-stable for f(x) ∈ K[x] if q(x)
divides q(f(x)).

If q(x) is f-stable, then the endomorphism �f ∶ K[x] → K[x] descends to
an endomorphism of the quotient K[x]∕(q(x)). Note that if q(x) is squarefree,
then q(x) divides q(f(x)) if and only if fmaps the set of roots of q(x) into itself.

Lemma 2.20. Let f(x) ∈ K[x] be a polynomial and let m, n ∈ ℕ such that
n ≥ 1. Then fm+n(x) − fm(x) is f-stable.

Proof. First supposef(x) = akx
k+ak−1x

k−1+…+a1x+a0 ∈ K(a0, a1,… , ak)[x]

is the generic degree-k polynomial overK. Lemma 2.13 implies that fm+n(x)−
fm(x) is squarefree. The roots of fm+n(x) − fm(x) are f-preperiodic, hence
closed under iteration by f. Therefore fm+n(x) − fm(x) is f-stable. Stability is
preserved under specialization. �

Lemma2.20 implies thatK[x]∕(fm+n(x)−fm(x)) inherits aℤ{f}-composition
ring structure from K[x]. Furthermore, since

g(fm+n(x)) ≡ g(fm(x)) mod (fm+n(x) − fm(x))

for all polynomials g(x), the action of ℤ{f} factors through ℤm,n{f}. This is
summarized in the following lemma.

Lemma 2.21. Letf(x) ∈ K[x], so that the composition ringℤ{f} acts onK[x] by
g(x)◦f ∶= g(f(x)). If �, � ∈ ℤ{f} are elements such that � ≡ � mod ℤm,n{f},
then for all g(x) ∈ K[x],

g(x)◦� ≡ g(x)◦� mod (fm+n(x) − fm(x)).

3. Results
With everything in place, we now prove the main result.

Theorem 3.1. LetK be a �eld, let f(x) ∈ K[x] be a polynomial of degree at least
2, and let c, d,m, n be integers with c,m ≥ 0 and d, n ≥ 1. Suppose that

(1) eitherm > c or n ∤ d,
(2) the cocore of d is at leastm −max(c − 1, 0), and
(3) xn − 1 divides the dth necklace polynomialMd(x) inℚ[x].
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ThenΦf,m,n(x) dividesΦf,c,d(x)−1. Alternatively, if d > 1, c−1 ≥ m, and n = 1,
then Φf,m,n(x) divides Φf,c,d(x) − 1.

Proof. It su�ces to prove the result for

f(x) ∈ K(a0, a1,… , ak)[x]

the generic degree k ≥ 2 polynomial over K. Suppose (1), (2), and (3) hold.
We �rst prove the result assuming c = 0. Assumptions (2) and (3) imply that
Φ+
f,d

≡ Φ−
f,d

mod ℤm,n{f} by Proposition 2.12. If Φ±
f,d
(x) ∶= x◦Φ

±

f,d
, then by

Lemma 2.21,

Φ+
f,d
(x) ≡ Φ−

f,d
(x) mod (fm+n(x) − fm(x)). (3.1)

If � ∈ K(a0, a1,… , ak) is a root of Φf,m,n(x), then Lemma 2.16 and (3.1) imply
that

Φ+
f,d
(�) = Φ−

f,d
(�).

Ifm > 0 or n ∤ d, then fe(�) − � ≠ 0 for any e ∣ d by Lemma 2.13 and Lemma
2.16; hence Φ±

f,d
(�) ≠ 0. Observe that

Φ+
f,d
(x)

Φ−
f,d
(x)

= x◦([f] − [1])'
+

d
−'−

d

= x◦([f] − [1])
∑

e∣d
�(e)[d∕e]

=
∏

e∣d

(fd∕e(x) − x)�(e)

= Φf,d(x).

ThusΦf,d(�) = 1. Since this holds for all roots � andΦf,m,n(x) is squarefree by
Lemma 2.13, we conclude that Φf,m,n(x) divides Φf,d(x) − 1.

Next suppose c > 0 and that the cocore of d is at least m − c + 1. The
above argument implies that Φf,max(m−c+1,0),n(x) and Φf,max(m−c,0),n(x) divide
Φf,d(x)−1. If� is a root ofΦf,m,n(x), thenfc−i(�) is a root ofΦf,max(m−c+i,0),n(x)
for i = 0, 1. Hence Φf,d(fc(�)) = Φf,d(f

c−1(�)) = 1 and

Φf,c,d(�) =
Φf,d(f

c(�))

Φf,d(f
c−1(�))

=
1

1
= 1.

Thus Φf,m,n(x) divides Φf,c,d(x) − 1 by Lemma 2.13.
Finally assume that d > 1, c − 1 ≥ m, and n = 1. If � is a root of Φm,1(x),

then c − 1 ≥ m implies that � ∶= fc(�) = fc−1(�). Furthermore, since d > 1

and f(x) is generic, Φf,d(�) ≠ 0. Hence

Φf,c,d(�) =
Φf,d(f

c(�))

Φf,d(f
c−1(�))

=
Φf,d(�)

Φf,d(�)
= 1.

This identity holds for all � and Φf,m,1(x) is squarefree by Lemma 2.13, and
therefore Φf,m,n(x) divides Φf,c,d(x) − 1. �
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Example 3.2. We show that condition (1) from Theorem 3.1 is generically nec-
essary, in the sense that if f(x) = akx

k +⋯+ a1x + a0 ∈ K(a0, a1… , ak)[x] is
the generic polynomial of degree k, and if n, d ≥ 1 are integers satisfying n ∣ d,
thenΦf,0,n(x) = Φf,n(x) does not divideΦf,d(x)−1. If n = d, this is immediate
so we assume that n < d.

Consider the polynomial f(x) ∶= xk + a ∈ K(a)[x], where a is an in-
determinate. If the characteristic of K does not divide k, then Theorem 2.2,
Corollary 3.3, and Proposition 3.4 of [10] combine to show that the resultant
Res(Φf,n(x),Φf,d(x)) with respect to x is a nonconstant polynomial in K[a].
Thus there exists a0 ∈ K such that, for the polynomial f0(x) ∶= xk + a0, the
dynatomic polynomialsΦf0,n(x) andΦf0,d(x) have a common root x0. (Overℂ,
these values of c0 are roots of hyperbolic components of the degree-kmultibrot
set.) It follows thatΦf0,n(x) cannot divideΦf0,d(x)−1, therefore this divisibility
relation cannot hold generically.

Next suppose that the characteristic of K divides k. Let � ∈ K be a root of
Φd(x), let f(x) ∶= xk+�x, and let � be any root ofΦf,n(x). Since f′(x) = �, the
period-nmultiplier of � is (fn)′(�) = �n, a root ofΦd∕n(x). It then follows from
[10, Thm. 2.2] that Res(Φf,n(x),Φf,d(x)) = 0. Therefore Φf,n(x) and Φf,d(x)
have a common root, whence Φf,n(x) does not generically divide Φf,d(x) − 1.

Example 3.3. Condition (1) in Theorem 3.1 is su�cient to guarantee that
Φ
±

f,d
(�) ≠ 0 for any root � of Φf,m,n(x). If (1) fails to hold, deciding whether or

not Φf,m,n(x) divides Φf,d(x) − 1 is more subtle.
Consider the quadratic polynomial family fa(x) = x2 + a. One may verify

computationally that Φfa ,6(x) − 1 factors over the function �eld ℚ(a) as

Φfa ,6(x) − 1 = ℎa(x)Φfa ,1,2(x)Φfa ,1,1(x)

where ℎa(x) is a degree 50 irreducible non-dynatomic polynomial with coe�-
cients in ℚ(a). The cocore of d = 6 is 1 and

M6(x) =
1

6
(x6 − x3 − x2 + x) =

1

6
(x4 + x2 − x)(x2 − 1),

hence conditions (2) and (3) of Theorem 3.1 hold form = 0 and n = 2, and yet
Φfa ,2(x) does not generically divide Φfa ,6(x) − 1. On the other hand, if a = −1

or a = −5∕4, then one may check that Φfa ,0,2(x) does divide Φf,6(x) − 1.

If m = 0 and n = 1, then condition (1) of Theorem 3.1 is never satis�ed.
However, the following Proposition shows that in certain cases the conclusion
of Theorem 3.1 still holds.

Proposition 3.4. Let f(x) ∈ K[x] be a polynomial with �xed point � ∈ K, let
� ∶= f′(�) be the multiplier of �, and let d ≥ 2 be an integer. Then

Φf,d(�) = Φd(�).

Moreover, if � = 0 or if
(1) � is a primitive nth root of unity,
(2) n is coprime to d, and



UNIVERSAL RELATIONS FOR DYNAMICAL UNITS 549

(3) xn − 1 dividesMd(x),

then Φf,d(�) = 1.

Note that Φf,d(�) is the dth dynatomic polynomial of f(x) evaluated at a
�xed point � and Φd(�) is the dth cyclotomic polynomial evaluated at the mul-
tiplier � of �.

Proof. Since (fk)′(�) = �k,

fk(x) − x ≡ (�k − 1)(x − �) mod (x − �)2.

First suppose that � is not a dth root of unity. Then the (x − �)-adic valuation
of fe(x) − x is 1 for each e ∣ d. Thus

Φf,d(x) =
∏

e∣d

(fe(x) − x)�(d∕e) =
∏

e∣d

(
fe(x) − x

x − �
)

�(d∕e)

,

where the second equality uses the fact that
∑

e∣d
�(d∕e) = 0 for any d ≥ 2.

Evaluating at x = � gives

Φf,d(�) =
∏

e∣d

(�e − 1)�(d∕e) = Φd(�).

Fix a degree k and consider the a�ne algebraic variety

Vk ∶= {(f, �) ∶ deg(f) ≤ k and � is a �xed point of f}.

The identity Φf,d(�) = Φd(f
′(�)) holds on the Zariski open subset of all pairs

(f, �) for which themultiplier � = f′(�) is not a dth root of unity, hence it must
hold on all of Vk.

If � = 0, then d ≥ 2 implies that Φd(0) = 1, hence Φf,d(�) = 1. Our
assumption that n is coprime to d and that xn − 1 divides Md(x) implies, by
Theorem 3.10, that Ûn ⊆

⋃

p∣d
ℋp. Therefore 1 = Φd(�) = Φf,d(�) by [6, Thm.

1.1]. �

Remark 3.5. The identity proved in Proposition 3.4 is implicit in the proof
of Theorem 2.2 of Morton and Vivaldi [10]; see the paragraph starting with
display line (2.3). Hyde [6, Thm. 1.8(2)] characterizes the pairs (n, d) for which
d ∤ n and Φd(�n) = 1. Using this characterization and Proposition 3.4 one
may construct special dynamical unit relations from �xed points � with � = �n
which do not hold universally.

For example, one may check that Φ231(�12) = 1 and x12 − 1 does not divide
M231(x). It is not generally the case that Φf,231(�) = 1 for �xed points �, but
this identity does hold if themultiplier of � is a primitive 12th root of unity (e.g.
f(x) = x2 + �12x with � = 0.)
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3.1. Dynamical necklacepolynomials. The composition ringℤ{f} also car-
ries an additiveΨ-module structure where the natural action [m] ⋅ [f] ∶= [fm]

is extended linearly. With respect to this structure we may de�ne dynamical
necklace polynomialsMf,d(x) analogous to the necklace polynomialsMd(x),

Mf,d(x) ∶=
1

d

∑

e∣d

�(e)fd∕e(x) = (x∕d)◦'d[f].

We are unaware of any natural interpretation, dynamical or otherwise, of the
dynamical necklace polynomials Mf,d(x). Nevertheless, the methods devel-
oped in the previous sections allow us to easily prove the following analog of
Theorem 3.1.

Proposition 3.6. Let K be a �eld and let f(x) ∈ K[x] be a polynomial. If
(1) the cocore of d is at leastm, and
(2) xn − 1 divides the dth necklace polynomialMd(x) inℚ[x],

then fm+n(x) − fm(x) dividesMf,d(x).

Proof. Proposition 2.12 and assumptions (1), (2) imply that'd ≡ 0 mod ℤΨm,n.
Thus 'd� ≡ 0 mod ℤm,n{f} for any � ∈ ℤ{f} by an additive version of Lemma
2.7. Hence by Lemma 2.21,

Mf,d(x) = (x∕d)◦'d[f] ≡ (x∕d)◦0 mod (fm+n(x) − fm(x)).

Note that for r ∈ R an element of any composition algebra,

r◦0 = r◦(0 + 0) = (r◦0) + (r◦0),

hence r◦0 = 0. Thus

Mf,d(x) ≡ 0 mod (fm+n(x) − fm(x)),

which is to say that fm+n(x) − fm(x) dividesMf,d(x). �

3.2. Dynamical units. Theorem 3.1 has implications for the construction of
dynamical units. Inspired by the theory of cyclotomic and elliptic units, Narkie-
wicz [11] and later Morton and Silverman [9] initiated the study of dynamical
units: algebraic units constructed in one of several closely related ways from
di�erences of preperiodic points of a rational map of the projective line. The in-
spiration comes from the fact that, in the dictionary between dynamical height
and the usual Weil height on the torus Gm(ℚ), the preperiodic points play the
same role as that of roots of unity, so the �elds generated by these points are
naturally thought of as dynatomic �elds in analogy with the classical theory of
cyclotomic �elds. We refer the reader to [12, Section 3.11] for further back-
ground on dynamical units.

Some families of dynamical units are known. Let K be a number �eld with
ring of integers OK . Narkiewicz ([11], cf. [9, Thm. 6.3(a)]) proved that if f ∈

OK[x] is a monic polynomial of degree at least 2, � ∈ OK is f-periodic with
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primitive period n ≥ 2, and i, j ≥ 0 are integers such that gcd(i − j, n) = 1,
then

fi(�) − fj(�)

f(�) − �
∈ O×

K

is a dynamical unit. If � = �pm denotes a primitive prime power order root of
unity, then the readerwill note the similarity to cyclotomic units in themaximal
real sub�eld ℚ(�)+ of ℚ(�) given by

�(1−a)∕2
1 − �a

1 − �
, where 1 < a < pm∕2 and gcd(a, p) = 1.

It is known that units of this form, together with−1, generate the unit group of
ℚ(�)+, and that this group has �nite index in the unit group of ℚ(�).

If f ∈ OK[x] is monic, then Φf,m,n(x) ∈ OK[x] is monic as well, and so
the preperiodic points of f(x) are algebraic integers. It follows that ifΦf,m,n(x)
divides Φf,d(x) − 1, then for each root � ∈ K of Φf,m,n(x),

1 = Φf,d(�) =
∏

�

(� − �), (3.2)

where the product ranges over all the roots � ofΦf,d(x)withmultiplicity. Since
�, � are algebraic integers, (3.2) implies that the di�erences � − � are dynam-
ical units. If the conditions of Theorem 3.1 are satis�ed for m, n, d, then (3.2)
holds for all f(x)with degree at least 2. We view these as universal relations for
dynamical units.

Morton and Silverman [9, Thm. 6.3(b)] proved that if f(x) ∈ OK[x] is monic
of degree at least 2, and �, � ∈ OK are points of formal periodm and n respec-
tively, wherem, n ∈ ℕ satisfym ∤ n and n ∤ m, then in fact

� − � ∈ O×
K

is a dynamical unit. Furthermore,Morton and Silverman [9, Prop. 7.4(b)] prove
that if all the prime factors of d > 1 are congruent to 1 mod n, then Φf,n(x)
divides Φf,d(x) − 1. This is a special case of Corollary 3.7.

Corollary 3.7. Let d > 1 and n ≥ 1 be integers such that n ∤ d and suppose that
d is divisible by some prime p ≡ 1 mod n. Then Φf,n(x) divides Φf,d(x) − 1.

Proof. Recall that if d =
∏

p
pkp is the prime factorization of d, then 'd factors

as
'd =

∏

p

[pkp−1]([p] − [1]).

Thus if p ≡ 1 mod n, then 'd ≡ 0 [mod n]. The proof of Proposition 2.12
shows that this is equivalent to xn − 1 dividingMd(x). Conditions (1) and (2)
of Theorem 3.1 are trivially satis�ed sincem, c = 0, hence Theorem 3.1 implies
that Φf,n(x) divides Φf,d(x) − 1. �
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Note that if all the primes dividing d are 1 mod n, as is assumed in [9, Prop.
7.4(b)], then d and n are coprime, hence n ∤ d. Thus the Morton-Silverman re-
sult follows. In terms of hyperplanes covering the group of Dirichlet characters
(see Section 3.3), the case p ≡ 1 mod n for some prime p ∣ d corresponds to the
situation whereℋp = Ûn is the trivial hyperplane.

Assuming that f(x) ∈ OK[x] is monic with degree at least 2, Benedetto
proved that if m ≥ 1, � is a root of Φf,m,n(x), and � is a root of Φf,d(x) for
some n, d ≥ 1, then again, �−� ∈ O×

K
(see [1, Thm. 3]). Benedetto [1, Thm. 2]

proves (a slightly more general version of) the following universal relation for
dynamical units: if � ∈ K is f-periodic with formal period d ≥ 2, then

d∏

i=1

Φf,1,1(f
i(�)) = 1. (3.3)

Theorem 3.1 gives a related, but independent, multiplicative relation. Note
that if we takem = n = 1, c = 0, and d ≥ 2, thenm, n, c, d satisfy the conditions
(1)-(3) of Theorem 3.1: The �rst two conditions are obvious; the third follows
from observing that

Md(1) =
1

d

∑

e∣d

�(e) = 0

for all d ≥ 2, so (x − 1) ∣ Md(x) in ℚ[x]. Thus Φf,1,1(x) divides Φf,d(x) − 1 by
Theorem 3.1. Hence Φf,d(�) = 1 for all roots � of Φf,1,1(x). Taking a product
over all roots � we have

Res(Φf,d(x),Φf,1,1(x)) =
∏

�
Φf,1,1(�)=0

Φf,d(�) = 1.

This identity also follows from (3.3) by taking a product over representatives �
of all formal d-cycles.

The following example shows that Theorem 3.1 yields dynamical units not
covered by the previous results of Benedetto and Morton-Silverman.

Example 3.8. Suppose that K is a number �eld and f(x) ∈ OK[x] is a monic
polynomial of degree at least 2. If (m, n, c, d) = (2, 1, 3, 2), then Theorem 3.1
implies thatΦf,2,1(x) dividesΦf,3,2(x)−1. If �, � ∈ K are roots ofΦf,2,1(x) and
Φf,3,2(x), respectively, then � − � is a dynamical unit. This class of dynamical
units is new: If �′, �′ are such that fk(�′) and fk(�′) are periodic of periods n
and d with n ∤ d and d ∤ n, then Morton-Silverman [9, Thm. 6.3(b)] implies
that fk(�′) − fk(�′) is a dynamical unit. Since �′ − �′ divides fk(�′) − fk(�′)

in OK , it follows that �′ − �′ is also a dynamical unit. However, in the case at
hand, we must have k ≥ max(m, c) = 3, and then fk(�) is a �xed point and
fk(�) has period 2. Since 1 ∣ 2, the Morton-Silverman result does not apply.
Furthermore, Benedetto’s result only applies when one of �, � has preperiod 1
and the other is strictly preperiodic.
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3.3. Cyclotomic factors of necklace polynomials. As discussed in the in-
troduction, the most subtle condition in Theorem 3.1 is xn − 1 dividingMd(x).
Theorem 3.10 gives an alternative characterization of this divisibility in terms
of hyperplane arrangements in �nite abelian groups.

De�nition 3.9. For n ≥ 1, letUn ∶= (ℤ∕(n))× denote themultiplicative group
of units modulo n and let Ûn ∶= Hom(Un,ℂ

×) denote the group of Dirichlet
characters of modulus n. If q ∈ Un, then the hyperplaneℋq ⊆ Ûn is the set

ℋq ∶= {� ∈ Ûn ∶ �(q) = 1}.

Theorem 3.10. Let d, n ≥ 1. Then xn − 1 dividesMd(x) if and only if

Ûn ⊆
⋃

p∣d

p∤n

ℋp.

Proof. Aswe argued in the proof of Proposition 2.12, it follows fromLemma2.9
that 'd ≡ 0 [mod n] if and only if 'dx∕d = Md(x) is divisible by xn − 1. Let d̃
be the largest factor of d coprime to n. The group ringℚ[Un] naturally embeds
into ℚΨ0,n as the ℚ-span of [q] for q ∈ Un, and 'd̃ ∈ ℚ[Un] ⊆ ℚΨ0,n. Observe
that

'd̃ =
∑

e∣d̃

�(e)[d̃∕e] = [d̃]
∏

p∣d̃

(1 − [p]−1) ∈ ℚ[Un],

where the product is taken over all primesp dividing d̃. Recall that each charac-
ter � ∈ Ûn extends to a ring homomorphism � ∶ ℚ[Un]→ ℂ. Thus if � ∈ Ûn,
then

�('d̃) = �(d̃)
∏

p∣d̃

(1 − �(p)).

If �i ∈ Ûn for 1 ≤ i ≤ '(n) are the distinct characters of Un, then the linear
independence of characters [3, Chp. 14, Thm. 7] implies that the map

� ∈ ℚ[Un]⟼ (�1(�), �2(�),… , �'(n)(�)) ∈ ℂ'(n)

is an embedding of rings. Hence � = 0 in ℚ[Un] if and only if �i(�) = 0 for all
�i. Thus 'd̃ = 0 in ℚ[Un] if and only if for each � ∈ Ûn there is some prime
p ∣ d̃ such that �(p) = 1. This is equivalent to Ûn ⊆

⋃

p∣d̃
ℋp =

⋃

p∣d,p∤n
ℋp.

Hence if Ûn ⊆
⋃

p∣d̃
ℋp, then

dMd(x) = 'dx = ('d̃'d∕d̃)x = 'd̃ ⋅ ('d∕d̃x) ≡ 0 ⋅ ('d∕d̃x) ≡ 0 mod xn − 1.

Conversely, suppose that xn−1 dividesMd(x). LetU ⊆ ℚ[x]∕(xn−1) denote
the ℚ-subspace spanned by xj with j coprime to n, and let Sd(x) ∶= dMd(x).
Observe that

Sd(x) = 'dx = 'd∕d̃Sd̃(x) =
∑

e∣d∕d̃

�(d∕d̃e)Sd̃(x
e).

Since d̃ is the largest factor of d coprime to n, it follows that each e > 1 dividing
d∕d̃ shares a nontrivial common factor with n. Hence the U-component of
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Sd(x) is ±Sd̃(x). Hence if Sd(x) ≡ 0 mod xn − 1, then it must be the case that
Sd̃(x) ≡ 0 mod xn−1. As argued above, this is equivalent to Ûn ⊆

⋃

p∣d̃
ℋp. �

Remark 3.11. Theorem 3.10 is closely related to [6, Thm. 1.13] but with a
slightly di�erent scope. Neither result directly implies the other.

Example 3.12. The following example is adapted from [6, Ex. 2.8]. Let

d = 440512358437 = 472 ⋅ 73 ⋅ 79 ⋅ 151 ⋅ 229,

and let n = 65. The group Û65 ≅ (ℤ∕(65))× decomposes as Û65 ≅ ℤ∕(4)2 ×

ℤ∕(3). Note that each hyperplane ℋp ⊆ Û65 is a subgroup, hence factors as
ℋp ≅ ℋ

(4)
p ×ℋ

(3)
p withℋ(4)

p ⊆ ℤ∕(4)2 andℋ(3)
p ⊆ ℤ∕(3). In this case,ℋ(3)

p =

ℤ∕(3) for each p ∣ d. Thus it su�ces to consider the 4-torsion ℋ
(4)
p of each

hyperplaneℋp.
Identifying the 4-torsion subgroup of Û65 with the additive groupℤ∕(4)2, the

group U65 ∶= (ℤ∕(65))× of units modulo 65 has a compatible isomorphism

� ∶ U65 → ⟨x, y ∶ 4x = 4y = 0⟩

with the dual group of ℤ∕(4)2. With respect to such an isomorphism, (the 4-
torsion of) each hyperplaneℋp may be realized as the vanishing set of a homo-
geneous linear form, hence the hyperplane terminology.

The units 47 and 151 generate a ℤ∕(4)2 subgroup of U65, so we may choose
coordinates � such that x ∶= �(47) and y ∶= �(151). Then the hyperplanes
ℋp may be visualized as lines in the “plane” (ℝ∕4ℤ)2. Each of the �ve distinct
primes dividing d corresponds to a di�erent colored line in the diagram below.
For example, since 229 ≡ 472 ⋅ 151−1 mod 65, the (4-torsion of the) hyperplane
ℋ229 is the solution set of 2x−y = 0 inℤ∕(4)2. Figure 3 shows the linear forms
de�ning each line with respect to this choice of coordinates.

Since the �ve linesℋp with p ∣ d cover all of ℤ∕(4)2, it follows that Û65 ⊆⋃

p∣d
ℋp, with d = 440512358437. The cocore of d is 47. Hence Theorem 1.1

implies that for any polynomial f(x) ∈ K[x] with degree at least 2 and any
m ≤ 47,

Φf,m,65(x) divides Φf,440512358437(x) − 1.

By drawing other arrangements of lines covering ℤ∕(4)2 and �nding primes
in the corresponding congruence classesmodulo 65 (whichmust exist byDirich-
let’s theorem on primes in arithmetic progressions) we may construct several
other nontrivial examples of d for which Û65 ⊆

⋃

p∣d
ℋp. Three examples are

given in Figure 4.
Values of d corresponding to the three arrangements in Figure 4 are, respec-

tively,

d1 = 157 ⋅ 181 ⋅ 337 ⋅ 389

d2 = 79 ⋅ 181 ⋅ 389

d3 = 47 ⋅ 109 ⋅ 151 ⋅ 157 ⋅ 317 ⋅ 337.
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Figure 3. The lattice points in (ℝ∕4ℤ)2may naturally be iden-
ti�ed with ℤ∕(4)2.

Figure 4.

Each of these di are squarefree and coprime to 65, so it follows that
Φf,m,65(x) divides Φf,di (x) − 1

for eachm = 0, 1 and each di.
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