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Generating sets for the Kau�man skein
module of a family of Seifert �bered spaces

José Román Aranda and Nathaniel Ferguson

Abstract. We study spanning sets for the Kau�man bracket skein module
S(M,ℚ(A)) of orientable Seifert �bered spaces with orientable base and non-
empty boundary. As a consequence, we show that the KBSM of such mani-
folds is a �nitely generated S()M,ℚ(A))-module.
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Skein modules are a useful tool to study 3-manifolds. Roughly speaking, a
skein module captures the space of links in a given 3-manifold, modulo certain
local (skein) relations between the links. The choice of skein relations must
strike a careful balance between providing interesting structure and ensuring
that the structure is manageable [13]. The most studied skein module is the
Kau�man bracket skein module, so named because the skein relations are the
same relations used in the construction of the Kau�man bracket polynomial.

Letℛ be a ring containing an invertible elementA. TheKau�man bracket
skeinmodule of a 3-manifoldM is de�ned as theℛ-module S(M,ℛ) spanned
by all framed links inM, modulo isotopy and the skein relations

(K1): = A + A−1 (K2): L ∪ =
(
−A2 − A−2)L.

Throughout this note, when ℛ is unspeci�ed, S(M) = S(M,ℚ(A)). Since its
introduction by Przytycki [12] and Turaev [15], S(M,ℛ) has been studied and
computed for various 3-manifolds. It is di�cult to describe S(M,ℛ) for a given
3-manifold, although some results have been found1.

∙ S(S3,ℤ[A±1]) = ℤ[A±1].
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∙ S(S1 × S2,ℤ[A±1]) ≅ ℤ[A±1]⊕
(⨁∞

i=1ℤ[A
±1]∕(1 − A2i+4)

)
[8].

∙ S(L(p, q),ℤ[A±1]) is a free module with ⌊p∕2⌋ + 1 generators [7, 3].
∙ S(Σ × [0, 1],ℤ[A±1]) is a freely generated by multicurves in Σ [13, 14].
∙ S(Σ × S1,ℚ(A)) has dimension 22g+1 + 2g − 1 if )Σ = ∅, [4, 2].

In 2019, Gunningham, Jordan and Safronov proved that, for closed 3-manifolds,
S(M,ℂ(A)) is �nite dimensional [5]. However, for 3-manifoldswith non-empty
boundary, this problem is still open. In [1], Detcherry asked versions of a �nite-
ness conjecture for the skeinmodule of knot complements and general 3-mani-
folds (see Section 3 of [1] for a detailed exposition).

Conjecture 0.1 (Finiteness conjecture formanifoldswith boundary [1]). LetM
be a compact oriented 3-manifold. ThenS(M) is a �nitely generatedS()M,ℚ(A))-
module.

This paper studies the�niteness conjecture for a large family of Seifert �bered
spaces (SFS). Let Σ be an orientable surface of genus g with N boundary com-
ponents. Let n, b be non-negative integers withN = n+b. For each i = 1,… , n,
pick pairs of relatively prime integers (qi, pi) satisfying 0 < qi < |pi|. The 3-
manifoldΣ×S1 has torus boundary componentswith horizontalmeridians�i ⊂
Σ × {pt} and vertical longitudes �i = {pt} × S1. Denote byM

(
g; b, {(qi, pi)}ni=1

)

the result of Dehn �lling the �rst n tori of )
(
Σ × S1

)
with slopes qi�i + pi�i.

Every SFS with orientable base orbifold is of the formM
(
g; b, {(qi, pi)}ni=1

)
[6].

The main result of this paper is to establish Conjecture 0.1 for such SFS.

Theorem 3.11. Let Σ be an orientable surface with non-empty boundary. Then
S(Σ × S1) is a �nitely generated S()Σ × S1,ℚ(A))-module of rank 22g.

Theorem 4.1. Let M = M
(
g; b, {(qi, pi)}ni=1

)
be an orientable Seifert �bered

space with non-empty boundary. SupposeM has orientable orbifold base. Then,
S(M) is a �nitely generated S()M,ℚ(A))-module of rank at most 22g

∏n
i=1(2qi −

1).

The following is a more general formulation of the �niteness conjecture.

Conjecture 0.2 (Strong �niteness conjecture formanifolds with boundary [1]).
Let M be a compact oriented 3-manifold. Then there exists a �nite collection
Σi,… ,Σk of essential subsurfaces Σi ⊂ )M such that:

∙ for each i, the dimension ofH1(Σi,ℚ) is half ofH1()M,ℚ);
∙ the skein module S(M) is a sum of �nitely many subspaces F1,… , Fk,
where Fi is a �nitely generated S(Σi,ℚ(A))-module.

We are able to show this conjecture for a subclass of SFS.

Theorem 4.2. Seifert �bered spaces of the formM
(
g; 1, {(1, pi)}ni=1

)
satisfy Con-

jecture 0.2. In particular, Conjecture 0.2 holds for Σg,1 × S1.

The techniques in this work are based on the ideas of Detcherry and Wol�
in [2]. For simplicity, we set ℛ = ℚ(A) by default, even though our statements
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work for any ring ℛ such that 1 − A2m is invertible for all m > 0. It would be
interesting to see if the generating sets in this work can be upgraded to verify
Conjecture 0.2 for all Seifert �bered spaces. Although there is no reason to
expect the generating sets to be minimal for general Seifert �bered spaces, we
wonder if the work of Gilmer and Masbaum in [4] could yield similar lower
bounds.

Outline of the work. The sections in this paper build-up to the proof of
Theorems 4.1 and 4.2 in Section 4. Section 1 introduces the arrowed diagrams
which describe links in Σ × S1. We show basic relations among arrowed dia-
grams in Section 1.1. Section 2 proves that S(Σ0,N×S1) is generated by boundary
parallel diagrams. Section 3 studies the positive genus case S(Σg,N×S1); we �nd
a generating set overℚ(A) in Proposition 3.10. In Section 4, we describe global
and local relations between links in the skein module of Seifert �bered spaces.
We use this to build generating sets in Section 4.2.

Acknowledgments. This work is the result of a course at and funding from
Colby College. The authors are grateful to Puttipong Pongtanapaisan for help-
ful conversations and Scott Taylor for all his valuable advice. In addition, the
authors want to thank the referee for suggesting ideas that improved the results
of this work.

1. Preliminaries
Most of the arguments in this paper will focus on �nding relations among

links in Σ × S1 for some compact orientable surface Σ. The main technique is
the use of arrow diagrams introduced by Dabkowski and Mroczkowski [9].
An arrowdiagram in Σ is a generically immersed 1-manifold in Σwith �nitely
many double points, together with crossing data on the double points, and
�nitely many arrows in the embedded arcs. Such diagrams describe links in
Σ × S1 as follows: Write S1 = [0, 1]∕ (0 ∼ 1). Lift the knot diagram in Σ × {1∕2}
away from the arrows to a union of knotted arcs in Σ× [1∕4, 3∕4], and interpret
the arrows as vertical arcs intersecting Σ × {1} in the positive direction. We can
use the surface framing on arrowed diagrams to describe framed links in Σ×S1.

Figure 1. Example of arrowed diagram.
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Arrowed diagrams have been used to study the skein module of Σ0,3 × S1
[9], prismmanifolds [10], the connected sum of two projective spaces [11], and
Σg × S1 [2].

Proposition 1.1 ([9]). Two arrowed diagrams of framed links in Σ × S1 corre-
spond to isotopic links if and only if they are related by standard Reidemeister
moves R′1, R2, R3 and the moves

(R4): ∼ ∼ (R5): ∼ .

From relation R4, we only need to focus on the total number of the arrows
between crossings. We will keep track of them by writting a number n ∈ ℤ
next to an arrow. Negative values of n correspond to |n| arrows in the opposite
direction.

Throughout thiswork, a simple arroweddiagram (or arrowedmulticurve)
will denote an arrowed diagram with no crossings. A simple closed curve in Σ
will be said to be trivial if it bounds a disk. We will sometimes refer to trivial
curves bounding disks disjoint from a given diagram as unknots. Loops parallel
to the boundary will not be considered trivial. A simple closed curve will be
essential if it does not bound a disk nor is parallel to the boundary in Σ.

We can always resolve the crossings of an arrowed diagram via skein rela-
tions. Thus, every element in S(Σ × S1) can be written a ℤ[A±1]-linear com-
bination of arrowed diagrams with no crossings. The following equation will
permit us to disregard arrowed unknots, since we can merge them with other
loops.

= ⟹ A + A−1 = A−1 + A . (1)

Equation (1) implies Proposition 1.2.

Proposition 1.2 ([2]). The skein module S(Σ×S1) is spanned by arrowedmulti-
curves containing no trivial component, and by the arrowed multicurves consist-
ing of just one arrowed unknot with some number of boundary parallel arrowed
curves.

De�nition 1.3 (Dual tree [2]). Let  ⊂ Σ be an arrowedmulticurve. Let c be the
multicurve consisting of one copy of each isotopy class of separating essential
loop in . Let V be the set of connected components of Σ − c. For v ∈ V,
denote by Σ(v) ⊂ Σ the corresponding connected component of Σ − c. Two
distinct vertices share an edge (v1, v2) ∈ E if the subsurfaces Σ(v1) and Σ(v2)
have a common boundary component. De�ne thedual tree of  to be the graph
Γ() = (V, E). Since every loop in c is separating inΣ, the subsurfacesΣ(v1) and
Σ(v2) have at most one common boundary. Thus, Γ() is a tree.
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1.1. Relations between skeins. We now study some operations among ar-
rowed multicurves in S(Σ × S1) that change the number of arrows in a con-
trolled way. Although one can observe that all relations happen on a three-
holed sphere, we write them separately for didactical purposes.

In practice, a vertical strand will be part of a concentric circle. Lemma 1.4
states that we can change the sign of the arrows in an unknot at the expense of
adding skeins with fewer arrows. Lemma 1.5 allows us to ‘break’ and ‘merge’
the arrows in between two unknots. Lemma 1.6 states that we can ‘pop-out’
the arrows from a loop with the desired sign (of y and x) without increasing
the number of arrows in the diagrams. Lemma 1.7 lets us pass arrows between
parallel (or nested), and Lemma 1.8 is an explicit case of Equation (1). The
symbol in Lemmas 1.5 and 1.7 will correspond to any subsurface of surfaceΣ.
In practice, will correspond to a boundary component of Σ or an exceptional
�ber in Section 4.

Lemma 1.4 (Proposition 4.2 of [2]). Let Sk be an unknot in Σwith k ∈ ℤ arrows
oriented counterclockwise. The following holds for n ≥ 1,

(i) S1 = A6S−1
(ii) S−n = A−(2n+4)Sn moduloℚ(A){S0,… , Sn−1}.
(iii) Sn = A2n+4S−n moduloℚ(A){S−(n−1),… , S0}.

Lemma 1.5. Let a, b ∈ ℤ with ab > 0. Then

(i) + A
2a
|a| ∈ ℤ[A±1]

{
∶ 0 ≤ ax, 0 ≤ |x| <

|a| + |b|
}
.

(ii) ∈ ℤ[A±1]
{

∶ 0 ≤ |x| ≤ |a|
}
.

Proof. Suppose �rst that a, b > 0. Using R5 we obtain

= .

Thus,

+ A2 = A2 + . (2)

By setting x = 0, the statement follows for b = 1 and all a ≥ 1. For general
b ≥ 1, we proceed by induction on a ≥ 1 setting x = b in the equation above.
The proof of case a, b < 0 uses the equation above after the change of variable
a = −a′ + 1 and x = −x′. Part (ii) follows from Equation (1) with n = a. �

Lemma 1.6. For anym ∈ ℤ − {0},
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(i) ∈ ℤ[A±]{ ∶ mx ≥ 0, y ∈ {0, 1}, y + |x| ≤ |m|}.

(ii) ∈ ℤ[A±]{ ∶ mx ≥ 0, y ∈ {0,−1}, |y| + |x| ≤ |m|}.

Proof. Add one arrow pointing upwards at the top end of the arcs in Equation
(1) and set n = m − 1. We obtain the following equation

A + A−1 = A−1 + A . (3)

Ifm > 0, we can solve for and use it inductively to show Part (i). Ifm < 0,

we can instead solve for and set m′ = m − 2. This new equation can be

use to prove Part (i) form′ < 0.

Part (ii) is similar. Start with Equation (1) with m = n and solve for to

prove Part (ii) form > 0. Ifm < 0, setm = n − 2 in Equation (1). �

Lemma 1.7. For all a, b ∈ ℤ,

(i) = A2 + − A2 .

(ii) = A−2 + − A−2 .

(iii) = A2 + − A2 .

(iv) = A−2 + − A−2 .



50 JOSÉ ROMÁN ARANDA AND NATHANIEL FERGUSON

Proof. One can use (K1) on the LHS of each equation to create a new crossing.
The result follows from (R5). �

Lemma 1.8.

= −A4 − A2 .

Proof. Rotate Equation (1) by 180 degrees and set n = 1. �

2. Planar case
Fix a planar subsurface Σ′ ⊂ Σ with at least 4 boundary components. The

goal of this section is to prove Proposition 2.8 which states that S(Σ′×S1) is gen-
erated by arrowed diagrams with )-parallel arrowed curves only. In particular,
the rank of S(Σ′ × S1) as a module over its boundary is at most one; generated
by the empty link.

We will study diagrams in linear pants decompositions. These are pants de-
compositions for Σ′ with dual tree isomorphic to a line. See Figure 2 for a con-
crete picture. Linear decompositions have N = |�(Σ′)| ≥ 2 pairs of pants. By
�xing a linear pants decomposition, there is a well-de�ned notion of left and
right ends of Σ′. We denote the speci�c curves of a linear pants decomposition
as in Figure 2. We think of such decomposition as the planar analogues for the
sausage decompositions of positive genus surfaces in [2].

Figure 2. Linear pants decomposition for spheres with holes.

Themain idea of Proposition 2.8 is to ‘push’ loops parallel to li in a linear
pants decomposition towards the boundary of )Σ in both directions. We do this
with the help of the ∆-maps from De�nition 2.4; ∆+ ‘pushes’ loops towards the
left and∆− towards the right (see Lemma 2.5). This idea is based on Section 3.3
of [2] where the authors proved a version of Proposition 2.8 for closed surfaces.
The following de�nition helps us to keep track of the arrowed curves in the
boundary.
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De�nition 2.1 (Diagrams in linear pants decompositions). Fix a linear pants
decomposition of Σ′ and integers m ≥ 0, k0 ∈ {1,… , N − 1}. For each k ∈
{0,… , N} − {k0}, a ∈ ℤ, and v ∈ {0, 1, ∅}N , we de�ne the arrowed multicurves
Dk
a,v in Σ′ as follows: Dk

a,v has one copy of lk with a arrows,m copies of lk0with
no arrows, and one copy of ci with vi arrows if vi = 0, 1 and no curve ci if vi = ∅.
Notice that the positive direction of the arrows of the curves ci depends on the
(left/right) position of ci with respect to lk0 (see Figure 3). If k = k0, we de�ne

lD
k0
a,v (resp. rD

k0
a,v) as before with the condition that the left-most (resp. right-

most) copy of lk0 contains a arrows.

Figure 3. De�nition of Dk
a,v, lD

k0
a,v and rD

k0
a,v.

Lemma2.2 (Lemma 3.11 of [2]). The following holds for any two parallel curves,

A−1 + A = A + A−1 .

In particular, for any a ∈ ℤ,m ≥ 0, and v ∈ {0, 1, ∅}N , we have

lD
k0
a,v ≅ A2ma

rD
k0
a,v,

modulo ℤ[A±1]-linear combinations of diagrams with fewer non-trivial loops.

Lemma 2.3 allows us to change the location of the a arrows in the diagram
D at the expense of changing the vector v. Its proof follows from Proposition
3.5 of [2].
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Lemma 2.3. The following equations hold for k ∈ {1,… , N − 1}.
(i) If k > k0, then

ADk
a,(…,vk ,∅,… )

− A−1Dk
a+2,(…,vk ,∅,… )

= ADk+1
a+1,(…,vk ,1,∅,… )

− A−1Dk+1
a,(…,vk ,0,∅,… )

.

(ii) If k = k0, then

ArD
k0
a,(…,vk ,∅,… )

− A−1
rD

k0
a+2,(…,vk ,∅,… )

= ADk0+1
a+1,(…,vk ,1,∅,… )

− A−1Dk0+1
a,(…,vk ,0,∅,… )

.

(iii) If k = k0, then

AlD
k0
a+2,(…,∅,vk0 ,… )

− A−1
lD

k0
a,(…,∅,vk0 ,… )

= ADk0−1
a,(…,∅,0,vk0 ,… )

− A−1Dk0−1
a+1,(…,∅,1,vk0 ,… )

.

(iv) If k < k0, then

ADk
a+2,(…,∅,vk ,… )

− A−1Dk
a,(…,∅,vk ,… )

= ADk−1
a,(…,∅,0,vk ,… )

− A−1Dk−1
a+1,(…,∅,1,vk ,… )

.

De�nition 2.4 (∆-maps). Following [2], let V)Σ′ be the subspace of S(Σ′ × S1)
generated by arrowed diagrams with trivial loops and boundary parallel curves
in Σ′. Consider V to be the formal vector space over ℚ(A) spanned by the dia-
grams Dk

a,v, lD
k0
a,v and rD

k0
a,v for all a ∈ ℤ, v ∈ {0, 1, ∅}N and k ∈ {0,… , N} ⧵ {k0}.

De�ne the linear map s ∶ V → V given by s(Dk
a,v) = Dk

a+2,v (similarly for lD
k0
a,v

and rD
k0
a,v). De�ne the maps ∆−,∆+, and ∆+,m by

∆− = A − A−1s, ∆+ = As − A−1, ∆+,m = A4m+1s − A−1.

Combinations of ∆-maps, together with Lemmas 2.5 and 2.6, will show that
the image of V in S

(
Σ′ × S1

)
is a subset of V)Σ′ .

Lemma 2.5. Let o(e) and z(e) be the number of ones and zeros of a vector e ∈
{0, 1}n.

(i) The following equation holds for all 1 ≤ n ≤ k0.

∆n+
(
lD

k0
a,(…,∅,… )

)
=

∑

e∈{0,1}n
(−1)o(e)Az(e)−o(e)Dk0−n

a+o(e),(…,∅,e,∅,… ), (4)

where e = (e1,… , en) is located so that vk0 = en.
(ii) The following equation holds for all 1 ≤ n ≤ N − k0.

∆n−
(
rD

k0
a,(…,∅,… )

)
=

∑

e∈{0,1}n
(−1)z(e)Ao(e)−z(e)Dk0+n

a+o(e),(…,∅,e,∅,… ), (5)

where e = (e1,… , en) is located so that vk0 = e1.

Proof. Wenowprove Equation (4). The proof of Equation (5) is symmetric and
it is left to the reader. Lemma 2.3 with k = k0 is the statement of case n = 1.
We proceed by induction on n and suppose that Equation (4) holds for some
1 ≤ n ≤ k0 − 1. Using Lemma 2.3 with k < k0, we show the inductive step as
follows,

∆n+1+

(
lD

k0
a,∅

)
=

(
As − A−1) ◦∆n+

(
lD

k0
a,∅

)
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=
∑

e∈{0,1}n
(−1)o(e)A1+z(e)−o(e)Dk0−n

a+2+o(e),(…,∅,e,∅,… )

− (−1)o(e)A−1+z(e)−o(e)Dk0−n
a+o(e),(…,∅,e,∅,… )

=
∑

e∈{0,1}n
(−1)o(e)Az(e)−o(e)

[
ADk0−n

a+o(e)+2,(…,∅,e,∅,… ) − A−1Dk0−n
a+o(e),(…,∅,e,∅,… )

]

=
∑

e∈{0,1}n
(−1)o(e)Az(e)−o(e)

[
ADk0−n−1

a+o(e),(…,∅,0,e,∅,… ) − A−1Dk0−n−1
a+o(e)+1,(…,∅,1,e,∅,… )

]

=
∑

e∈{0,1}n
(−1)o(e)A1+z(e)−o(e)Dk0−n−1

a+o(e),(…,∅,0,e,∅,… )

+ (−1)o(e)+1Az(e)−o(e)−1Dk0−n−1
a+o(e)+1,(…,∅,1,e,∅,… )

=
∑

e∈{0,1}n+1
(−1)o(e)Az(e)−o(e)Dk0−(n+1)

a+o(e),(…,∅,e,∅,… ).

�

Lemma 2.6. For any a ∈ ℤ, we have ∆k0+
(
lD

k0
a,∅

)
,∆N−k0−

(
rD

k0
a,∅

)
∈ V)Σ′ . Fur-

thermore,∆k0+
(
lD

k0
a,∅

)
is a linear combination of elements of the formD0

a′,(v1,…,vk0 ,∅,…,∅)

and ∆N−k0−
(
rD

k0
a,∅

)
is a sum of elements DN

a′,(∅,…,∅,vk0+1,…,vN)
.

Proof. Setting n = k0 in Equation (4) yields the �rst half of the statement and
the condition ∆k0+

(
lD

k0
a,∅

)
∈ V)Σ′ . The second conclusion follows by setting

n = N − k0 in Equation (5). �

Proposition 2.7. The multicurves lD
k0
a,v and rD

k0
a,v lie in V)Σ′ for any a ∈ ℤ and

v ∈ {0, 1, ∅}N .

Proof. By pushing the boundary parallel curves ‘outside’ Σ′, it is enough to
show the proposition for v = ∅. Using Lemma 2.2, modulo arrowed multic-
urves with fewer non-trivial loops, we get that

s
(
lD

k0
a,∅

)
= lD

k0
a+2,∅ ≅ A2m(a+2)

rD
k0
a+2,∅.

Thus,

∆+
(
lD

k0
a,∅

)
=As

(
lD

k0
a,∅

)
− A−1

lD
k0
a,∅

≅A4m+1A2ma
rD

k0
a+2,∅ − A−1A2ma

rD
k0
a,∅

=A2ma [
A4m+1s − A−1]

(
rD

k0
a,∅

)

=A2ma∆+,m
(
rD

k0
a,∅

)
.

Hence, up to sums of curveswith less non-trivial loops inΣ′, Lemma 2.6 implies

∆k0+,m
(
rD

k0
a,∅

)
,∆N−k0−

(
rD

k0
a,∅

)
∈ V)Σ′ .
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Finally, observe that A−1∆+,m + A4m+1∆− =
(
A4m+2 − A−2) IdV . This yields

rD
k0
a,∅ = IdNV

(
rD

k0
a,∅

)
= 1

(A4m+2 − A−2)N
(
A−1∆+,m + A4m+1∆−

)N (
rD

k0
a,∅

)
.

The result follows since ∆k0+,m
(
rD

k0
a,∅

)
and ∆N−k0−

(
rD

k0
a,∅

)
are both elements of

V)Σ′ . �

We are ready to describe an explicit generating set for S(Σ×S1) for any planar
surface Σ.

Proposition 2.8. Let Σ be a N-holed sphere with N ≥ 1. Then S(Σ × S1) is
generated by arrowed unknots and )-parallel arrowed multicurves.

Proof. Proposition 2.8 is equivalent to the statement that S(Σ×S1) is generated
by arrowed multicurves with dual trees isomorphic to a point. Let  be an ar-
rowed multicurve in Σwith Γ() ≠ {pt}. Let e = (v1, v2) be a �xed edge of Γ(),
and let Σ′ ⊂ Σ be the subsurface Σ(v1) ∪ Σ(v2). By Lemma 2.2, up to curves of
smaller degree, we can arrange the arrows in the loops corresponding to e so
that only one loop (the closest toΣ(v2))may have arrows. By construction, ∩Σ′
has one isotopy class of separating non )-parallel curve in Σ′. Thus, there exists
a linear pants decomposition for Σ′ and integers a ∈ ℤ, k0 ∈ {1,… , |�(Σ′)|−1}
so that  ≅ rD

k0
a,∅ (we focus on the non )-parallel components of ∩Σ′). Propo-

sition 2.7 states that rD
k0
a,∅ ∈ V)Σ′ . Therefore,  is aℚ(A)-linear combination of

arrowed multicurves with dual trees isomorphic to Γ()∕e; with fewer vertices
than Γ(). �

3. Non-planar case
This section further exploits the proofs in [2] to give a �niteness result for

S(Σ×S1) for all orientable surfaces with boundary (Proposition 3.10). Through-
out this section, Σ will be a compact orientable surface of genus g > 0 with
N > 0 boundary components.

3.1. Properties of stable multicurves.

De�nition 3.1 (Complexity). Let  be an arrowed multicurve. Denote by n
the number of non-separating circles of , m the number of non-trivial non )-
parallel separating circles in , and b the number of vertices in the dual tree of 
intersecting )Σ. Wede�ne the complexity of amulticurve  as (b, n + 2m, n +m)
and order them with the lexicographic order. An arrowed multicurve is said to
be stable if it is not a linear combination of diagrams with lower complexity.

Proposition 3.2, Proposition 3.3, and Lemma 3.4 restate properties of stable
curves from [2]. Fix a stable arrowed multicurve  in Σ.

Proposition 3.2 (Proposition 3.7 of [2]). Let Σ′ = Σ(v) be a vertex of Γ with
|)Σ′| ≥ 1 and g(Σ′) ≥ 1. Then  ∩ Σ′ contains at most one non-separating curve.
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Proposition 3.3 (From proof of Proposition 3.8 of [2]). If e = (v, v′) is an edge
of Γ with g(v′) ≥ 1, then the valence of v is at most two.

Lemma 3.4 (Lemma 3.9 of [2]). For a vertex v with g(v) ≥ 1 and valence two,
 ∩ Σ(v) contains no non-separating curves.

Proposition 3.5 shows that stable arrowed multicurves satisfy b() = 1.

Proposition 3.5. Stable arrowedmulticurves have dual trees isomorphic to lines.
Moreover, they are ℚ(A)-linear combinations of arrowed unknots and the two
types of arrowed multicurves depicted in Figure 4.

Figure 4. Type 1 multicurves contain only one isotopy class
of non-separating simple curve and type 2 at most two non-
separating loops.

Proof. Suppose b() > 1; i.e., there exist two distinct vertices v1, v2 ∈ Γ con-
taining boundary components of Σ. We will show that  is not stable. There
exists a path P ⊂ Σ connecting v1 and v2. For each vertex x ∈ P, we de�ne
a subsurface Σ′(x) ⊂ Σ(x) as follows: If Σ(x) is planar, de�ne Σ′(x) ∶= Σ(x).
Suppose now that g(x) ≥ 1 and x ∉ {v1, v2}. Proposition 3.2 states that ∩Σ(x)
contains at most one non-separating loop. Thus, we can �nd a planar surface
Σ′(x) ⊂ Σ(x) disjoint from the non-separating loop such that )Σ′(x) contains
the two boundaries of Σ(x) participating in the path P (see Figure 5). Suppose
now g(x) ≥ 1 and x = vi. Using Proposition 3.2 again, we can �nd a subsurface
Σ′(x) ⊂ Σ(x) with )Σ′(x) containing the Σ(x) ∩ )Σ and the one loop of )Σ(x)
participating in the path P (see Figure 5). De�ne Σ′ ⊂ Σ to be the connected
surface obtained by gluing the subsurfaces Σ′(x) for all x ∈ P. Since Γ is a tree,
Σ′ must be planar.

By construction ∩Σ′ can be thought of as an element of S(Σ′×S1). Proposi-
tion 2.8 states that ∩Σ′ can be written asℚ(A)-linear combination of arrowed
diagrams with only trivial and )-parallel curves in Σ′. In particular,  can be
written as a linear combination of arrowed diagrams ′ in Σ with b(′) < b(),
and so  is not stable.

Let  be an stable arrowed multicurve. Since b() = 1, there is a unique ver-
tex x0 ∈ Γ with )Σ ⊂ Σ(x0). Notice that any vertex v ∈ Γ of valence two either
has positive genus or is equal to x0. This assertion, together with Proposition
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Figure 5. Building the subsurface Σ′.

3.3, implies that Γ is isomorphic to a line where every vertex di�erent than x0
has positive genus.

The graph Γ ⧵ {x0} is the disjoint union of at most two linear graphs Γ1 and
Γ2; Γi might be empty. For each Γi ≠ ∅, the subsurface Σ(Γi) is a surface of
positive genus with one boundary component. If each Γi has at most one vertex
then  looks like curves in Figure 4 and the proposition follows. Suppose then
that Γi has two or more vertices and pick an edge e of Γi. By Proposition 3.2 and
Lemma 3.4, ∩Σ(e) contains atmost one isotopy class of non-separating curves.
Denote such a curve by �; observe that � is empty unless e is has an endpoint on
a leaf of Γ. Let Σ′′ be the complement of an open neighborhood of � in Σ(e). By
construction,  ∩ Σ′′ contains one isotopy class of non-trivial separating curves
in Σ′′. Note that Σ′′ has between 2 and 4 boundary components, since Σ(e)
has one or two. Thus, by Proposition 3.12 of [2] we can ‘push’ the separating
arrowed loops in  ∩ Σ′′ towards the boundary of Σ′′. Thus, we can write  as a
linear combination of diagrams with dual tree Γ∕e. We can repeat this process
until we obtain only summands with each Γi having at most one vertex. �

Proposition 3.6. LetΣ be an orientable surface of genus g > 0 andN > 0 bound-
ary components. Then S(Σ × S1) is generated by arrowed unknots and arrowed
multicurves with )-parallel components and at most one non-separating simple
closed curve.

Proof. Proposition 3.5 implies that S(Σ × S1) is generated by the arrowed di-
agrams in Figure 4. Using Proposition 3.12 of [2] with Σ′ being the shaded
surfaces in Figures 4 and 6, we obtain that S(Σ×S1) is generated by arrowed di-
agrams as in the bottom left side of Figure 6 where l+ l′ = n1 andm, n1, n2 ≥ 0.
Observe that, ignoring them curves, the l and l′ curves are parallel. Therefore,
by a slight generalization of Lemma 2.2, we can still pass arrows among the l
and l′ curves modulo linear combinations of diagrams of the same type with
lower n1 but higher m. Thus, if we only focus on the complexity n1 + n2, we
can follow the proof of Proposition 3.16 in [2] and conclude that S(Σ × S1) is
generated by arrowed diagrams with n1 + n2 ≤ 1.

The rest of this proof focuses on making m = 0. In order to do this, we
combine techniques in Section 2 of this paper and Proposition 3.12 of [2].
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Figure 6. One needs to apply Proposition 3.12 of [2] twice for
diagrams of type 2.

Case 1: n1 + n2 = 0. Fix m ≥ 0. Let c be a separating curve cutting Σ into
a sphere with N + 1 holes and one connected surface of genus g > 0 with one
boundary component. The diagrams in this case contain only boundary parallel
curves and copies of c. De�neV)Σ

m to be the formal vector space de�ned by such
pictures with at mostm parallel separating curves. For each a ∈ ℤ, de�ne the
diagram rDa (resp. lDa) to be given by m + 1 copies of c, m of which have no
arrows and where the closest to the positive genus surface (resp. to the holed
sphere) has a arrows. By Lemma 2.2, in order to conclude this case, we only
need to check rDa ∈ V)Σ

m .
De�ne ∆+, ∆− and ∆+,m as in Section 2. First, observe that Lemma 2.6 implies
that ∆N−1+ (lDa) ∈ V)Σ

m . Using the computation in the proof of Proposition 2.7,
we conclude that ∆N−1+,m (rDa) ∈ V)Σ

m .
On the other hand, let Σ′ be the surface of genus g on the right side of c with

one small disk removed. Σ′ has two boundary components, one parallel to c and
the other curve c′ bounding a disk in Σ. Here, we can choose a sausage decom-
position for Σ′ so that c and c′ are on the left and right, respectively. Using the
notation in Section 3.3 of [2], the arrowed diagram rDa inside Σ′ corresponds
to the diagram rD0

a,0 with k = k0 = 0. Thus, by repeated iterations of Lemma
3.13 of [2], we have ∆2g− (rDa) = ∆2g+ (D), where D is a diagram withm copies of
c, some boundary parallel curves, and one copy of c′ with a arrows. In Σ, c′ is
an arrowed unknot which can be ‘merged’ to the rest of D using Equation (1).
Thus D ∈ V)Σ

m and so ∆2g− (rDa) ∈ V)Σ
m . Hence,
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rDa =
1

(A4m+2−A−2)2g+N−1
(
A−1∆+,m + A4m+1∆−

)2g+N−1
(rDa) ∈ V)Σ

m .
Case 2: n1+n2 = 1. Fixm ≥ 0. The diagrams in this case contain boundary

parallel curves, some copies of c, and exactly one non-separating curve denoted
by �. De�ne V)Σ

m to be the formal vector space de�ned by such pictures with at
mostm copies of c. For a ∈ ℤ, de�ne lDa, rDa as in Case 1 with the addition of
one copy of �. In order to conclude this case, it is enough to show rDa ∈ V)Σ

m .
Suppose that � has x ∈ ℤ arrows. For a, b ∈ ℤ, de�ne rEa,b and lEa,b to be
m copies of c with no arrows and three copies of � with arrows arranged as in
Figure 7. We can de�ne the map s on the diagrams rEa,b and lEa,b by s(∗Ea,b) =
∗Ea+1,b+1. This way, themaps∆−, ∆+, ∆+,m are de�ned on the diagramsDa and
Ea,b. De�ne ∆−,1 = A − A−3s. Using Lemma 2.2, up to linear combinations of
diagrams in V)Σ

m , we obtain the following:

∆−
(
rEa,0

)
=ArEa,0 − A−1

rEa+1,1
≅A2x+1

lEa,0 − A2(x−1)−1
lEa+1,1

=A2x [
AlEa,0 − A−3

lEa+1,1
]

=A2x∆−,1
(
lEa,0

)
.

Figure 7. lEa,b,x and rEa,b,x.

Let Σ′′ be the subsurface of Σ with three boundary components correspond-
ing to a copy of c and two copies of �. As suggested in Figure 7, we can get
a sausage decomposition for Σ′′ such that the c is on the left end and both
copies of � lie on the right end. Using the notation of Section 3.3 of [2], the
diagrams rDa and rEa,0 inside Σ′′ correspond to the diagrams rD0

a,0 and D
2g−2
a,0

with k0 = k = 0, respectively. After repeated iterations of Lemma 3.13 of [2],
we have ∆2g−1− (rDa) = ∆2g−1+ (lEa,0).

Similarly, we can consider a sausage decomposed 3-holed sphere in Σ with
boundaries corresponding with two copies of � on left and one trivial curve on
the right. By Lemma 3.13 of [2] we obtain that ∆−

(
rEa,0

)
= ∆+(E)where E is a

diagram withm copies of c, one copy of �, some boundary parallel curves and
one arrowed trivial circle. We can merge the trivial circle to the rest of E using
Equation (1) and conclude that E ∈ V)Σ

m . Thus ∆−
(
rEa,0

)
∈ V)Σ

m .
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Putting everything together we conclude that

∆−,1
(
lEa,0

)
∈ V)Σ

m , ∆−,1◦∆
2g−1
− (rDa) ∈ V)Σ

m .

Finally, notice that the argument in Case 1 implies that ∆N−1+,m (rDa) ∈ V)Σ
m . We

also have the following relations between ∆-maps.

A4m+3∆−,1 + A−1∆+,m =
(
A4m+4 − A−2) IdV

A4m+1∆− + A−1∆+,m =
(
A4m+2 − A−2) IdV

IdV =

(
A4m+3∆−,1 + A−1∆+,m

)N
◦
(
A4m+1∆− + A−1∆+,m

)2g−1

(A4m+4 − A−2)N(A4m+2 − A−2)2g−1

When expanding the last expression, we see that every summand has a factor of
the form ∆−,1◦∆

2g−1
− or ∆N−1+,m . Hence, by evaluating rDa, we obtain rDa ∈ V)Σ

m
as desired. �

3.2. A generating set for S(� × S1). To conclude the proof of �niteness for
the Kau�man Bracket Skein Module of trivial S1-bundles over surfaces with
boundary, this section studies relations among non-separating simple closed
curves.

Lemma 3.7. Any arrowed non-separating simple closed curve inΣ can bewritten
as follows in S(Σ × S1)

(
A − A−1) = A − A−1 .

Proof. Using the R5 relation, we obtain = . Thus,

A − A−1 = A − A−1 .

Proposition 4.1 of [2] states that non-separating curves with n and n − 2 ar-
rows are the same in S(Σ × S1). Thus, the result follows. �

Remark 3.8. [Application of Lemma 3.7] Let  be a non-separating simple
closed curve in Σ and let c ∈ )Σ. Let ̃ be an arrowed diagram with one copy
of  and some copies of c; think of  to be ‘on the right side’ of c. Lemma 3.7
states that, at the expense of adding more copies of c and arrows,  is a linear
combination of two diagrams where  is on the other side of c.
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Lemma 3.9. Let c be a non-separating curve in Σ. Fix an orientation on c and
denote by ck the arrowed diagram given by one copy of c with k arrows. If )Σ ≠ ∅,
then the submodule S()Σ × S1) ⋅ {ck ∶ k ∈ ℤ} is generated by c0.

Proof. By Proposition 4.1 of [2], S()Σ × S1) ⋅ {ck}k is generated by c0 and c1.
Therefore, it is enough to give a relation in S(Σ × S1) between them. Denote by
U1 an small unknot with one arrow oriented counterclockwise. We can draw
isotope U1 so that U1 ⋅ c0 looks like the LHS of Lemma 1.8. By the lemma, we
obtain thatU1 ⋅ c0 = −A4c1 −A2c−1. Proposition 4.1 of [2] states that c1 = c−1,
giving us the desired relation

c1 =
U1

−A4 − A2 ⋅ c0.

�

Proposition 3.10. Let Σ be an orientable surface of genus g > 0 and N > 0
boundary components. Let D ⊂ Σ be a (N + 1)-holed sphere containing )Σ, and
letℱ be a collection of 22g − 1 non-separating simple closed curves in Σ −D such
that each curve inℱ represents a unique non-zero element ofH1(Σ⧵D;ℤ∕2ℤ). Let
ℬ be the collection { ∪�,U ∪�}, where  is a curve inℱ with zero or one arrows,
U is an arrowed unknot, and � is any collection of boundary parallel arrowed
circles. Thenℬ is a generating set for S(Σ × S1) overℚ(A).

Proof. By Proposition 3.6, we only need to focus on the non-separating curves.
Let ̃ be a non-separating simple closed curve in Σ. After using Lemma 3.7
repeatedly, we can write ̃ as a linear combination of arrowed diagrams of the
form  ∪ � where  is a non-separating curve in Σ ⧵ D and � is a collection of
boundary parallel curves. Observe that the work on Section 5 of [2] holds for
surfaces with connected boundary since generators for �1(Sg, ∗) andMod(Sg)
also work for Sg,1. Thus, by Proposition 5.5 of [2], two non-separating curves
1, 2 ⊂ Σ⧵Dwith the samenumber of arrows are equal inS(Σ×S1) if [1] = [2]
inH1(Σ⧵D;ℤ∕2ℤ). The condition on the number of arrows for non-separating
curves follows from Proposition 4.1 of [2]. �

Theorem 3.11. Let Σ be an orientable surface with non-empty boundary. Then
S(Σ × S1) is a �nitely generated S()Σ × S1,ℚ(A))-module of rank 22g.

Proof. As amodule overS()M), we can overlook )-parallel subdiagrams. Thus
Proposition 3.10 implies that S(M) is generated by the empty diagram ∅ and
diagrams inℱ with at most one arrow. By Lemma 3.9, the curves inℱ with one
arrow are S()M)-multiples of curves with no arrows. Thus, S(M) = S()M) ⋅
(ℱ ∪ {∅}).

We now prove that the rank of S(M) over S()M) is at least 22g. For an ori-
ented simple closed curve c, denote by ck the diagram corresponding to c with
k arrows. Following the argument of Gilmer and Masbaum in [4], S(M) has a
natural grading by H1(M,ℤ∕2ℤ), thus it is also graded by H1(M, )M,ℤ∕2ℤ).
The non-zero gradings correspond to the submodules S()M)⋅0 for each  ∈ ℱ,
and the zero grading is generated by the empty diagram S()M) ⋅ ∅. In order to
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prove the proposition, it is enough to see that each S()M) ⋅ 0 and S()M) ⋅∅ are
non-zero.

Let Σ̂ be the closed surface of genus g obtained by capping of the boundaries
of Σ with disks, and let M̂ = Σ̂ × S1. We think of the collection ℱ as a subset of
both Σ and Σ̂. The main result of [2] states that the set {0, 1, Un ∶  ∈ ℱ, 0 ≤
n ≤ 2g} is aℚ(A)-basis for S(M̂). By Proposition 2.2 of [13], there is a surjective
ℚ(A)-linear map f ∶ S(M) → S(M̂) induced by the embedding M ↪ M̂. In
particular, for each  ∈ ℱ, f restricts to the graded subspaces as follows

S()M) ⋅ 0 → ℚ(A) ⋅ 0 ⊕ℚ(A) ⋅ 1, S()M) ⋅ ∅→
2g⨁

n=0
ℚ(A) ⋅Un.

The�rst restriction is onto sincef(0) = 0 andf
( U1

−A4−A2
⋅ 0

)
= 1 by Lemma

3.9. The second restriction is onto since each unknot Un can be thought to be
inside S()M). We conclude that S()M) ⋅ 0 and S()M) ⋅ ∅ are non-zero since
their images are non-zero by [2]. So the rank of S(M) over S()M) is 22g. �

4. Seifert �bered spaces
Seifertmanifoldswith orientable base orbifold can be built asDehn�llings of

Σ×S1whereΣ is a compact orientable surface. A result of Przytycki [13] implies
that their Kau�man bracket skein modules are isomorphic to the quotient of
S(Σ × S1) by the subspace generated by all slide relations L − L′ where L is a
link in Σ×S1 and L′ is obtained by connected sum of Lwith a curve c ⊂ )Σ×S1
that bounds a disk after �lling. In this section, we use these new relations to
show the �niteness conjectures for a large family of Seifert �bered spaces. For
details on the notation see next subsection.

Theorem 4.1. Let M = M
(
g; b, {(qi, pi)}ni=1

)
be an orientable Seifert �bered

space with non-empty boundary. SupposeM has orientable orbifold base. Then,
S(M) is a �nitely generated S()M,ℚ(A))-module of rank at most 22g

∏n
i=1(2qi −

1).

Theorem 4.2. Seifert �bered spaces of the formM
(
g; 1, {(1, pi)}ni=1

)
satisfy Con-

jecture 0.2. In particular, Conjecture 0.2 holds for Σg,1 × S1.

4.1. Links in Seifert manifolds. Let Σ be a compact orientable surface of
genus g ≥ 0 with N ≥ 0 boundary components. Fix non-negative integers
n, b with N = n + b. Denote the boundary components of Σ by )1,… , )N and
the isotopy class of a circle �ber in Σ×S1 by � = {pt} ×S1. For each i = 1,… , n,
let (qi, pi) be pairs of relatively prime integers satisfying 0 < qi < |pi|. Let
M

(
g; b, {(qi, pi)}ni=1

)
be the result of gluing n solid tori to Σ × S1 in such way

that the curve pi[�] + qi[)i] ∈ H1()i × S1) bounds a disk. In summary, Σ is the
base orbifold of the Seifert manifold, n counts the number of exceptional �bers,
and is b the number of boundary components of the 3-manifold.

Let M be an orientable Seifert manifold with orientable orbifold base. It is
a well known fact that M is homeomorphic to some M

(
g; b, {(qi, pi)}ni=1

)
[6].
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Links inM can be isotoped to lie inside Σ× S1. Thus, we can represent links in
M as arrowed diagrams in Σ with some extra Reidemester moves. By Proposi-
tion 2.2 of [13] and Proposition 3.10, S(M) is generated by the family of simple
diagrams ℬ = { ∪ �,U ∪ �}.

De�nition 4.3. Let D ∈ ℬ. Let li ≥ 0 be the number of parallel copies of )i
in D. Let "i ≥ 0 be the number of arrows (regardless of orientation) among all
components of D parallel to )i. If D contains an unknot U, denote by u ≥ 0
the number of arrows inU. If D contains a non-separating loop, let u = 0. The
absolute arrow sum of D is the total number of arrows among its separating
loops s ∶= u+

∑
i "i. D is standard if 0 ≤ "i ≤ 1 for every i = 1,… , N; and such

arrows (if exist) lie in the loop furthest from the boundary.

Remark 4.4 (Moving arrows). We think of Lemma 1.7 as a set of moves that
change the arrows between consecutive circles at the expense of adding ‘debris’
terms. Observe that |b − a + 2| ≤ |a| + |b| as long as b < 0 or a > 0. In
particular, the debris terms in the equations of Lemma 1.7 parts (i) and (iii)
will have absolute arrow sums bounded above by the LHS whenever b < 0 or
a > 0. The same happens with parts (ii) and (iv) when b > 0 or a < 0. This can
be summarized as follows: “We can move arrows between consecutive nested
loops without increasing the arrow sum nor li."

Lemma 4.5. Every diagram D inℬ is aℤ[A±1]-linear combination of standard
diagrams D′ satisfying s′ ≤ s and l′i ≤ li,∀i.

Proof. Let � be a collection of boundary parallel arrowed circles in Σ. It is
enough to write � as a ℤ[A±]-linear combination of standard diagrams D′ =
�′ ∪ U′ with s′ ≤ s and l′i ≤ li. The result will follow since we can merge U′

withU or  using Lemma 1.5, without increasing the arrow sum, and then use
Proposition 4.1 of [2] to make the arrows in the new -curves be one or zero.
Given such �, one can use Lemma 1.7 to push the arrows in � towards the inte-
rior of the surface. By Remark 4.4, we knowwhich relation in Lemma 1.7 to use
in order to control the arrow sum in the debris terms. This process will eventu-
ally end, yielding diagrams �′ with only the most interior curve parallel to each
component of )Σ having arrows. We can ‘pop’ the arrows from such curves us-
ing Lemma 1.6 without increasing the arrow sum. We then use Lemma 1.5 to
merge all the resulting arrowed unknots into one arrowed unknot U′. �

The rest of this section is devoted to understand how the quantities s and li
behave under certain relations in ℬ. We use Lemma 4.5 implicitly to rewrite
any relation in terms of standard diagrams with bounded sums s and l.

4.1.1. Localmoves around an exceptional �ber. Fix an index i ∈ {1,… , n}.
By construction, there is a loop �i in the torus )i × S1 bounding a disk Bi inM;
�i homologous to (pi[�] + qi[)i]) ∈ H1()i ×S1,ℤ). Following [10], we can slide
arcs in Σ × S1 over the disk Bi and get new Reidemeister moves for arrowed
projections in Σ × S1. We obtain a new move, denoted by Ω(qi, pi) (see Figure
8).
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Figure 8. Ω(qi, pi) is obtained by drawing qi concentric circles
andpi arrows equidistributed. Notice that the orientation of the
arrows in the RHS is determined by the sign of pi.

We can perform the Ω(qi, pi)-move on an unknot near the boundary )i and
resolve the qi − 1 crossings with K1 relations. Since 0 < qi < |pi|, there is only
one state with orientations of the arrows not cancelling. This unique state has
exactly qi concentric loops while the other states have strictly fewer loops and
no more than |pi| − 2 arrows. We then obtain an equation in S(M) called the
Ω(qi, pi)-relation. Figure 9 shows a concrete example of this equation.

Remark 4.6 (The Ω(qi, pi)-relation). The Ω(qi, pi)-relation lets us write a dia-
gram with qi concentric loops and |pi| arrows arranged in a particular way as
a ℤ[A±]-linear combination of diagrams with 0 ≤ li < qi concentric circles
and 0 ≤ "i < |pi| arrows (see Figure 9). The LHS has |pi| arrows oriented in
the same direction depending on the sign of pi; counterclockwise if pi > 0 and
clockwise otherwise. Notice that the condition 0 < qi < |pi| implies that every
parallel loop in the LHS has at least one arrow.

= A2 − A2 − A2 − A4

Figure 9. Ω(3, 5)-relation.

The special arrangement of arrows in the LHS of theΩ(qi, pi)-relation is im-
portant and depends on the pair (qi, pi). In practice, we rearrange the arrows
around the outer qi copies of )i to match with the LHS of theΩ(qi, pi)-relation.
Lemma 4.7 uses this idea in a particular setup.

Lemma 4.7. The following equation in S(M) relates identical diagrams outside
a neighborhood of )1. Let D ∈ ℬ and x ≥ |p1|. Suppose that l1 ≥ q1, the
loop furthest from )1 has x arrows with the same orientation as in the LHS of the
Ω(q1, p1)-relation, and no other loop in D parallel to )1 has arrows. Then D is a
sum of diagrams D′ ∈ ℬ with l′1 < l1 and at most x arrows.
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Proof. Rearrange the arrows to prepare for theΩ(q1, p1)-relationusing Lemma
1.7. Remark 4.4 explains that the debris terms in this procedure will have arrow
sum at most x and l′1 < l1. After performing theΩ(q1, p1)-move, we obtain dia-
grams with lesser loops l′1 < l1. Observe that the lower arrow sum is explained
due to at least one pair of arrows getting cancelled; this always happens since
0 < q1 < |p1|. In particular, we lose at least two arrows when performing the
move. �

4.1.2. Global relations. We now discuss relations among elements in ℬ of
the form U ∪ �. Lemma 4.8 permits us to add new loops around each )i all of
which have one arrow of the same direction. This move is valid as long as we
have enough arrows on the unknot U; i.e. u ≥ 4g + 2N. The debris terms are
ℤ[A±1]-linear combinations of standard diagrams with fewer arrow sum and
l′i ≤ li + 1. This move is key to prove Theorem 4.2.

Consider the decomposition P+ of Σ described in Figure 10. Set )0 to be the
left-most unknot in P+ oriented counterclockwise. As we did in De�nition 2.1,
if vi ∈ ℤ we will draw one copy of )i with vi arrows oriented as in P+, and do
nothing if vi = ∅. For v ∈ (ℤ ∪ {∅})N+1, denote by Ev the diagram obtained
by drawing )i with vi arrows on it. For example, E(b,∅,…,∅) corresponds to the
arrowed unknot Sb.
We de�ne the ∆-maps from De�nition 2.4 on the family of diagrams Ev with

Figure 10. P+ induces linear pants decompositions on Σ′′ and
sausage decompositions on Σ′.

exactly one of v0 and vN being empty. If v0 = ∅ and vN ∈ ℤ, de�ne s(Ev) =
E(v0,…,vN−1,vN+2). If v0 ∈ ℤ and vN = ∅, de�ne s(Ev) = E(v0+2,…,vN−1,vN).

Lemma 4.8. Let a ≥ 0. The following equation in S(Σ × S1) holds modulo
ℤ[A±1]-linear combinations of diagrams E(∅,…,∅,a′) and E(a′′,e1,e2,…,eN−1,∅) where
a′, a′′ ≥ 0 and ei ∈ {0, 1} are integers with a′ and a′′ +

∑
ei inside the inter-

val [0, a + 4g + 2N − 2).

E(∅,…,∅,a+4g+2N−2) ≅ (−1)N−1A−4g−2N+2E(a+4g+N−1,1,1,…,1,∅).
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Proof. Observe �rst that P+ induces a linear pants decomposition on Σ′′ as in
Section 2. Here, a copy of )N with x ∈ ℤ arrows, E(∅,…,∅,x), corresponds to the
diagram DN−1

x,(∅,…,∅). Equation (4) of Lemma 2.5 with n = k0 = N − 1 states the
following

∆N−1+

(
DN−1
a,(∅,…,∅)

)
=

∑

e∈{0,1}N−1
(−1)o(e)Az(e)−o(e)D0

a+o(e),e .

For any x ∈ ℤ and v ∈ {0, 1}N−1, the diagram D0
x,v contains a copy of the curve

c (see Figure 10) with x arrows. Now, observe that P+ also induces a sausage
decomposition of Σ′ (see [2]). Using the notation in Section 3.3 of [2], the part
of the diagramD0

x,v inside the subsurface Σ′ ⊂ Σ is denoted byD2g
x . Proposition

3.13 of [2] implies the equation ∆2g+ (D
2g
x ) = ∆2g− (D0

x), where D0
x is a copy of the

left-most unknot )0 (red loop) inP+with x arrows. Putting everything together,
we obtain the following relation in S(Σ × S1):

∆2g+N−1+ (E(∅,…,∅,a)) =
∑

e∈{0,1}N−1
(−1)o(e)Az(e)−o(e)∆2g− (E(a+o(e),e1,…,eN−1,∅)).

The result follows by taking the summands on each side with the most number
of arrows. �

4.2. Proofs of Theorems 4.1 and 4.2. Recall that S(M) is generated by all
standard diagrams, and such diagrams are �ltered by the complexity (s,

∑
i li)

in lexicographic order. Here, s = u +
∑

i "i is the absolute arrow sum and
∑

i li
is the number of boundary parallel loops. Throughout the argument we will
have debris terms with lower complexity (s′,

∑
i l
′
i ); on each of those terms, we

can perform a series of combinations of Lemmas 1.6, 1.4, 1.5, and 1.7 in order to
write them in terms of standard diagrams with complexities s′′ ≤ s′ and l′′i ≤ l′i .

Let D ∈ ℬ be a diagram. Suppose that D is of the form D =  ∪ �, where
 is an non-separating simple closed curve with at most one arrow and � is a
collection of arrowed boundary parallel loops. We can rewrite D in S(M) as
D = −1

(A2+A−2)
(D ∪ U) where U is a small unknot with no arrows. Proposition

4.9 focuses on the subdiagram U ∪ � near a �xed boundary component.

Proposition 4.9. Let D ∈ ℬ be a standard diagram with li0 ≥ qi0 for some
i0 ∈ {1,… , n}. Then D is a linear combination of some standard diagrams D′

identical to D outside a neighborhood of )i0 , satisfying

l′i0 < li0 and u
′ + "′i0 ≤ 2(u + |pi0|).

Proof. For simplicity, set i0 = 1. We assume that p1 > 0 so that the arrows in
the LHS of theΩ(q1, p1)-relation are oriented counterclockwise; the other case
is analogous. We can assume that if "1 = 1, then the orientation of the arrow
in the loop furthest from )1 agrees with the LHS of theΩ(q1, p1)-relation. This
is true since Lemma 1.8 lets us �ip the orientation at the expense of having one
debris diagram with l′1 = l1, "′1 = 0, and u′ = u+ 1. By Lemma 1.4, we can also
assume that the arrows in U are oriented counterclockwise. The �nitely many
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debris terms will have all 0 < u′ < u arrows in U′ oriented counterclockwise.
We then apply the argument below to each of them.

Denote by Dx the standard diagram in ℬ, identical to D away from a neigh-
borhood of )1 with l1 copies of )1, having x arrows oriented counterclockwise
in the loop furthest from )1. Recall that Sa denotes a small unknot with a ∈ ℤ
arrows oriented counterclockwise. We have that D = D"1 ∪ Su, where the dis-
joint union of the diagrams is made so that Su lies inside a small disk away from
the diagram Dx.

Merge the arrows on U with the outer loop around )1 using Lemma 1.5.
Thus, D is a linear combination of diagrams Dx with no unknots (U = ∅). If
"1 = 1, since the arrows in U and the outer loop are oriented counterclock-
wise, the condition ab > 0 in Lemma 1.5(i) is satis�ed and we get diagrams
with 0 ≤ x ≤ u + "1. If "1 = 0, we obtain diagrams with 0 ≤ |x| ≤ u. We focus
on each Dx. Use the relation around )1

= ⟹ = −A2 − A4 (6)

to write Dx as a linear combination of Dx+1 ∪ S1 and Dx+2. Thus, at the ex-
pense of getting a cluster of 1-arrowed unknots S±1, we can increase/decrease
the arrows in the outermost loop around )1. Hence, the original diagram D is
a linear combination of diagrams of the form Dx ∪

(
∪yS1

)
where x ≥ p1, y ≥ 0

and x+y ≤ 2(u+p1). To see the upper bound for x+y, observe that if we start
with D−u, one might need to add a copy of S1 (u + p1) times in order to reach
x ≥ p1. Lemma 4.7 implies that each D±x ∪

(
∪yS1

)
is a linear combination of

diagrams with l′1 < l1 and at most x + y arrows. After making such diagrams
standard and merging the arrowed unknots, we obtain diagrams with l′1 < l1
and u′ + "′1 ≤ 2(u + p1) as desired. �

Proof of Theorem 4.1. LetM = M
(
g; b, {(qi, pi)}ni=1

)
be a Seifert �bered space

with non-empty boundary. Proposition 3.10 and Lemma 4.5 imply that S(M)
is generated over ℚ(A) by standard diagrams in ℬ. Furthermore, it follows
from Lemmas 1.5, 1.7, and 1.8 that it is enough to consider standard diagrams
with all arrows on separating loops oriented counterclockwise. Notice that the
standard condition allow us to overlook the numbers ln+j for j = 1,… , b since
they correspond to coe�cients of the ring S()M,ℚ(A)).

Divide the collectionℬ into two setsℬns = { ∪�} andℬU = {U ∪�}. Using
Proposition 4.9, we obtain that ℚ(A) ⋅ ℬns is generated by standard diagrams
D =  ∪ � with  ∈ ℱ has at most one arrow, 0 ≤ li < qi for i ∈ {1,… , n}, and
all arrows in copies of )-parallel loops oriented counterclockwise. SinceM has
non-empty boundary, we can run the argument in Lemma 3.9 with an unknot
near )n+b ⊂ )Σ to write ±1 ∪ � as a scalar multiple of 0 ∪ �. Here k denotes
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a copy of  with k arrows. Hence, ℚ(A) ⋅ ℬns is generated as a S()M,ℚ(A))-
module by a set of cardinality

rns ≤ (22g − 1)
n∏

i=1
(2qi − 1).

Proposition 4.9 implies thatℚ(A) ⋅ℬU is generated overℚ(A) by standard dia-
grams satisfying 0 ≤ li < qi for all i = 1,… , n. Therefore, sinceU can be pushed
towards the boundary, ℚ(A) ⋅ℬU is generated over S()M,ℚ(A)) by a �nite set
of cardinality

rU ≤
n∏

i=1
(2qi − 1),

Hence, S(M) is a �nitely generated S()M,ℚ(A))-module. �

Proof of Theorem 4.2. Let � ⊂ )M be a S1-�ber and let �N = )N × {pt} be a
meridian of )M. For i = 1,… , n, theΩ(1, pi)-move turns loops parallel to )i into
arrowed unknots. Thus, Proposition 3.10, Lemma 4.5, and Equation (1) imply
thatS(M) is generated overℚ(A) by standard diagrams inℬ = {∪�,U∪�}with
no parallel loops around the exceptional �bers. In particular, � only contains
loops around )N . Henceℚ(A) ⋅ℬns is generated overℚ(A)[�N] by elements of
the form  and  ∪ � where  ∈ ℱ has at most one arrow and � is a copy of )N
with one arrow.

LetU∪� ∈ ℬU and suppose thatU has u ≠ 0 arrows. Using Equation (6) of
Proposition 4.9, we can assume that the loop of � furthest to the boundary has
at least one arrow. Then, using Lemmas 1.4 and 1.5, we can write any diagram
inℬU as aℚ(A)-linear combination of diagramswith only )-parallel curves and
such that the loop furthest to )N has x ≥ 0 arrows oriented clockwise. In other
words,ℚ(A) ⋅ℬU = ℚ(A)⟨U, �kN ⋅ �x|k, x ≥ 0⟩, where �x denotes a copy of �N
with x arrows.

We will see that it is enough to consider 0 ≤ x < 4g + 2n. Take �kN ⋅ �x
with k ≥ 0 and x ≥ 4g + 2n. By Lemma 4.8, �kN ⋅ �x is a ℤ[A±1]-linear
combination of diagrams of the form U ∪ �kN and �kN ⋅ �y with 0 ≤ y < x.
We can proceed as in the previous paragraph and write the diagrams U ∪ �kN
as ℤ[A±1]-linear combinations of �max(0,k−1)N ⋅ �x′ for some x′ ≥ 0. Hence,
ℚ(A) ⋅ℬU = ℚ(A)⟨U, �kN ⋅ �x|0 ≤ k, 0 ≤ x < 4g + 2n⟩.

To end the proof, consider F1 the subspace

ℚ(A) ⋅ℬns +ℚ(A)⟨�kN ⋅ �x|0 ≤ x < 4g + 2n⟩,

and F2 theℚ(A)-subspace generated by arrowed unknots. By Proposition 3.10,
S(M) = F1 + F2. Let Σ1 and Σ2 be neighborhoods of �N and � in )M, re-
spectively. We have shown that F1 is a S(Σ1,ℚ(A))-module of rank at most
2(22g+1 − 2) + 4g+ 2n. Also, since every arrowed unknot can be pushed inside
a neighborhood of Σ2, F2 is generated over S(Σ2,ℚ(A)) by the empty link. So
F2 is a S(Σ2,ℚ(A))-module of rank at most one. �
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