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The eigensheaf of an operator

Sameer Chavan and Archana Morye

Abstract. The eigensheaf ℱT of an operator T on a Hilbert space H is the
subsheaf of OH de�ned by the prescription∶

ℱT(U) = {f ∈ OH(U) |T(f(w)) = wf(w) for all w ∈ U},

whereU is open inℂ andOH is the sheaf ofH-valued holomorphic functions
de�ned on ℂ. If T lies in the Cowen-Douglas class, then its eigensheaf is lo-
cally free, but not conversely. We obtain a model for operators whose eigen-
sheaves are locally free. We describe the eigensheaves for certain coanalytic
Toeplitz operators, we show that the map from an operator to its eigensheaf
is a functor from the category of bounded linear operators on Hilbert space to
the category of Hilbert space-valued analytic sheaves, andwe discuss relation
between the eigensheaf of an operator and the sheaf that Putinar associates
to an operator.
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1. The Cowen-Douglas correspondence
This article is partly motivated by the celebrated work [9] of Cowen and

Douglas. In that paper, they introduced and studied a class of bounded lin-
ear Hilbert space operators with point spectrum containing an open set (now
well-known as the Cowen-Douglas class Bn(Ω)). One of the main results in [9]
proves that the classi�cation of operators in Bn(Ω) is equivalent to the classi�-
cation of a class of holomorphic vector bundles associated to the operators in
Bn(Ω). Moreover, the present paper is very much in the spirit of the Putinar’s
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work [26, 27, 28] on a sheaf associated to a bounded linear operator. In particu-
lar, we associate the class of analytic eigensheaves to the class of bounded linear
Hilbert space operators (see De�nition 2.1 below). Needless to say, it is di�er-
ent from the sheaf constructions appearing in [4, 12, 13, 26, 27, 28]. Indeed,
the sheaf of this paper is a kernel sheaf while the one introduced and studied
in [26] is a cokernel sheaf (see Section 4).

All the vector spaces here are over the �eld ℂ of complex numbers. If E is
a complex vector space, then 1E denotes the identity operator on E, and for
every complex number w, we denote the linear operator w1E ∶ E → E also by
w. Throughout this paper, Ω stands for a bounded connected open subset of ℂ
and Ω∗ denotes the set of complex conjugates of elements in Ω. For a complex
Hilbert space, the space of bounded linear operators on H is denoted by ℒ(H).
For T ∈ ℒ(H), the kernel, the point spectrum, the approximate point spectrum
and the essential spectrum ofT are denoted byKer(T), �p(T), �ap(T) and �e(T),
respectively.

We now recall the de�nition of the Cowen-Douglas class (the reader is re-
ferred to [23] for an up-to-date exposition on this class). For a connected open
subset Ω of ℂ and n a positive integer, let Bn(Ω) denote the collection of all
operators T ∈ ℒ(H) satisfying the following conditions∶

∙ for every point w ∈ Ω, (T − w)(H) = H and dimKer(T − w) = n,

∙ the subspace
∑

w∈Ω
Ker(T − w) of H equals H, where

∑
stands for the

closed linear span.
We call Bn(Ω) the Cowen-Douglas class of degree n on H with respect to Ω, and
its elements as the Cowen-Douglas operators of degree n onH with respect toΩ.

The following is essentially [9, Proposition 1.11 and Corollary 1.12].

Proposition 1.1. Let n be a positive integer, and T be a Cowen-Douglas operator
of degree n onH with respect toΩ. Let

ET ∶= {(w, x) ∈ Ω ×H |Tx = wx}, (1)

and let �T ∶ ET → Ω be the restriction of the canonical projection from Ω × H

to Ω. Then, there is a natural structure of a complex manifold on ET such that
the map �T ∶ ET → Ω is a holomorphic vector bundle of rank n. Moreover, the
function ℎT ∶ ET ×Ω ET → ℂ given by

ℎT((w, x), (w, x
′)) = ⟨x, x′⟩, w ∈ ET, x, x

′ ∈ H,

is a smooth Hermitian metric on this holomorphic vector bundle.

In view of the last result, one can de�ne a map from the category of Cowen-
Douglas class over an open connected subset Ω of ℂ to the category of holo-
morphic vector bundles over Ω (see [9, Theorem 1.14]). It has been recorded
in [3, Pg 1] that this correspondence is not essentially surjective (see [8, Section
0.3]; see also Example 3.5 below). On the other hand, there are many coana-
lytic Toeplitz operators belonging to Bm(Ω′) for some m and for some compo-
nent Ω′ of Ω ⧵ �e(T), Also, the degreem may vary for di�erent components of
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Ω ⧵ �e(T). The structure of these operators can be revealed by analysing their
eigensheaves, and in turn, providing another motivation for the present work.

Here is the plan of this paper. In Section 2, we discuss the idea of the eigen-
sheaf ℱT of an arbitrary bounded linear Hilbert space operator T and observe
that the support ofℱT is always contained in the closure of the point spectrum
of T (see Proposition 2.5). We also discuss the relation between the interior of
the point spectrum of T and the support of the sheafℱT (see Example 2.7). We
show that if T is hyponormal on a separable Hilbert space, then ℱT is neces-
sarily trivial (see Corollary 2.8). Further, we investigate the class of operators
with locally free eigensheaves and obtain a model for these operators (see The-
orem 2.9). In Section 3, we exhibit a class of locally free analytic eigensheaves
arising from certain coanalytic Toeplitz operators on the Hardy space of the
unit disc (see Theorem 3.3). In Section 4, we discuss the relation between the
Putinar’s sheaf and the one investigated in this paper (see Proposition 4.1).

2. The eigensheaf of an operator
LetM be a complex manifold and let X be a complex Banach space. We say

that a map f ∶ M → X is X-valued holomorphic if the function �◦f ∶ M →

ℂ is holomorphic for every continuous linear functional � ∶ X → ℂ. Note
that if H is a separable complex Hilbert space and {en}n⩾0 is an orthonormal
basis for H, then f ∶ M → H is holomorphic if and only if ⟨f(⋅), en⟩ ∶ M →

ℂ is holomorphic for every integer n ⩾ 0 (refer to [2] for the basic theory of
vector-valued holomorphic functions). Consider the sheaf OM,H of H-valued
holomorphic functions onM. This sheaf OM,H has a canonical structure of an
OM-module, whereOM is the sheaf ofℂ-valued holomorphic functions onM. If
M = ℂ, thenOM,H is denoted byOH .The restriction of a sheafℱ to a non-empty
open subset Ω is denoted by ℱ|Ω (refer to [31, Chapter 2] for the de�nition of
sheaf and related notions).

The idea of associating a sheaf with a bounded linear operator �rst appears
in the work [26]. This provides a novel approach to the local spectral theory
(see [12, 27, 28, 13]; refer also to [4, Section 1.3] for discussion on a coherent
sheaf associated to the Cowen-Douglas operators of degree 1).

De�nition 2.1. For T ∈ ℒ(H), de�ne an Oℂ-submodule ℱT of OH by
ℱT(U) = {f ∈ OH(U) |T(f(w)) = wf(w) for all w ∈ U}

for every open subset U of ℂ. We will call ℱT the eigensheaf of T.

Remark 2.2. For open subsets U,V of ℂ such that V ⊆ U, the restriction mor-
phism resU,V ∶ ℱT(U)→ ℱT(V) is given by

resU,V(f) = f|V , f ∈ ℱT(U).

Clearly, for every open set U of ℂ, resU,U is the identity morphism on ℱT(U).

Also, for open subsets U,V,W of ℂ such that W ⊆ V ⊆ U, resW,V◦resV,U =

resW,U . Thus ℱT is a presheaf. If {Ui}i∈I is an open covering of an open set
U, and if f, g ∈ ℱT(U) have the property f|Ui

= g|Ui
for each i ∈ I, then
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f = g.Moreover, if {Ui}i∈I is an open covering of an open setU, and if for each
i ∈ I and fi ∈ ℱT(Ui) is given such that for each pairUi, Uj of the covering sets
fi|Ui∩Uj

= fj|Ui∩Uj
, thenf = fi onUi, i ∈ I, de�nes a sectionf ∈ ℱT(U).Thus

ℱT is a sheaf. Finally, note that one can de�ne the eigensheaf of a continuous
linear operator on any Frechet space (recall that if X is a Frechet space, then
OX is the projective tensor product Oℂ⊗̂X; see [13, Appendix 1]).

Let ℬ denote the category of bounded linear Hilbert space operators. If T ∶

H → H and S ∶ K → K are two bounded linear operators then
Homℬ(T, S) = {u ∶ H→ K ∶ u◦T = S◦u}.

LetOℂ-mod denote the category ofOℂ-module overℂ andHomOℂ
(ℱ1,ℱ2) de-

note the set of Oℂ-module homomorphisms between the Oℂ-modules ℱ1 and
ℱ2.

Proposition 2.3. Consider the category ℬ of bounded linear Hilbert space op-
erators and the category Oℂ-mod of Oℂ-module over ℂ. De�ne F(T) = ℱT for
T ∈ ℬ. For u ∈ Homℬ(T, S), de�ne F(u) as the Oℂ-module homomorphism
F(u) ∶ ℱT → ℱS given by

F(u)U ∶ ℱT(U)→ ℱS(U), F(u)U(f) = u◦f

for every open subsetU ⊆ ℂ. Then F de�nes a functor.

Proof. Note that u◦f ∈ ℱS(U) for every u ∈ Homℬ(T, S). Indeed, since f ∈

ℱT(U), T(f(w)) = wf(w) for all w ∈ U, and hence
S(u◦f(w)) = (S◦u)(f(w)) = u◦T(f(w)) = u(w(f(w))) = w(u◦f)(w).

It is easy to see that F(u) is a Oℂ-module homomorphism. Since F(1H) = 1ℱT

(note that 1H is the identity morphism of T in the category ℬ) and F(u◦v) =
F(u)◦F(v) for every u ∈ Homℬ(S,T) and v ∈ Homℬ(T,R), F is a functor. �

Since F is a functor, if u is a Hilbert space isomorphism then F(u) is a Oℂ-
module isomorphism. Let us see a particular instance in which the last propo-
sition is applicable. Consider the subspace K ofH given by

K =
∑

w∈ℂ

Ker(T − w).

De�ne S ∶ K → K be S = T|K . Clearly, S is a bounded linear operator on
K. Further, T◦u = u◦S, where u ∶ K ↪ H denotes the inclusion map. This
yields a natural Oℂ-module homomorphism Φ ∶ ℱT → ℱS.Moreover, since j
is injective, so is Φ. Note that the above observation is applicable to any closed
T-invariant subspace K ofH.

By the correspondence between vector bundles and locally free sheaves (see
[31]), the eigensheaf of a Cowen-Douglas operator of degree n is locally free
sheaf of rank n (see [24, De�nition 2.1.35]). This yields an analogue of Proposi-
tion 1.1 formulated in the language of eigensheaves. Recall that anOX-module
ℱ is locally free if for every point x in a complexmanifoldX, there exist an open
neighborhoodU of x and a set Ix such thatℱ|U is isomorphic to the direct sum
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O
(Ix)

X
|U as anOX|U-module. For a nonnegative integer r,we sayℱ is locally free

of rank r if for every x ∈ X, the index set Ix has the cardinality r.

Proposition 2.4. Let Ω be a connected open subset of ℂ, n be a positive integer,
and T be a Cowen-Douglas operator of degree n onH with respect toΩ. Then the
eigensheafℱT|Ω of T is locally free of rank n.

Proof. Note that theOΩ-moduleℱT|Ω is the analytic sheaf of holomorphic sec-
tions of the holomorphic vector bundle �T ∶ ET → Ω (see (1)), and hence by
Proposition 1.1 and the preceding discussion, the eigensheafℱT|Ω is locally free
of rank n. �

Note thatℱT is anOℂ-submodule ofOH obtained by imposing the condition
on a section f that w is an eigenvalue of T whenever its evaluation f(w) at
w is non-zero. This motivates one to explore the relation between the set of
eigenvalues of T and the support of ℱT. Recall that if ℱ denotes a sheaf of
abelian groups on a topological space X, then the support ofℱ is given by

Supp(ℱ) = {x ∈ X |ℱx ≠ 0},

whereℱx stands for the stalk ofℱ at x. The following result describes the sup-
port of ℱT (cf. [26, Lemma 2.1] and Corollary 4.3 below).

Proposition 2.5. ForT ∈ ℒ(H), letℱT be the eigensheaf ofT.Then the following
statements are valid∶

(i) Supp(ℱT) is an open subset of ℂ such that

Supp(ℱT) ⊆ �p(T), (2)

(ii) for every open neighbourhood V of z0 ∈ Supp(ℱT), there exists an open
subsetW of V contained in �p(T),

(iii) if Supp(ℱT) ≠ ∅, then �p(T) has non-empty interior,
(iv) if there exists an open connected subset U of ℂ such that ℱT(U) ≠ {0},

thenU ⊆ �p(T).

In particular, the support of ℱT is contained in the approximate point spectrum
of T.

Proof. Let z0 ∈ Supp(ℱT). Then, (ℱT)z0 ≠ 0, so there is a nonzero element 
of (ℱT)z0 . Choose a connected open neighbourhood U of z0 and a section f of
ℱT(U) such that  = fz0 . Then, fz ≠ 0 for all z ∈ U. For, if fz = 0 for some
z ∈ U, then f vanishes on an open neighbourhood of z in U, and hence by
the vector-valued identity theorem (see [2, Proposition A.2]), f = 0, which is
not possible since fz0 ≠ 0. In particular, (ℱT)z ≠ 0 for all z ∈ U, and hence
U ⊆ Supp(ℱT). This also shows that ifV is any neighbourhood of z0, then there
exist an open neighbourhoodU of z0 and a point z′ ∈ U such that f(z′) ≠ 0. By
the continuity of f, f is non-vanishing in some neighborhoodW ⊆ V of z′. As
f ∈ ℱT(U), we have (T − w′)(f(w)) = 0 for every w ∈ W. Thus,W ⊆ �p(T).
This yields (ii) and also shows that z0 ∈ �p(T), completing the proof of (i).



THE EIGENSHEAF OF AN OPERATOR 873

Clearly, (iii) follows from (ii). To see (iv), let f ∶ U → H be a non-zero element
of ℱT(U). If Z(f) denotes the zero set of f, then U∖Z(f) ⊆ �p(T), and by the
identity theorem, U∖Z(f) is dense in U. It follows that

U = U∖Z(f)
U

⊆ U∖Z(f) ⊆ �p(T),

whereW
U

denotes the closure of the subsetW ofU inU. Finally, since �p(T) ⊆
�ap(T) and �ap(T) is closed inℂ, the remaining part is immediate from (2). �

Remark 2.6. If ℱT|U is of �nite type, then its support is closed in U (see [16,
Chapter 0, Section 5.2.2], [24, Corollary 2.1.17]).

In general, the point spectrum of T need not be contained in the support of
ℱT. For instance, if T is a diagonal operator with diagonal entries {1∕n}n⩾1 then
�p(T) ≠ ∅. However, by Proposition 2.5(iii), ℱT = {0}. Although equality does
not hold in (2) in general, the natural question arises is whether one can recover
the support of ℱT from the point spectrum �p(T) of T? By Proposition 2.5(iii),
if the interior �p(T)◦ of �p(T) is empty then the support ofℱT is also empty. So
perhaps the correct guess would be the following inclusion:

�p(T)
◦ ⊆ Supp(ℱT). (3)

This certainly holds if eigenfunctions of T are holomorphic functions on the
interior of point spectrum (for instance, this happens for operators T in the
Cowen-Douglas class). Here is a slightly di�erent example (cf. Theorem 3.3).
Example 2.7. Consider the positive de�nite kernel �(z, w) given by

�(z, w) =
(z2 + z + 2)(w

2
+ w + 2)

1 − zw
, z, w ∈ D.

By [25, Theorem 5.21], z is a multiplier of the reproducing kernel Hilbert space
H� associated with �. LetMz denote the operator of multiplication by z onH�.

Then any w in the open unit disc D is an eigenvalue of T ∶= M∗
z with cor-

responding eigenfunction �(⋅, w) ∈ H�, which is clearly not holomorphic in
w. Still, the holomorphic section w ↦

z2+z+2

1−zw
belongs to ℱT|D, and hence the

inclusion (3) holds. ♢

For the de�nition of the single-valued extension property (for short, SVEP),
see [1, De�nition 2.3]. The following is certainly well-known. Indeed, it is a
consequence of [1, Theorem 3.96] and the discussion prior to it.
Corollary 2.8. Let H be a separable Hilbert space. For T ∈ ℒ(H), let ℱT be the
eigensheaf of T. If T is hyponormal, that is, T∗T − TT∗ ≥ 0, then ℱT = {0}. In
particular, a hyponormal operator on a separable Hilbert space has SVEP.
Proof. Recall the well-known fact about a hyponormal operator that its eigen-
vectors corresponding to distinct eigenvalues are orthogonal [21]. Since H is
separable, T can have at most countable distinct eigenvalues. The desired con-
clusion now follows from Proposition 2.5(iii). The remaining part now follows
from the fact that T has the SVEP if and only if ℱT is trivial. �
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In the remaining part of this section, we study operators with locally free
eigensheaves. The following result sheds some light on the relation between
Cowen-Douglas operators and operators with locally free eigensheaves over
connected domains. The later one is generically an extension of the adjoint of
themultiplication operatorMz on a reproducing kernel Hilbert space of vector-
valued homomorphic functions. We make this statement precise in the fol-
lowing theorem. The proof presented below is an adaptation of the method
of modelling Cowen-Douglas class to the present situation (see [9, Pg 194] for
Cowen-Douglas class of degree 1, and [10, Theorem 4.12], [33, TheoremB], [14,
Pg 279-280] for the general case).

Theorem 2.9. LetΩ be a bounded open connected subset ofℂ and let T ∈ ℒ(H).

If the eigensheafℱT|Ω of T is locally free of rank n, then there exists a reproducing
kernelHilbert spaceℋ of holomorphicℂn-valued functions onΩ∗ anda surjective
partial isometry V ∶ H → ℋ such that VT∗ = MzV, where Mz denotes the
operator of multiplication by the coordinate function z acting onℋ.

Proof. Suppose that ℱT|Ω is locally free of rank n. By a theorem of Grauert,
any holomorphic vector bundle over an open subset of ℂ is holomorphically
trivial, and hence it admits a global holomorphic frame ([15, Theorem 30.4]).
Let {f1,… , fn} denote a global holomorphic frame for the holomorphic vector
bundle associated with ℱT|Ω. De�ne V ∶ H → O(Ω∗,ℂn) by

(Vℎ)(w) = (⟨ℎ, f1(w)⟩,… , ⟨ℎ, fn(w)⟩), ℎ ∈ H, w ∈ Ω∗.

Note that Vℎ = 0 if and only if ℎ is orthogonal to

K ∶=
∑

w∈Ω

Ker(T − w) =
∑
{fj(w) ∶ w ∈ Ω, j = 1,… , n}.

Thus Ker(V) = H ⊖K.Moreover, for any ℎ ∈ H and w ∈ Ω∗,

(VT∗ℎ)(w) = (⟨T∗ℎ, f1(w)⟩,… , ⟨T
∗ℎ, fn(w)⟩)

= (⟨ℎ,wf1(w)⟩,… , ⟨ℎ,wfn(w)⟩)

= (MzVℎ)(w),

where Mz ∶ O(Ω∗,ℂn) → O(Ω∗,ℂn) is given by (MzF)(w) = wF(w), F ∈

O(Ω∗,ℂn). Consider the complex vector spaceℋ ∶= {Vℎ ∶ ℎ ∈ H} endowed
with the inner product

⟨Vℎ, Vℎ′⟩ℋ = ⟨PKℎ, PKℎ
′⟩H , ℎ, ℎ′ ∈ H, (4)

where PK denotes the orthogonal projection of H onto K. Thus Ṽ ∶ H → ℋ

given by Ṽℎ = Vℎ, ℎ ∈ H, is a partial isometry with the initial space K and the
�nal space ℋ. Therefore ℋ is a Hilbert space with the natural inner product
induced by the norm ‖ ⋅ ‖ℋ . The intertwining relation VT∗ = MzV shows that
Mz is a bounded linear operator on ℋ. It now su�ces to check that ℋ is a
reproducing kernel Hilbert space. To see that, let L(ℂn, K) denote the vector



THE EIGENSHEAF OF AN OPERATOR 875

space of linear operators from ℂn into K, and de�ne  ∶ Ω∗ → L(ℂn, K) by

(w)(�) =

n∑

j=1

�jfj(w), � = (�1,… , �n), w ∈ Ω∗.

Consider the positive de�nite kernel � ∶ Ω∗ × Ω∗ → L(ℂn) given by �(z, w) =
(w)∗(w). It is easy to see that (w)∗ℎ = (Vℎ)(w) for everyw ∈ Ω∗ and ℎ ∈ K.

It now follows from (4) that for ℎ ∈ H, w ∈ Ω∗ and � ∈ ℂn,

⟨Vℎ, �(⋅, w)(�)⟩ℋ = ⟨Vℎ, (⋅)∗(w)(�)⟩ℋ

= ⟨Vℎ, V((w)(�))⟩ℋ

= ⟨PKℎ, PK(w)(�)⟩H

= ⟨(Vℎ)(w), �⟩ℂn .

This completes the proof. �

We conclude the section with a brief discussion on the class Sm,n(Ω1,Ω2) of
operatorsT for whichℱT|Ω1

andℱT∗|Ω2
are locally free of ranksm and n respec-

tively, where Ω1,Ω2 are bounded, open connected subsets of ℂ. This class ap-
pears to be closely related to the classBm,n(Ω1,Ω2) as investigated byM. Cowen
in [8]. To see this, letT be an operator onH in Sm,n(Ω1,Ω2), and consider closed
subspaces K1, K2 ofH given by

K1 ∶=
∑

w1∈Ω1

Ker(T − w1), K2 ∶=
∑

w2∈Ω2

Ker(T∗ − w2).

IfH =
∑
(K1 ∪ K2), then T admits the decomposition

T = (
T1 X

0 T2
) onH = K1 ⊕K2,

where T1, T2 are bounded linear operators on K1, K2 such that ℱT1
|Ω1

, ℱT∗
2
|Ω2

are locally free of ranks m, n respectively, and X is a bounded linear transfor-
mation from K1 into K2 (cf. [8, Proposition 1.6]). The fact that K1 and K2 are
mutually orthogonal follows from the following general fact.

Proposition 2.10. For T ∈ ℒ(H), letℱT be the eigensheaf of T. IfU,V are open
subsets ofℂ, then for every f ∈ ℱT(U) and g ∈ ℱT∗(V), the map � ∶ U ×V → ℂ

given by

�(u, v) = ⟨f(u), g(v)⟩, u ∈ U, v ∈ V,

is identically 0.

Proof. For u ∈ U and v ∈ V, we have

u⟨f(u), g(v)⟩ = ⟨Tf(u), g(v)⟩ = ⟨f(u), T∗g(v)⟩ = v⟨f(u), g(v)⟩.

Thus ⟨f(u), g(v)⟩ = 0 whenever u ≠ v. By continuity of f and g, we get the
same conclusion for every u ∈ U and v ∈ V. �
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The classi�cation of operators with locally free eigensheaves (in the spirit of
[9, Theorem 1.14]) seems to be beyond reach at present. In this context, we
conclude from Theorem 2.9 that any operator with locally free eigensheaf over
a connected open set is necessarily an extension of the adjoint of multiplication
operatorMz in a reproducing kernel Hilbert space.

3. Toeplitz operators with coanalytic symbols
The class of Toeplitz operators has been extensively studied in the literature,

particularly, in the context of Cowen-Douglas theory (see [19, 20, 18, 32, 17]).
It is worth noting that Cowen-Douglas class does not support Toeplitz opera-
tors with analytic symbols. Indeed, as a consequence of Corollary 2.8, one may
conclude that the eigensheaf of the multiplication operatorM� on Hardy space
H2(D) of the unit disc with analytic symbol � is trivial. Recall thatH2(D) is the
Hilbert space of holomorphic functions f(z) =

∑∞

k=0
f̂(k)zk on the open unit

disc D endowed with the norm

‖f‖ =
( ∞∑

k=0

|f̂(k)|2
)1∕2

, f ∈ H2(D).

It turns out thatH2(D) is a reproducing kernel Hilbert space with reproducing
kernel � given by

�(z, w) =
1

1 − zw
, z, w ∈ D. (5)

This means that

f(w) = ⟨f, �(⋅, w)⟩, w ∈ D, f ∈ H2(D). (6)

Recall further that for � ∈ H∞(D) (the space of bounded holomorphic func-
tions on D), the multiplication (bounded linear) operatorM� is de�ned by

(M�f)(z) = �(z)f(z), f ∈ H2(D), z ∈ D.

TheHardy spaceH2(D) can be identi�ed with the the closed subspaceH2(T) =

{f ∈ L2(T) ∶ f̂(n) = 0 if n < 0} of L2(T) by associating every f ∈ H2(D) to its
boundary function f̃. HereT denotes the unit circle inℂ. The Toeplitz operator
T� on H2(T) with symbol � ∈ C(T) is de�ned by T� = PN�|H2(T), where N�

denotes the operator of multiplication by � in L2(T) and P is the orthogonal
projection of L2(T) onto H2(T). It is easy to see that if � ∈ H∞(D) thenM� is
unitarily equivalent to T�̃ (refer to [22] for the basics of Toeplitz operators).

In this section, we describe the analytic sheafℱT for a class of Toeplitz oper-
ators T with coanalytic symbols (cf. [6, Theorem 1]). We begin with a couple
of lemmas. The �rst of which is well-known (see, for instance, [11, Theorem
7.26] and [30, Theorem 10]).

Lemma 3.1. For � ∈ H∞(D)with boundary function �̃ on T, the multiplication
operator M� (or equivalently M∗

�
) is Fredholm if and only if there exists M > 0
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such that |�̃| > M almost everywhere on T and � has �nitely many zeros inside
D. In this case, the Fredholm index is given by

indM∗

�
= dimKer(M∗

�
) = the number of zeros of � inside D.

The following lemma appears to be known (see [29, 9]). Since we could not
locate it in the form we need in the sequel, we include it.

Lemma 3.2. LetU be a bounded open subset ofℂ and let T ∈ ℒ(H). If the range
of T − w is closed for every w ∈ U, then ℱT|U is locally free of rank n if and only
if

dimKer(T − w) = n for every w ∈ U. (7)

Proof. Suppose that the range of T − w is closed for every w ∈ U. If ℱT|U is
locally free of rank n, then U ⊆ Supp(ℱT), and hence we obtain (7). To see the
su�ciency part, assume that (7) holds. Note thatT−w is left Fredholm for every
w ∈ U.Onemay now argue as in the proof of [9, Proposition 1.11] (the situation
is similar here except that possibly ind(T − w) could be −∞) to conclude that
for every w0 ∈ U, there exist H-valued holomorphic functions e1(w),… , en(w)
de�ned on some neighborhood ∆ ⊆ U of w0 such that {e1(w),… , en(w)} forms
a basis for Ker(T −w) for every w ∈ ∆. In view of the correspondence between
vector bundles and locally free sheaves, ℱT|U is locally free of rank n. �

We now state the main result of this section (cf. [26, Section 5]).

Theorem 3.3. Let p be a non-constant polynomial in the complex variable z of
degree n and let T be the bounded linear operatorM∗

p onH2(D). Then there exist
clopen (possibly empty) subsetsΩ1,… ,Ωn of p(D) such that

p(D) ⧵ p(T) =

n⨆

k=1

Ωk (disjoint union).

Moreover, the following statements are valid∶
(i) for every k = 1,… , n, ℱT|Ωk

is locally free of rank k provided Ωk is non-
empty,

(ii) if, in addition, p has real coe�cients, then

H2(D) =
∑

w∈Ωk

k=1,…,n

Ker(T − w).

Proof. For k = 1,… , n, de�ne Ωk by

Ωk =
{
� ∈ p(D) ⧵ p(T) ∶ p(z) = � has precisely k roots in D

(counted with multiplicities)
}
. (8)

Let � ∈ Ωk and note that � ∶= inf
z∈T

|p(z) − �| > 0. In particular, for � ∈ ℂ such

that |� − �| < �,

|(p(z) − �) − (p(z) − �)| < � ⩽ |p(z) − �|, z ∈ T.
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By Rouché’s Theorem [7], �must belong toΩk, and henceΩk is an open subset
of p(D) ⧵ p(T).We next check that each Ωk is relatively closed in p(D) ⧵ p(T).
By Lemma 3.1 (applied to � = p − �) and (8),

Ωk = {� ∈ p(D) ⧵ p(T) ∶ dimKer(T − �) = k}. (9)

Now, if {�n}∞n=1 ⊆ Ωk is such that �n → � for some � ∈ p(D) ⧵ p(T), then
T − �n converges to T − � in the operator norm, and hence by the continuity
of the Fredholm index, ind(T − �) = k. Hence, by (9), � ∈ Ωk. Also, since the
range of T−� is closed for every � ∈ p(D) ⧵p(T) (see Lemma 3.1), the desired
conclusion in (i) is now immediate from Lemma 3.2.

To see (ii), let f ∈ H2(D) be such that ⟨f, g⟩ = 0 for every g ∈ Ker(T − w),
w ∈ Ωj and k = 1,… , n. Choose k ∈ {1,… , n} such that Ωk is non-empty (this
is possible since p is non-constant). Let � ∈ Ωk be such that p−1{�} ∩ Z(p′) =
∅, where Z(p′) denotes the zero set of the derivative p′ of p.We contend that
for j = 1,… , k, there exist an open neighborhood V of � and a holomorphic
function gj ∶ V → H2(D) such that {gj(w) ∶ j = 1,… , k} forms a basisKer(T−
w) for every w ∈ V. Note that p is a covering map from D ⧵ Z(p′) onto p(D ⧵
Z(p′)). Hence, one can choose a neighborhood V centered at � such that

p−1(V) ∩ Z(p′) = ∅, p−1(V) = ⊔k
j=1

Wj

such that p|Wj
is a one-one holomorphic map onto V. Let qj ∶ V →Wj be the

holomorphic inverse of p|Wj
, and de�ne gj(w) = �(⋅, qj(w)), w ∈ V (see (5)).

Assume now that p has real coe�cients. Note that

Tgj(w) = M∗
p�(⋅, qj(w)) = p(qj(w))�(⋅, qj(w))

= p(qj(w))�(⋅, qj(w)) = wgj(w), w ∈ V, j = 1,… , k.

Thus gj(w) ∈ Ker(T − w), and hence by (6),

f◦qj(w) = ⟨f, gj(w)⟩ = 0, w ∈ V.

By the open mapping and the identity theorem (see [7]), f is identically zero.
This completes the veri�cation of part (ii). �

Remark 3.4. We make several remarks in order:
(1) The part (ii) says that the eigenvectors ofM∗

p corresponding to the points
in the complement of the essential spectrum �e(T

∗
p) of T∗p are complete

(see [6, Corollary 2], [32, Corollary 1] for variants).
(2) The argument given for part (ii) actually yields the following stronger

assertion: If Ωk is non-empty for some k = 1,… , n, then

H2(D) =
∑

w∈Ωk

Ker(T − w).

(3) The conclusions in (i) and (ii) hold true, with obvious modi�cations,
if we replace the polynomial p by a bounded holomorphic function g
satisfying g(z) = g(z), z ∈ D.
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(4) In the terminology of [19], p is an m-analytic cover of the connected
component Ωm of p(D) ⧵ p(T) for everym = 1,… , n. In particular,M∗

p

belongs to the Cowen-Douglas class Bm(Ωm) provided Ωm ≠ ∅.

(5) It may be deduced from Oka’s Coherence Theorem and Three Lemma
for coherent sheaves (see [24, Corollary 2.1.31]) that ℱT|p(D)∖p(T) is a
coherent sheaf (cf. [4, Proposition 1.4]).

In view of Remark 3.4(4), we certainly know thatM∗
p is in Bm(U) for some

positive integer m and some domain U. The essential point in Theorem 3.3 is
that it captures spectral information aboutM∗

p beyondU. This is achieved after
examining the sheaf ℱM∗

p
.

Example 3.5. We discuss here two examples.
(1) If p(z) = azn + b for a non-zero scalar a, then Ωj = ∅ if and only if

j ≠ n, and hence p(D) ⧵ p(T) = Ωn. In this case, ℱT|Ωn
is a locally free

sheaf of rank n.
(2) It may happen thatΩj is non-empty for more than one value of positive

integer j. For instance, if p(z) = z(z2 −
z

2
− 1), then − 1

2
∈ Ω1 (the

roots of p(z) = −1∕2 are ±1, 1
2
) and 0 ∈ Ω2 (the roots of p(z) = 0 are

0,
1

4
±

√
17

4
). ♢

4. Relation with the Putinar’s sheaf
In this short section, we reveal the relation of the sheaf ℱT with the coker-

nel sheaf introduced in [26]. Recall that the cokernel sheaf GT associated to a
bounded linear operator T onH is the sheaf associated with the presheaf

GT(U) = OH(U)∕(T − w)OH(U), U ⊆ ℂ open.

This sheaf �rst appears in [26] in the context of local spectral theory. It turns
out that if T has the Bishop’s property (�) (see [1, De�nition 6.14]), then GT
is a sheaf (see [26, Proposition 1.3], [13, P. 9]). To explain the precise relation
between the cokernel sheaf and the eigensheaf, we need a de�nition. Following
[9], we say that w0 ∈ ℂ is a point of stability of a bounded linear operator T on
H if T−w0 is Fredholm and dimKer(T−w) is constant in a neighbourhood of
w0.

Proposition 4.1. For T ∈ ℒ(H), letℱT be the eigensheaf of T. If w0 is a point of
stability forT, then there exists a neighbourhoodNw0

ofw0 such that the following
hold∶

(i) if Tt denotes the real transpose of T, then GTt |Nw0
is a sheaf,

(ii) the sheaves GTt |Nw0
andℱT|Nw0

are isomorphic.

If (ii) holds, then w0 ∈ Supp(GTt ) if and only if w0 ∈ Supp(ℱT).
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Proof. By the proof of [9, Proposition 1.11], there exist a neighbourhoodNw0
of

w0 outside the essential spectrum of T and a holomorphic function P ∶ Nw →

ℒ(H) such that

Ker(T − w) = P(w)H, w ∈ Nw0
. (10)

By the closed range theorem, the range of Tt − w is closed for every w ∈ Nw0
.

For any f ∈ OH(Nw0
),we now obtain the orthogonal decomposition ofH when

considered over the real �eld ℝ∶

f(w) = f1(w) + (Tt − w)f2(w), w ∈ Nw0
, (11)

where f1(w) ∈ Ker(T − w) and f2(w) ∈ Ker(Tt − w)⟂. By (10), w ↦ f1(w) ∈

OH(Nw0
). It follows that w ↦ (Tt − w)f2(w) is holomorphic on Nw0

. Thus, by
the Chain rule and the continuity of T, for every w ∈ Nw0

and ℎ ∈ H,

)

)w

⟨
(Tt − w)f2(w), ℎ

⟩
=

)

)w

⟨
f2(w), (T

t)∗ℎ
⟩
− w

)

)w

⟨
f2(w), ℎ

⟩

=
⟨
(Tt − w)

)

)w
f2(w), ℎ

⟩
,

and hence by the Cauchy-Riemann equations, )

)w
f2(w) ∈ Ker(Tt − w). Since

f2(w) ∈ Ker(Tt − w)⟂, by a routine limit argument, )f2(w)
)w

∈ Ker(Tt − w)⟂.

This implies that )f2(w)
)w

= 0, or equivalently

f2 ∈ OH(Nw0
). (12)

For any non-empty open subsetU ofNw0
, de�ne an Oℂ(U)-module morphism

Φ(U) ∶ GTt |U → ℱT|U by setting

Φ(U)(f + (Tt − w)OH(U)) = f1(w), f ∈ OH(U).

Clearly, Φ(U) is surjective. If f1 = 0, then by (11) and (12), f belongs to
(Tt−w)OH(U), and henceΦ(U) is injective. It is evident that this morphism is
compatible with restrictions. Since isomorphic image of a sheaf is a sheaf, this
yields (i) and (ii). The remaining part is now clear. �

Remark 4.2. If T is a hyponormal operator on a separable Hilbert space, then
by Corollary 2.8, ℱT is trivial, and hence by Proposition 4.1, GTt |Nw0

is trivial.

Proposition 4.1 helps us in revealing the structure of the support of the sheaf
ℱT under the assumption of �nite cyclicity of the adjoint T∗ of T.

Corollary 4.3. For T ∈ ℒ(H), let ℱT be the eigensheaf of T. Suppose that there
exist �nitely many vectors ℎ1,… , ℎk ∈ H such that H = ∨{T∗nℎj ∶ n ⩾ 0, j =

1,… , k}. Then

Supp(ℱT) ⧵ �r(T) = �(T) ⧵ �r(T),

where �r(T) denotes the right spectrum of T.
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Proof. Since �ap(T∗) = �r(T)
∗, applying [5, Lemma 5.3] to T∗, we conclude

that � is a point of stability of T for every � ∉ �r(T). By Proposition 4.1,

Supp(ℱT) ⧵ �r(T) = Supp(GTt ) ⧵ �r(T).

Since Supp(GTt ) = �(Tt) = �(T) (see [26, Lemma 2.1]), the desired conclusion
is now immediate. �
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[29] Šubin, Mikhail A. Factorization of matrix functions dependent on a parameter in
normed rings, and related questions in the theory of Noetherian operators.Mat. Sb.(N.S.)
73 (115) (1967), 610–629; translation inMath. USSR Sb, 2 (1967), 543–560. MR0217638,
Zbl 0182.17202, doi: 10.1070/SM1967v002n04ABEH002354. 877

[30] Vukotić, Dragan. Analytic Toeplitz operators on the Hardy space Hp: a survey. Bull.
Belg. Math. Soc. Simon Stevin 10 (2003), no. 1, 101–113. MR2032329, Zbl 1039.47016. 876

[31] Wells, Raymond O., Jr. Di�erential analysis on complex manifolds. Second edition.
Graduate Texts in Mathematics, 65. Springer-Verlag, New York-Berlin, 1979. x+260 pp.
ISBN: 0-387-90419-0. MR0608414 (83f:58001), Zbl 0435.32004. 870, 871

[32] Yakubovich, Dmitry V. Dual piecewise analytic bundle shift models of linear op-
erators. J. Funct. Anal. 136 (1996), no. 2, 294–330. MR1380657, Zbl 0867.47010,
doi: 10.1006/jfan.1996.0032. 876, 878

[33] Zhu, Kehe.Operators in Cowen–Douglas classes. Illinois J. Math. 44 (2000), no. 4, 767–
783. MR1804320, Zbl 0972.47006, doi: 10.1215/ijm/1255984691. 874

(SameerChavan)DepartmentofMathematicsandStatistics, Indian InstituteofTech-
nology Kanpur, India
chavan@iitk.ac.in

(Archana Morye) School of Mathematics and Statistics, University of Hyderabad,
India
asmsm@uohyd.ac.in

This paper is available via http://nyjm.albany.edu/j/2022/28-35.html.

http://www.ams.org/mathscinet-getitem?mr=0789644
http://www.emis.de/cgi-bin/MATH-item?0525.47010
http://www.ams.org/mathscinet-getitem?mr=845220
http://www.emis.de/cgi-bin/MATH-item?0608.47011
http://dx.doi.org/10.1007/BF01164022
http://www.ams.org/mathscinet-getitem?mr=1077448
http://www.emis.de/cgi-bin/MATH-item?0778.47023
http://dx.doi.org/10.1090/pspum/051.2/1077448
http://www.ams.org/mathscinet-getitem?mr=0217638
http://www.emis.de/cgi-bin/MATH-item?0182.17202
http://dx.doi.org/10.1070/SM1967v002n04ABEH002354
http://www.ams.org/mathscinet-getitem?mr=2032329
http://www.emis.de/cgi-bin/MATH-item?1039.47016
http://www.ams.org/mathscinet-getitem?mr=0608414
http://www.emis.de/cgi-bin/MATH-item?0435.32004
http://www.ams.org/mathscinet-getitem?mr=1380657
http://www.emis.de/cgi-bin/MATH-item?0867.47010
http://dx.doi.org/10.1006/jfan.1996.0032
http://www.ams.org/mathscinet-getitem?mr=1804320
http://www.emis.de/cgi-bin/MATH-item?0972.47006
http://dx.doi.org/10.1215/ijm/1255984691
mailto:chavan@iitk.ac.in
mailto:asmsm@uohyd.ac.in
http://nyjm.albany.edu/j/2022/28-35.html

	1. The Cowen-Douglas correspondence
	2. The eigensheaf of an operator
	3. Toeplitz operators with coanalytic symbols
	4. Relation with the Putinar's sheaf
	Acknowledgment
	References

