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Good functions for translations

Andrew Parrish and Joseph Rosenblatt

Abstract. We examine ways to describe the good functions for a.e. con-
vergence of sequences of translations in the real line. For sequences, it is
well-known that translations are generically bad pointwise a.e., while for any
integrable function there is a subsequence which is good pointwise a.e. We
construct various examples of when the sequence f(x+tn) does not converge
a.e. or when it does converge a.e. for a sequence (tn) tending to zero. In par-
ticular, let f ∈ L∞[0, 1]. We show that if for any sequence (tn) tending to
zero, the sequence f(x+ tn) converges for a.e. x, then fmust be equal a.e. to
a Riemann integrable function, and conversely. We discuss other techniques,
issues, and questions related to sequences in the real line.
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1. Introduction
We consider a sequence (tn) of non-zero real numbers converging to 0. Let

Ttnf(x) = f(tn + x) for f ∶ R → ℂ. It is well-known that these operators are
good in norm on Lp(ℝ), 1 ≤ p <∞. That is, for all f ∈ Lp(ℝ), ‖Ttnf−f‖p → 0
as n →∞.

However, these operators are not good pointwise. In particular, we have that
(a) given (tn) going to zero, with tn ≠ 0 for all n, there is a dense G� set G in

Lp(ℝ), 1 ≤ p < ∞, with respect to the Lp-norm topology, such that for all
f ∈ G, one has for a.e. x, lim sup |Ttnf(x)| = ∞;
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(b) and in addition, for each sequence described above, there exists a dense G�
set, ℬ, of Lebesgue measurable sets in [0, 1], such that for every E ∈ ℬ,
Ttn1E(x) fails to converge for a.e. x. In fact, it can be arranged so that every
E ∈ ℬ has, for a.e. x, both

lim sup
n→∞

Ttn1E(x) = 1 and lim inf
n→∞

Ttn1E(x) = 0.

So while translations converge in norm, they generically fail to converge a.e.
Indeed, even their averages generically fail to converge a.e.– see Bellow [4] and
Bourgain [6]. We refer the reader to Karagulyan [16] for the general version
where one considers measures with discrete support.

These two results – convergence in norm and the failure to converge point-
wise in general – provide necessary background for the discussion that follows.
We refer to them as Result 1 and Result 2 respectively1.

But what functions nonetheless are, for every sequence of translations con-
verging to 0, pointwise good a.e? Clearly, if f is continuous at x, then f(x +
tn) → f(x) for all translates tn → 0. So if f bounded and Riemann integrable
on each bounded interval, then it is a good function for pointwise a.e. conver-
gence of translations. Actually, one only needs that such f is equal a.e. to a
Riemann integrable function for the a.e. convergence to hold. Even more gen-
erally, we say that a Lebesgue measurable f is relatively continuous o� a null
set if there is a Lebesgue null setN such that f restricted toℝ∖N is real-valued
and continuous in the relative topology. If f is relatively continuous o� a null
set, then for any sequence of translations tn → 0, one has for a.e. x, f(x + tn)
converges to f(x).

Of course, if f is not continuous at x, then f(x + tn) will fail to converge to
f(x) for a correctly chosen tn → 0. But for a �xed (tn), it is not clear what struc-
tural property is needed for the convergence to fail on a set of positive measure.
This could be a larger class than the functions that are relatively continuous o�
a null set. However, we will show the following:

Theorem. Letf be a bounded, real-valued function on a bounded interval. Then
the translates f(x+ tn) converge (as tn tends to zero) for all (tn) if and only if f is
locally equal to a Riemann integrable function a.e.

This theorem, given in context below as Proposition 3.2 and Result 7, also
serves to illustrate the delicate placement of quanti�ers in these results. For ex-
ample,Result 5 demonstrates that there is no single “litmus test” sequence for
which a.e. convergence of the translates necessarily implies that the function
is equal to a Riemann integrable function a.e.

1In order to provide rapid and easy reference to themajor propositions that comprise the core
of the narrative, along with associated issues, most of the results and questions in this paper
can be found by searching for Result or Question, which will be bold face in the text. We have
identi�ed in this fashion 10 Results and 7 Questions; some of these are well-known standard
facts and the rest are new to this article. Reading these �rst, one can get a clear overview of
some of the complications surrounding the subject and the content of this article.
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Remark 1.1. This bad pointwise behavior of subsequences depends critically
on the discreteness of the support of the operators. If one instead considers a
sequence of absolutely continuous measures– that is, an approximate identity
for L1(ℝ)– then there are subsequences that do behave well a.e. on all of L1(ℝ).
This was considered in Rosenblatt [24], but the best theorem was not obtained
there: Kostyukovsky and Olevskii actually earlier gave the best subsequence
theorem. In [20], they show a subsequence exists that will actually give a.e.
convergence on L1(ℝ). It does not seem to be completely resolved yet exactly
what property of a sequence of convolutions by Borel measures onℝwill guar-
antee that there is a subsequence that converges a.e. on Lp(ℝ) for some or all
p, 1 ≤ p ≤∞.

In Section 2 we look at some basic examples that illustrate the ideas and
methods to follow, and some of the constraints on these examples. Then, in Sec-
tion 3 we extend this analysis to show essentially that the Riemann integrable
functions are the ones pointwise good a.e. for all sequences of translations con-
verging to zero. Following that, in Section 4, given an integrable function, we
examine some questions concerning what rate (tn) needs to converge to zero
for pointwise a.e. convergence for the tn translates of f. In Section 5 we extend
the overall thinking of the previous sections to provide a concept of boundary
that applies best in this context. Lastly, in Section 6 we consider a famous ques-
tion due to Erdős regarding the universal behavior of similar copies of translates
converging to zero and provide a possible approach to solving this problem.

2. Basic examples
Consider now a compact set K ⊂ [0, 1] of positive measure but with no in-

terior. Let U be its dense, open complement. We will inductively construct a
sequence (tn) converging to 0 such that for all x ∈ K, we have tn+x ∈ Kc in�n-
itely often. Once that is done, we note that 1−tn+K → 1K pointwise a.e. along
a subsequence of (tn); consequentially, for a.e. x ∈ L, we also have tn + x ∈ K
in�nitely often. So, for a.e. x, we have both conditions and there is a null set
N ⊂ K such that on K∖N, we do not have convergence of Ttn1K = 1tn+K as
n → ∞. This also means, in the notation introduced in Section 5, that K∖N is
a subset of the edge set ℰ{tn∶n≥1}(K).

Here is a basic fact that anticipates some later theorems:

Proposition 2.1 (Result 3). Given E ⊂ [0, 1] which is compact, has no inte-
rior, and has positive measure, there is a sequence (tn) decreasing to 0 such that
Ttn1K = 1K−tn fails to converge for a.e. x ∈ K.
Proof. Wewill createNj ≤ Nj+1 and inductively choose tn for nwithNj ≤ n <
Nj+1. It will be clear what the construction is if we just describe the inductive
step at the j-th stage. Suppose Nj has been already �xed.

First, if x ∈ K and � > 0, then because Kc is an open dense set, there must
be a non-empty open interval inKc within � of x. Hence, given �j > 0, for some
Nj+1 > Nj, we can choose a �nite cover of K by open intervals (In ∶ Nj ≤ n <
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Nj+1) which are of such small length that for each of them there is a tn with
In + tn ⊂ Kc and |tn| ≤ �j for all n,Nj ≤ n < Nj+1. This construction may
require a choice of Nj+1 that is large, but that does not matter as long as it can
be �xed. This de�nes (tn ∶ n < Nj+1) and completes the inductive step.

By making the size �j smaller than all previous terms and reordering the
translates on the block, we can arrange that the sequence (tn) is decreasing
with all tn > 0. This gives us a sequence (tn) converging to 0 such that for all
x ∈ K, we have tn + x ∈ Kc in�nitely often. �

Remark 2.2. It is not immediately clear how to use a similar construction to
show that every bounded set that is not Jordan measurable will have a bad se-
quence associated with it. The di�culty is that the structure of such sets can
be much more complicated than the case of a compact set with no interior. In-
deed, it is easy to show that in the symmetry pseudo-metric on the measurable
sets, the generic set E with have the property that both it and its complement
intersect every non-empty open set in a set of positive measure.

Question 2.3. Can we extend this type of construction to functions that are not
Riemann integrable?

This question is addressed in Section 3.
In addition, we can see that any sequence tn converging to zero has associated

with it functions f for which Ttnf → f a.e. as n → ∞. Of course, this is
immediate for characteristic functions of intervals. But the picture is less clear
if we requiref = 1E , withE compact andwithout interior, as in Proposition 2.1.

To demonstrate, we will �rst need this lemma:

Lemma 2.4 (Result 4). Suppose (tn) is a bounded sequence inℝ. ThenU(�) =⋃∞
n=1 tn+(0, �) hasm(U(�))→ 0 as � → 0 if and only if the closure of {tn ∶ n ≥ 1}

is a Lebesgue null set.

Proof. Let Us(�) = ⋃∞
n=1 tn + (−�, �). Let K be the closure of {tn ∶ n ≥ 1}.

We have K ⊂ Us(�) for any � > 0, since, otherwise, there is x ∈ K such that
|x − tn| ≥ � for all n. This is impossible since (tn) contains a subsequence such
that tnj → x as j →∞.

Since (tn) is bounded, K is compact. Hence, if V is open and K ⊂ V, then
there is some � > 0 such that |x − y| ≥ � for all x ∈ K and y ∉ V. So there
must be some � > 0 such that K ⊂ Us(�) ⊂ V.

Now by outer regularity of m, if K is a Lebesgue null set and � > 0, then
there exists V open such that K ⊂ V and m(V) < �. Take � > 0 such that
K ⊂ Us(�) ⊂ V. Hence, m(Us(�)) < �. Since U(�) ⊂ Us(�), we have that
m(U(�)) < �, too. Since the setsU(�) are decreasing as � decreases, this means
that if K is a Lebesgue null set, thenm(U(�))→ 0 as � → 0.

Conversely, K ⊂ Us(�∕2) for any � > 0. Now m(Us(�∕2)) = m(U(�)) since
Us(�∕2) + �∕2 = U(�). Hence, ifm(U(�))→ 0 as � → 0, we must havem(K) =
0. �
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Remark 2.5. We have, as an immediate consequence of Lemma 2.4, that if tn →
0 as n →∞, thenm(U(�))→ 0 as � → 0. Similarly, we also have that

m (
∞⋃

n=1
tn + (a, b)) → 0 as b → a.

We are now ready to show that no sequence of translates, with tn going to
zero, fails to converge for every compact set without interior.

Proposition 2.6 (Result 5). Given a sequence tn going to zero, there exists a
compact set K of positive measure and no interior such that Ttn1K → 1K a.e. as
n →∞.

Proof. We want to construct a compact set K and an increasing sequence Nk
such that for all k ≥ 1

m
⎛
⎜
⎝

⋃

n≥Nk

(−tn + K∆K)
⎞
⎟
⎠
≤ 1∕2k.

Then for a.e. x, we would have, for a large enough k = k(x), x ∉ ⋃
n≥Nk

(−tn +
K∆K). So for all n ≥ Nk either x ∈ −tn + K ∩ K or x ∉ −tn + K ∪ K. That is,
either x ∈ K and tn + x ∈ K, or x ∉ K and tn + x ∉ K. So 1K(x) = 1K(tn + x)
for all n ≥ Nk. Hence, for a.e. x, 1K(tn + x)→ 1K(x) as n →∞.

We proceed by induction. Starting with K0 = [0, 1], for k ≥ 1, we then
create a compact set Kk by removing a small open interval,Uk, from Kk−1. The
compact set K will be

⋂∞
k=1 Kk. By construction, the complement of K will be

small enough so thatm(K) > 0. Furthermore, the small open intervalsUk will
be chosen in a manner that guarantees that [0, 1]∖K is dense in [0, 1].

We will arrange that we have the following inequalities. First, that

m(Kk∖K) < 1∕2k. (2.1)
Also, there exists Nk such that

m
⎛
⎜
⎝

⋃

n≥Nk

(−tn + Kk∆Kk)
⎞
⎟
⎠
< 1∕2k. (2.2)

Finally, there exists Nk such that for all l ≥ k,

m
⎛
⎜
⎝

⋃

n≥Nk

(−tn + Kl∆Kl)
⎞
⎟
⎠
< 1∕2k. (2.3)

Notice that (2.3) includes (2.2). But it is easier to explain how (2.2) holds and
then how it can be modi�ed to show that, in fact, (2.3) is also true.

The basic reason that these estimates hold is thatKk is a �nite union of closed
intervals. Consequently, we can use Lemma 2.4 to show that the inductive step
does not change any relevant previous estimates.
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To arrange that (2.1) holds, note that

Kk∖K = Kk∖Kk+1 ∪⋯ ∪ Kk+d−1∖Kk+d ∪ Kk+d∖K for all d ≥ 1.

Taking the limit as d →∞ gives

Kk∖K =
∞⋃

i=1
Kk+i−1∖Kk+i.

Hence, bymakingm(Kk+i−1∖Kk+i) = m(Uk+i) small enough, we can guarantee
thatm(K) > 0 and that (2.1) holds for all k.

At the same time, because Kk is a �nite union of closed intervals and tn → 0
as n →∞, we know that there is some Nk such that (2.2) holds.

In addition, Lemma 2.4 tell us that for any l ≥ 1, in choosing Ul, we can
arrange that (2.3) holds for all k, 1 ≤ k < l. Actually, when removing the small
interval Ul at an inductive step we will need to use repeatedly the following
general inequality:

∞⋃

i=1
(si + (V∖U)∆(V∖U)) ⊂

∞⋃

i=1
(si + V∆V) ∪

∞⋃

i=1
si +U.

It is important to note here that it is the value ofm(Ul) that allows us to arrange
(2.3); we have the freedom to place Ul anywhere we like within [0, 1]. This is
what enables us to guarantee that K will not have any interior.

Finally, let us now use (2.1) and (2.3) to arrive at the conclusion. From (2.3),
it follows that for eachM ≥ Nk, and l ≥ k, we have

m
⎛
⎜
⎝

⋃

M≥n≥Nk

(−tn + Kl∆Kl)
⎞
⎟
⎠
< 1∕2k.

Letting l →∞ and (2.1), we see that

m
⎛
⎜
⎝

⋃

M≥n≥Nk

(−tn + K∆K)
⎞
⎟
⎠
≤ 1∕2k.

Now letM →∞, to getm
(⋃

n≥Nk
(−tn + K∆K)

)
≤ 1∕2k.

This is the sequence of inequalities that we wanted at the outset. �

Remark 2.7. This type of example shows how wide the exceptional class is for
a given sequence (tn) converging to 0. While generically Ttnf fails to converge
a.e., there are many functions in the �rst category exceptional class where a.e.
convergence does hold– including ones that are far from being continuous. Ex-
amples like 1K in Proposition 2.6 are not only discontinuous at every point in
K: they aren’t even equal a.e. to a function that is continuous on a set of positive
measure.
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Remark 2.8. In the proof above, we constructed K and an increasing sequence
Nk such that

m
⎛
⎜
⎝

⋃

n≥Nk

(−tn + K∆K)
⎞
⎟
⎠
≤ 1∕2k for all k ≥ 1.

This condition is not unexpected. Suppose that K ⊂ [0, 1] and 1K(tn + x)→
1K(x) for a.e. x. Then for a.e. x, there is N such that for all n ≥ N, x ∉
−tn + K∆K. So, given � > 0, for large enough N, one must have

m
⎛
⎜
⎝

⋃

n≥N
(−tn + K∆K)

⎞
⎟
⎠
< �.

Hence, for any k, there exists Nk such that

m
⎛
⎜
⎝

⋃

n≥Nk

(−tn + K∆K)
⎞
⎟
⎠
< 1∕2k.

It should be noted here that the union in the construction above,∪n≥Nk (−tn+
K∆K), allows for signi�cant overlap in the individual sets. This, coupled with
the choice of Nk, is critical, as illustrated by Proposition 2.9, provided by T.
Adams [1].

Proposition 2.9 (Result 6). Let (tn) be a sequence of non-negative real numbers
going to zero. Then (tn) is summable if and only if there exists a bounded Lebesgue
measurable A ⊂ ℝ of positive measure, such that

∞∑

n=1
m (−tn + A∆A) <∞.

Before we begin the proof, we will need a lower bound on m (−tn + A∆A)
that increases with tn. Here are two alternatives to produce such a bound. We
are indebted to R. Kaufman for bringing these facts to our attention.

Let f ∈ L1[0, 1] be non-zero and consider the rate at which ‖Ttf − f‖1 goes
to zero as t goes to zero. Herewe take [0, 1]with the usual Lebesguemeasurem,
andwe use additionmodulo one, so essentially we are considering the behavior
of functions and rotations on the circle.

Proposition 2.10. If f is not constant, then

lim inf
|t|→0

‖Ttf − f‖1
|t| > 0.

Proof. We use a Fourier coe�cient argument. Suppose f is not constant. We
have, for k ∈ ℤ,

f̂(k) =
1

∫
0

f(x) exp(−2�ikx)dm(x).
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We also know that |f̂(k)| ≤ ‖f‖1 for all k. Now T̂tf − f(k) = (exp(2�ikt) −
1)f̂(k). Since f not constant, taking k ≠ 0 such that c = f̂(k) is not zero, then
we have, for a constant C > 0,

‖Ttf − f‖1
|t| ≥ |c| |(exp(2�ikt) − 1)|

|t| ≥ C > 0

as t → 0. �

Another approach is to use a subadditive function limit theorem.

De�nition 2.11. We say that N(s) de�ned for s > 0 is subadditive if
N(s1 + s2) ≤ N(s1) +N(s2) for all s1, s2 > 0.

For the original versions of the following proposition, see Fekete [13] and
Hammersley [14].

Proposition 2.12. IfN(s) is continuous and subadditive then

lim
t→0+

N(t)
t = sup

s>0

N(s)
s .

Proof. Take any s > 0 and kt whole numbers such that ktt → s as t → 0. By
subadditivity, we have N(ktt) ≤ ktN(t). Hence,

N(ktt)
ktt

≤ N(t)
t .

But, by continuity, we see that

lim
t→0+

N(ktt)
ktt

= N(s)
s .

Apply this with a sequence tn in place of t with

lim
n→∞

N(tn)
tn

= lim inf
t→0+

N(t)
t .

We have ktn as above and ktn tn → s as n → ∞. Then N(ktn tn)∕ktn tn → N(s)∕s
as n →∞. So we get

lim inf
t→0+

N(t)
t = lim

n→∞

N(tn)
tn

≥ lim
n→∞

N(ktn tn)
ktn tn

= N(s)
s .

Since s was arbitrary, we have

lim inf
t→0+

N(t)
t ≥ sup

s>0

N(s)
s .

But then

lim inf
t→0+

N(t)
t ≥ sup

s>0

N(s)
s ≥ lim sup

t→0+

N(t)
t ≥ lim inf

t→0+
N(t)
t .

This proves the proposition, including the case that the value of sups>0N(s)∕s
is in�nite. �
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Now apply the proposition toN(s) = ‖Tsf−f‖p where 1 ≤ p ≤∞. We have

‖Ts1+s2f−f‖p ≤ ‖Ts1+s2f−Ts2f‖p+‖Ts2f−f‖p = ‖Ts1f−f‖p+‖Ts2f−f‖p,
yielding the following corollary.

Corollary 2.13. For all f ∈ L1[0, 1] and 1 ≤ p ≤∞, we have

lim
t→0+

‖Ttf − f‖p∕t = sup
s>0

‖Tsf − f‖p∕s.

If f is not constant then ‖Tsf − f‖p ≠ 0 for some s > 0. So Corollary 2.13
gives a better outcome than Proposition 2.10

Corollary 2.14. Given a measurable set A ⊂ [0, 1] with the Lebesgue measure
m(A) > 0, the limit

lim
t→0

m(A + t∆A)
|t|

exists and is strictly positive.

Remark 2.15. It is not hard to see that the limit in Corollary 2.13 can be in-
�nite. For example, take f to be the characteristic function on a sequence
of closed, pairwise disjoint intervals converging to 0. More concretely, take
A = ⋃∞

k=1[1∕4
2k+1, 1∕42k]. It would be interesting to characterize when the

limit is in�nite.

Corollary 2.13 and Corollary 2.14 are saturation limits, that is, rates which
are optimal. It is reasonable to ask if there are saturation limit theorems for
convolutions with other approximate identities. In generally, the answer to this
question isn’t immediately apparent. But in the special classical case of the
Lebesgue derivative, there is such a rate estimate in line with Proposition 2.10.

Proposition 2.16. Let Φtf(x) denote the Lebesgue derivative:

Φtf(x) =
1
t

t

∫
0

f(x + s)dm(s) = �t ∗ f(x),

where �t =
1
t
1[−t,0].

Given a non-constant f ∈ L1[0, 1], there is some constant C > 0 such that

lim inf
|t|→0

‖Φtf(x) − f‖1
|t| ≥ C.

Proof. We use the argument in Proposition 2.10. Take k ≠ 0 such that f̂(k) is
not zero. For t ≠ 0, we have

‖Φtf − f‖1 ≥ |�̂t(k) − 1||f̂(k)|,

where �̂t(k) =
1
t
∫ t0 exp(2�isk)dm(s).
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For k ≠ 0, this gives

�̂t(k) =
1

2�ikt (exp(2�ikt) − 1) = 1 +
∞∑

l=1

(2�ikt)l
(l + 1)!

.

So |�̂t(k) − 1| = �|tk| + o(|t|) as |t| → 0. This gives the conclusion with any
C < �|k||f̂(k)|. �

We now proceed with the proof of Proposition 2.9:

Proof of Proposition 2.9. If (tn) is summable, thenwemay letA be any bounded
non-trivial interval because

∞∑

n=1
m (−tn + A∆A) ≤

∞∑

n=1
2tn <∞.

Conversely, suppose
∑∞

n=1 tn = ∞ and let A be any bounded set of positive
measure in ℝ.

Applying Corollary 2.14, we have that there is a positive constant c so that
for n su�ciently large,m ((−tn + A)∆A) > ctn. Thus

∞∑

n=1
m ((−tn + A)∆A) > c

∑

n≥N
tn,

which diverges. �

Proposition 2.9 raises an interesting question.

Question 2.17. Suppose (tn) is summable. Can we construct K, with positive
positive and no interior, such that

∑∞
n=1m(tn + K∆K) <∞?

For simplicity, suppose that tn > 0 are decreasing. We could do this if we
could construct Kn decreasing, as above, with

∞∑

n=1
m(Kn∆K) <∞, and (2.4)

∞∑

n=1
m(tn + Kn∆Kn) <∞. (2.5)

Then
∞∑

n=1
m(tn + K∆K) ≤

∞∑

n=1
m(tn + K∆tn + Kn) +

∞∑

n=1
m(tn + Kn∆Kn) +

∞∑

n=1
m(Kn∆K)

= 2
∞∑

n=1
m(Kn∆K) +

∞∑

n=1
m(tn + Kn∆Kn) <∞.

The construction gives (2.4). The issue is whether or not we can keep the suc-
cessive insertion of gaps small enough and placed correctly to have (2.5) at the
same time. This might be possible with

∑∞
n=1 tn <∞.
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In addition, we have this question:

Question 2.18. Does there exist a compact set K ⊂ [0, 1] with positive measure
and no interior such that, for all (tn) with

∑∞
n=1 |tn| <∞, for a.e. x, Ttn1K(x)→

1K(x) as n →∞?

This question should be considered in light of Result 7, and compared with
themore general Question 3.16. In addition, an answer to Question 2.18 would
give further insights into Results 5 and 8.

3. Translation construction
Denote by f ∈ L∞c (ℝ) the Lebesgue measurable functions that are essen-

tially bounded on every bounded interval. We �rst observe the easiest part– see
Corollary 3.14 for how the following proposition can be extended after some
intermediate analysis.

Proposition 3.1. Suppose f ∈ L∞c (ℝ) and on every bounded interval I, f = g
a.e. where g is bounded and Riemann integrable on I. Then for every sequence of
translations (tn) with limn→∞ tn = 0, we have

lim
n→∞

f(x + tn) = f(x) for a.e. x.

Proof. Assume that f ∈ L∞[0, 1] and f = g a.e., where g is bounded and
Riemann integrable on [0, 1]. For simplicity, extend both these functions to be
0 o� [0, 1]. The continuity a.e. property of g, and the fact that f = g a.e., shows
that there is a null set N such that for any xn → x as n → ∞, with x ∉ N and
xn ∉ N for all n, we have f(xn) → f(x) as n → ∞. But we have for a.e. x,
both x ∉ N and also x ∉ N − tn for all n. Hence, with xn = x + tn, the above
shows that f(x + tn) → f(x) as n → ∞. So f(tn + x) → f(x) a.e. The same
argument extends to any bounded interval I in place of [0, 1] and proves the
proposition. �

Proposition 3.1 yields one direction in the following theorem, which is a ma-
jor extension of Proposition 2.1:

Proposition 3.2 (Result 7). Suppose that f ∈ L∞c (ℝ). Then we have f(tn + x)
converging for a.e. x for every (tn) converging to 0 if and only if on every bounded
interval I there is a g, bounded and Riemann integrable on I, such that f = g a.e.
on I.

It will take more e�ort to prove the other implication in Proposition 3.2. We
need to show that for f ∈ L∞c (ℝ), if all translations f(x + tn) converge a.e.,
then on every bounded interval f is equal a.e. to a bounded Riemann inte-
grable function. We prove this by contrapositive: we assume that, on some
bounded interval, f is not equal a.e. to a bounded Riemann integrable func-
tion, then construct a sequence of translates that fail to converge a.e. on some
set of positivemeasure. The proof of this is given in Section 3.1, Section 3.2, and
Section 3.3; it is, in some sense, a generalization of the construction for f = 1E
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in Section 2. After this, in Section 3.4, we discuss how Proposition 3.2 can like-
wise be generalized to address other functions f besides those in L∞c (ℝ).

3.1. Some preparation. To prove the steps leading to Proposition 3.2, we
need to consider the essential limits at a point for bounded functions. We let
EUf(x) denote the essential limit supremum of f(y) as y → x. That is, �rst,
given a bounded measurable F, we let ess sup F denote the essential supre-
mum. This can be de�ned de novo, or it can be just taken as ‖F +M‖∞ −M
whereM is any constant so that F +M ≥ 0 a.e. Then,

EUf(x) = lim
�→0+

ess sup f1[x−�,x+�].

We similarly de�ne the essential limit in�mum ELf(x). Or, if we want, we can
just de�ne

ELf(x) = −EU(−f)(x) for all x ∈ [0, 1].

It is worth observing the following principle:

Proposition 3.3. Givenf bounded and Lebesguemeasurable on [0, 1], and some
x ∈ [0, 1], there is a null setNx ⊂ [0, 1] such that

EUf(x) = lim sup
y→x

f|[0,1]∖Nx (y), and

ELf(x) = lim inf
y→x

f|[0,1]∖Nx (y).

Remark 3.4. The central theorem of this section consists of two parts. We �rst
observe that if EUf = ELf a.e., then there is a Riemann integrable function
g such that f = g a.e. This is addressed in Section 3.2. Then, in Section 3.3,
we show that if this fails to happen, then there is a sequence of translations
f(x + tn) with tn → 0 and a measurable set E with positive measure such that
the translates fail to converge for all x ∈ E.

Here is a structural fact aboutEUf andELf that follows fromProposition 3.3:

Proposition 3.5. We have EUf(x) = ELf(x) if and only if there is a null set,
Nx, depending on x, such that

limy→x
y∉Nx

f(y) = EUf(x).

Remark 3.6. Of course, if f is Riemann integrable, then a.e. x is a point of
continuity for f and so, for a.e. x, lim supy→x f(y) = lim inf y→x f(y). Thus,
there is no need for y to avoid a null set for good limit behavior a.e. On the
other hand, if f = g a.e., where g is Riemann integrable, then there is one null
set,N, independent of x, which can be excluded in the essential supremum and
essential in�mum calculations when showing f(y)→ f(x) as y → x o� a null
set.
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3.2. The positive theorem. Our goal in this section and in Section 3.3 is to
show that, for a bounded and Lebesgue measurable f with compact support,
EUf(x) = ELf(x) if and only if there is a Riemann integrable g such that
f(x) = g(x) a.e. We discuss the positive direction here; together, these two sec-
tions will enable us to address the remaining direction in the proof of Proposi-
tion 3.1.

Proposition 3.7. Suppose thatf is Lebesguemeasurable and essentially bounded
on [0, 1]. If EUf(x) = ELf(x) for a.e. x, then there is a Riemann integrable func-
tion g on [0, 1] such that f = g a.e.

Proof. Extend f to be zero on ℝ∖[0, 1] and let

g(x) = lim sup
�→0

1
� ∫

�

0
f(x + t)dt.

We take the limit supremum here because the limit may not exist for every x.
However, by Lebesgue’s Di�erentiation Theorem, we in fact have that

lim
�→0+

1
� ∫

�

0
f(x + t)dt = f(x) for a.e. x.

Hence, g(x) = f(x), except on a null set.
LetW be such a null set; that is, g(x) = f(x) for x ∉W.
Now, suppose N is a Lebesgue null set such that for any x ∉ N, we have

EUf(x) = ELf(x). Fix such an x. Applying Proposition 3.5, we have that

lim
�→0+

1
� ∫

�

0
f(x + t)dt = EUf(x),

since the integral is unchanged by the values of f(x + t) on a null set of values
t.

So, for x ∉ N, we have g(x) = EUf(x). And for x ∉ W ∪N, f(x) = g(x) =
EUf(x).

We nowwish to show that g is continuous for every x ∉ N and thus Riemann
integrable.

Indeed, �xing such x ∉ N, by Proposition 3.5 we have that, for any �0 > 0,
there is a null set Nx and � > 0 such that if |x − w| ≤ � and w ∉ Nx, then
|F(x) − f(w)| ≤ �0.
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Suppose |x − y| ≤ �∕3 and � < �∕3 and let Uy = {t ∶ y + t ∉ Nx}. We have
||||||||
F(x) − 1

� ∫
�

0
f(y + t)dt

||||||||
=

||||||||
1
� ∫

�

0
F(x) − f(y + t)dt

||||||||

=
|||||||||

1
� ∫[0,�]∩Uy

F(x) − f(y + t)dt
|||||||||

≤ 1
� ∫[0,�]∩Uy

|||F(x) − f(y + t)|||dt

≤ �0.

Letting � → 0+, this shows that for x ∉ N, if |x − y| ≤ �∕3, then |F(x) −
g(y)| ≤ �0. Hence, for x ∉ N, if |x − y| ≤ �∕3, we have |g(x) − g(y)| ≤ �0.
Since �0 is arbitrary, g is continuous at x. �

Remark 3.8. The same type of argument can be used to show the following:
there is a Riemann-integrable g such that f = g a.e. if and only if there is a null
setN ⊂ [0, 1] such that f|Nc , the function f restricted to the setNc = [0, 1]∖N,
is continuous on Nc. However, this characterization is not as useful for our
purposes as the one in Proposition 3.7

3.3. The negative theorem. We now need to show that when f is not equal
a.e. to a boundedRiemann integrable function– and soEUf(x) fails to be equal
to ELf(x) a.e.– we can construct a bad sequence of translates. This is the con-
tent of the following proposition:

Proposition 3.9. Suppose thatf is Lebesguemeasurable and essentially bounded
on [0, 1]. If EUf(x) > ELf(x) on a set of x of positive measure in [0, 1] then
there is a sequence (tn) converging to zero and a set E of positive measure such
that f(x + tn) fails to converge for all x ∈ E.

Proof. For convenience, let f = 0 o� [0, 1]. We assume there is a measurable
set E of positive measure and  > 0 such that for x ∈ E, we have EUf(x) ≥
ELf(x)+. OnE, the values ofEUf(x) are in [−‖f‖∞, ‖f‖∞]. So there is some
positive measure subset E0 of E such that on E0, the values of EUf(x) di�er by
no more than ∕100. We can reduce E0 again so the same constraint holds for
the values of ELf(x). This is actually not necessary for the construction, but it
makes the argument a little more straightforward. That is, we may assume that
there is a set of positive measure E such that
(a) EUf ≥ ELf +  on E,
(b) all values of EUf are within ∕100 of each other on E, and
(c) all values of ELf are within ∕100 of each other on E.

We will inductively construct non-zero, distinct (tn) as a union of disjoint
�nite blocks Bk. The blocks will have all terms in Bk+1 smaller than all terms
in Bk. In addition, for odd k, one has for a subset of x in E of measure at least
(1 − 1∕24k)m(E), there is some t ∈ Bk such that f(x + t) is within 2∕100
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of EUf(x). But for even k, one has for a subset of x in E of measure at least
(1 − 1∕24k)m(E), there is some t ∈ Bk such that f(x + t) is within 2∕100 of
ELf(x). So, indexing ⋃∞

k=1 Bk as a sequence (tn), we have that f(x + tn) fails
to converge for all x ∈ E because of conditions (a), (b), and (c), above.

We assume that the blocks Bl with l < k have been constructed, and now
describe how to choose Bk.

Assume that k is odd and �x �k > 0. For each z ∈ E, there is y, with |y−z| ≤
�k, such that

f(y) ≥ EUf(z) − ∕100.
Indeed, because we are using the essential supremum, there is a set Yz of pos-
itive measure such that all y ∈ Yz have this property. If, for x ∈ E, we may
choose t and a y ∈ Yz such that x = y − t, then by condition (b) above,

f(x + t) = f(y) ≥ EUf(z) − 
100 ≥ EUf(x) − 2

100 .

Now, we can choose a �nite set C(k) such that the union of all the Yz − t
over t ∈ C(k) covers a subset of E of measure at least (1 − 1∕24k)m(E). But
perhaps for t ∈ C(k), we would not have |t| < �k. However, if we constrain
the translates t ∈ C(k) so that |t| are all small, then we can only accomplish
the same thing for J ∩ E, where J is a small interval centered on z. We solve
this problem by moving to a di�erent section of E, and carrying out the same
process there to keep the translates small in absolute value.

That is, there is a natural number Lk so that, for i = 1,… , Lk, we have zi ∈
E, sets Yzi of positive measure, and �nite sets Ci(k) of non-zero numbers, for
which the following hold.

(1) For all i and y ∈ Yxi , f(y) > EUf(zi) − ∕100.
(2) The union of Yzi − t with t ∈ Ci(k) and i = 1,… , Lk covers a subset Fok

of E of measure at least (1 − 1∕24k)m(E).
(3) Finally, |t| ≤ � for all t ∈ Ci(k), i = 1,… , Lk.
Now we take Bk to be the union of all Ci(k), i = 1,… , Lk. Then, if x ∈ Fok,

there exists i, y ∈ Yzi , and ti ∈ Ci(k) such that x = y− ti. So f(x+ ti) = f(y) ≥
EUf(zi) − ∕100 ≥ EUf(x) − 2∕100.

Thus, we have constructed Bk, a union of �nite sets Ci(k) with all values
|t| ≤ � for t ∈ Bk, such that for some set Fok ⊂ E withm(Fk) ≥ (1−1∕24k)m(E),
we have for x ∈ Fok there is some t ∈ Bk such that f(x+ t) ≥ EUf(x)−2∕100.

On the other hand, if k is even, we use the same type of construction, but
instead apply condition (c). Proceeding in a similar fashion, we may show that
there is some Fek ⊂ E withm(Fek) ≥ (1−1∕24k)m(E), such that for x ∈ Fok there
is some t ∈ Bk such that f(x + t) ≤ ELf(x) + 2∕100.

Our choice of � for each k in the construction above ensures not only that
t → 0, but also that it may do so as rapidly as we might like: all values of t ∈ Bk
can be made smaller, even much smaller, than any value of t ∈ Bl, 1 ≤ l < k.
This only requires that the t ∈ Bl, 1 ≤ l < k are not zero, which can clearly be
part of the inductive construction.
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Now, by the trivial direction of the Borel-Cantelli Lemma, we have that for
a.e. x ∈ E, there is some constant K such that x ∈ Fok for all odd k ≥ K, and
x ∈ Fek for all even k ≥ K.

But then for a.e. x ∈ E, we must have both f(x+ t) ≥ EUf(x)−2∕100 and
f(x + t) ≤ ELf(x) + 2∕100 in�nitely often for t ∈ ⋃∞

k=1 Bk. Since we have
also condition (a) above, for a.e. x ∈ E the translates f(x + t) fail to converge
as t → 0 with t ∈ ⋃∞

k=1 Bk.
The construction, therefore, gives a sequence, (tn), with |tn| decreasing to 0,

such that f(x + tn) does not converge for all x ∈ E. �

Remark 3.10. These arguments provide a proof of a somewhat surprising the-
orem for bounded Lebesgue measurable functions on a bounded interval. We
have shown that in order for there to be a.e. convergence for all translations
going to zero, we have to restrict the functions very strongly: the function must
be locally a.e. equal to a Riemann integrable function. In a measure-theoretic
sense, this means that for all translations to behave well, there has to be conti-
nuity for the function at a.e. point.

3.4. Summary and extensions. Wewill now summarize the proof of Propo-
sition 3.2:

Proof of Proposition 3.2. WeuseProposition 3.1 for one direction of the proof.
For the converse, wemay assume that f is Lebesguemeasurable and essentially
bounded on [0, 1]; the argument will clearly extend to any bounded interval I.
Suppose that f is not equal a.e. on [0, 1] to a bounded Riemann integrable func-
tion g. Then Proposition 3.7 and Proposition 3.9 show that there is a sequence
(tn) converging to zero such that f(tn + x) fails to converge for all x in a set of
positive measure. �

We would like to extend this theorem to the largest reasonable class: L0(ℝ),
the Lebesgue measurable functions on ℝ that are a.e. real-valued. To do this,
we use truncations.

De�nition 3.11. Given a function f ∶ ℝ → ℝ, the truncation of f at height
M ∈ [0,∞) is given by

fM = f1{|f|≤M} +M1{f>M} −M1{f<−M}.

Proposition 3.12. Suppose f ∈ L0(ℝ). Then for every (tn) converging to 0, we
have f(tn + x) converging for a.e. x if and only if all for allM, the truncation fM
of f has the same property.

Proof. In a loose sense, the main idea is that convergence puts one in a set
wheref(x+tn) = fM(tn+x) for some su�ciently largeM and some su�ciently
large n.

To be precise, assume �rst that for every (tn) converging to 0, we have f(tn+
x) converges to f(x) for a.e. x. Fix (tn) and M, and let N be the null set for
which there is convergence o� N. If x ∉ N and |f(x)| < M, then eventually
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|f(tn+x)| < M. So, for large n, fM(tn+x) = f(tn+x) and fM(x) = f(x), and
hence fM(tn + x) converges to fM(x).

If x ∉ N and |f(x)| ≥ M, then for any � > 0, we eventually have that
either f(tn + x) ≥ M − � or f(tn + x) ≤ −M + �. So, again, we have that that
fM(tn + x)→ fM(x).

Conversely, suppose for eachM and (tn) converging to 0, there is a null set
N such that fM(tn + x) → fM(x) for all x ∉ N. Consequentially, there is a
null set N such that, for allM ∈ ℕ and all x ∉ N, fM(tn + x) → fM(x). But
since f ∈ L0(ℝ), for a.e. x there exists an M ∈ ℕ so that |f(x)| < M. Thus,
for large n, fM(tn + x) = f(tn + x) and fM(x) = f(x). Hence, we also have
f(tn + x)→ f(x) for all x ∉ N. �

Proposition 3.2 and Proposition 3.12 give this extension of our basic theorem.

Proposition 3.13. Given f ∈ L0(ℝ), we have, for every (tn) converging to 0,
f(tn + x) converging for a.e. x if and only if for everyM and bounded interval I,
fM is equal a.e. to a bounded Riemann integrable function on I.

These facts, in turn, lead to the following extension of Proposition 3.2:

Corollary 3.14 (Result 8). Consider a real-valued function f onℝ. Then f(tn+
x) converges a.e. for all (tn) going to zero if and only if there is a Lebesgue null set
N ⊂ ℝ such that f restricted to ℝ∖N is continuous in the relative topology on
ℝ∖N.

Proof. It is easy to see the translation property follows from the existence ofN,
just as we have argued above, for example in Proposition 3.1. For the converse
we use Proposition 3.13.

Take Is = [s − 1, s + 1] over all integers s and consider fM on Is. Then fM is
equal to a Riemann integrable function, Rs, on Is a.e.

Now let F(M, s) of be the set of full measure in Is where fM equals Rs and
where Rs is continuous. De�ne

F(s) = ∩M∈ℕF(M, s) and N = ∪s∈ℕIs∖F(s).
Note that N is a null set.

Now, restrict f toW = ℝ∖N and take a sequence inW converging to a point
inW; say, xn → x. This x is interior to some I(s) and, because f is real-valued,
|f(x)| < M for someM. Also, fM(xn)→ f(x) because xn, x ∈ Fs ⊂ F(M, s).

Since fM(xn) is eventually close to f(x), |fM(xn)| is close to |f(x)|, which
is less than M. We cannot then have fM(xn) = ±M. Hence, |f(xn)| is also
eventually less thanM. It follows that, for all n large enough, fM(xn) = f(xn).
And hence f(xn)→ f(x). �

Remark 3.15. The proof of Corollary 3.14 does not change if assume that f is
real-valued except for a Lebesgue null set. Also, the property guarantees that f
itself is the limit a.e. for each sequence (f(tn + x) ∶ n ≥ 1).

Proposition 3.2 suggests this question:
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Question 3.16. Can we describe conditions on a class T of sequences (tn) con-
verging to zero such that, if f ∈ L∞[0, 1] and Ttnf converges a.e. for all (tn) ∈ T,
then f = g a.e. for some g that is bounded and Riemann integrable on [0, 1]?
That is, what conditions onT guarantee that a.e. convergence of Ttnf for all (tn)
going to zero forces the function f to be regular (relatively continuous o� a null
set)?

It would be very interesting to know if the class of summable sequences is not
large enough for this to happen.

3.5. Di�erentiation andmoving averages. The theorems above allow us to
determine the good functions for all moving derivatives in the line.

Let D(�, t)f(x) = 1
�
∫ t+�t f(x + y)dy where � > 0 and t ∈ ℝ. We consider

D(�n, tn)f where (�n, tn) is always assumed to have �n → 0 and tn → 0 as n →
∞. There are a number of papers that address when the choice of (�n, tn) allows
one to conclude that for all f ∈ L1(ℝ), one has for a.e. x, D(�n, tn)f(x)→ f(x)
as n → ∞; see, for example, Nagel and Stein [21]. There are also a number of
papers about the analogous idea in the context of averages ofmaps in dynamical
systems. See Bellow, Jones, and Rosenblatt [5].

Without some control of the sequence (�n, tn), the moving derivative fails to
converge a.e. for a dense G� set of functions in L1(ℝ). So, in the spirit of both
facts discussed earlier in this paper and the facts in Parrish and Rosenblatt [23],
one can ask, “What are the good functions?” That is, which functions yield a.e.
convergence no matter what sequence (�n, tn) is chosen, as long as �n → 0 and
tn → 0 as n →∞?

In the analogous context of dynamical systems, where we have �xed the er-
godic mapping �, there is an interesting answer to this question. Indeed, for
moving averages, this a.e. convergence requirement is equivalent to a strong
convergence condition on the usual ergodic averages A�

nf =
1
n
∑n

k=1 f◦�
k.

Proposition 3.17. let f ∈ L1(X) be a mean-zero function. For f, we have all
moving averages with respect to an ergodic map � converge a.e. if and only if for
all  > 0,

∞∑

n=1
m({|A�

nf| ≥ }) <∞.

Remark 3.18. Consequently, it is not hard to see that there are no functions
other than constants that are good functions for all moving averages, for all er-
godic mappings. See Adams and Rosenblatt [3] and Adams and Rosenblatt [2].

It is likewise very restrictive to require that all moving derivatives converge
a.e.:

Proposition 3.19. A function f ∈ L∞(ℝ) is good for all moving derivatives
D(�n, tn) if and only if it is a bounded, locally Riemann integrable function.

Proof. Knowing that f = g, with g locally Riemann integrable, easily gives the
positive direction, because Riemann integrable functions are continuous a.e.
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The proof of the other direction could just capitalize on the same density
arguments that give Proposition 3.9, but there is a simpler approach. Given
f ∈ L∞(ℝ) that is not equivalent to a locally Riemann integrable function, we
know from Proposition 3.9 that there is a sequence (tn) tending to 0 such that
f(x + tn) fails to converge on a set x of positive measure.

For each n, choose �n > 0 such that ‖D(�n, tn)f − Ttnf‖1 ≤ 1∕2n. Since∑∞
n=1 ‖D(�n, tn)f−Ttnf‖1 is �nite, we have limn→∞ D(�n, tn)f(x)−Ttnf(x) = 0

for a.e. x. Hence, D(�n, tn)f must also fail to converge on some set of positive
measure. �

4. Rates in special cases
The construction of a bad sequence of translates in Section 3 clearly uses a

�nite, but potentially very large, number of translates in each Bk. Something
of this type is generally necessary because we know that, given f, for every
sequence (tn) converging to 0, there is a subsequence (tnm) such that f(x +
tnm)→ f(x) for a.e. x asm →∞.

Question 4.1. Given f not equal a.e. to a Riemann integrable function, how
quickly must (tn) to converge to 0 in order to have f(x + tn) → f(x) for a.e. x?
What analytical property of f can be used to describe this rate?

There is certainly some issue here: in addition to the above remark about
a.e. convergent subsequences, a Baire category argument shows that no matter
what sequence (tn)we take, and nomatter how quickly it converges to zero, the
generic bounded measurable function f will have f(x + tn) failing to converge
a.e.

We should at least remark on this general principle, which is stated less sim-
ply than it could be to make the points in Remark 4.3 more clear.

Proposition 4.2. Let f ∈ L1(ℝ) and take a summable sequence �n. Choose step
functions�n such that ‖f−�n‖1 ≤ �n. Then choose tn such that ‖�n−Ttn(�n)‖1 ≤
�n. It follows that f(tn + x)→ f(x) a.e. as n →∞.

Proof. We actually have strong convergence of Ttnf to f, i.e.

∫
ℝ

∞∑

n=1
|f − Ttnf|dm =

∞∑

n=1
‖f − Ttnf‖1 <∞.

This is because
‖f − Ttnf‖1 ≤ ‖f − �n‖1 + ‖�n − Ttn(�n)‖1 + ‖Ttn(�n) − Ttnf‖1 ≤ 3�n.
Thus, we have a.e. convergence of the translates. �

Remark 4.3. In Proposition 4.2, we could just appeal to the L1-norm continuity
of translations to directly choose tn, thereby ensuring that ‖f−Ttnf‖1 ≤ �n for
all n.

Instead, we have chosen the indirect phrasing to emphasize two interesting
approximation issues. The �rst issue is the question of what properties of f
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allow us to explicitly derive the step functions �n above. Once these are chosen,
the second issue arises: given a particular step function �n, we must determine
how to quantify the choice of tn so that ‖� − Ttn(�n)‖1 is small.

Based on properties of f, we would hopefully know what to do to decrease
‖f−�n‖1. But to achieve this, generally we would have to increase the number
of intervals on which �n is constant while decreasing their lengths. This will
force the choice of the tn to be correspondingly smaller.

Making this speci�c will require information about the variability of f.
Let us consider in greater detail somemore explicit examples. Note that there

is speci�c information available in the literature about the failure of a.e. conver-
gence of translates for the generic set (or function); consider, for example, the
theorems in Ellis and Friedman [9] and later in Ellis [9]. The facts presented
earlier by Newman [22] are also of interest. These theorems show the following
lemma.

Lemma 4.4. Given any � > 0 and a sequence (tn) in [0, 1] with distinct terms
converging to 0, there is an open dense set U ⊂ [0, 1] with m(U) < � such that
[0, 1] ⊂ ⋃∞

n=1U + tn.
Remark 4.5. The regularity of Lebesgue measure m shows that it is enough
to prove that there is a measurable set E ⊂ [0, 1] with m(E) < � such that
[0, 1]∖⋃∞

n=1 E + tn is a null set.
Corollary 4.6. Given any � > 0 and a sequence of distinct (tn) converging to 0,
there is an open dense set U ⊂ [0, 1] with m(U) < � such that for all N ≥ 1,
[0, 1] ⊂ ⋃∞

n=N U + tn.
Proposition 4.7. Given any sequence (tn) converging to zero, there is a compact
set K ⊂ [0, 1] such that a.e. Ttn1K does not converge.

Proof. We use Corollary 4.6 and take K = Uc. Then for all x ∈ [0, 1], we have
x ∉ K − tn in�nitely often. But 1K−tnm must converge to 1K a.e. along some
subsequence, (nm). �

Question 4.8. Given a compact K ⊂ [0, 1], perhaps with no interior, what can
be said about the rate at which (tn) must converge to zero if 1K+tn is to converge
a.e.?

One approach to this question would be to consider whether this rate can be
characterized by aspects of what wemight call the geometry ofK. For example,
one might be able to approach the question via geometric entropy:

De�nition 4.9. The geometric entropy of a compact set K is the function

g(l) = min
(sn)

{m ∶ K ⊆
m⋃

n=1
(0, 1l) + sn} ,

where the minimum is taken over all real sequences. That is, g(l) is the small-
est number of open intervals of length 1

l
whose union contains K.
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Alternately, it could be that one needsmore information about speci�c num-
bers, sizes, and locations of the intervals in the complement [0, 1]∖K.

Wepresent two seemingly di�erent approach to answering the question. Both
use a strong convergence criterion given by series to get a positive conclusion;
that is, we give conditions on (tn) such that

∞∑

n=1
m(K∆K + tn) <∞.

But then, since ‖1K − 1K+tn‖1 = m(K∆K + tn), this series condition means
that, for a.e. x, we must eventually have 1K(x) = 1K+tn(x). The a.e. conver-
gence of 1K+tn to 1K follows. Because this series approach is rather a strong
constraint, no doubt the rates can be improved by using di�erent methods.
Method A. We assume that K is not Jordan measurable. For this �rst ap-
proach, it is easier to consider U = [0, 1]∖K. Here U is an open set written
as a disjoint union of open intervals Ik:

U =
∞⋃

k=1
Ik

We assume for concreteness that the lengthsm(Ik) are non-increasing.
Position the intervals Ik in such a way that their union,U, is open and dense

in [0, 1]. For a �xed j, let Tj =
⋃∞

k=j+1 Ik. Then we can take an increasing
sequence jn such that

∑∞
n=1m(Tjn) <∞.

Choose a decreasing sequence (tn) so that

tn < m(Ijn) and
∞∑

n=1
jntn <∞.

Let Sj =
⋃j

k=1 Ik. Then for all n, we have U = Sjn ∪ Tjn . Because of the �rst
requirement on our chosen sequence,m(Ik) > tn for all k ≤ jn. So we have

m(U∆U + tn) = ‖1Sjn + 1Tjn
− 1Sjn+tn − 1Tjn+tn‖1

≤ 2m(Tjn) +
jn∑

k=1
m(Ik∆Ik + tn)

≤ 2m(Tjn) +
jn∑

k=1
2tn.

Hence, by the second requirement on (tn), we have
∞∑

n=1
m(U∆U + tn) <∞.

Example 4.10. Say m(Ik) = C∕k2 for some constant C. Then jn = n2 is suf-
�ciently large for

∑∞
n=1m(Tjn) < ∞. Also, then tn ≤ 1∕n4 allows for both

requirements on the sequence to hold.
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Example 4.11. Suppose m(Ik) = C∕2k for some constant C. Then jn = n is
su�ciently large and tn ≤ 1∕2n allows for the rest of the conditions to hold.

This construction also yields the following.

Proposition 4.12 (Result 9). There exists a compact set K ⊂ [0, 1] of positive
measure and no interior such that for all (tn) such that |tn| = O(�m) for some
� < 1, for a.e. x, Ttn1K(x)→ 1K(x) as n →∞.

Method B. Here is a somewhat di�erent approach using the geometric en-
tropy. The constraints are similar to those in Method A.

For a compact setK, consider the � neighborhoodK(�) = {x ∶ there exists y ∈
K, |x − y| ≤ �}. Since for every x ∉ K we have x ∉ K(�) for small enough �, we
havem(K(�)∖K)→ 0 as � → 0+.

For a �xed �, letN� be the smallest number of intervals (xk − �, xk + �), such
that

K ⊂
N�⋃

k=1
(xk − �, xk + �).

We must have
⋃N�

k=1(xk − �, xk + �) ⊂ K(2�). So, for any � > 0, there is � small
enough so that

N�⋃

k=1
(xk − �, xk + �)∖K) ≤ �.

We now choose a in�nite sequence of the variables �, �, and N� as follows.
First, assume that we have �n > 0 such that

∑∞
n=1 �n < ∞. Then we choose �n

and N�n so that
N�n⋃

k=1
(xk − �n, xk + �n)∖K) ≤ �n.

Now we impose conditions on a decreasing sequence (tn) similar to those in
Method A, namely:

tn < 2�n and
∞∑

n=1
N�n tn <∞.

To have (tn) converging to zero as slowly as possible here, it seems reasonable
that we take �n and �n as large as possible, knowing that there is no maximum
choice possible in this situation.

Now letWn =
⋃N�n

k=1(xk − �n, xk + �n). We know that

Wn∆Wn + tn ⊂
N�n⋃

k=1
(xk − �n, xk + �n)∆(tn + xk − �n, tn + xk + �n),

so if tn ≤ 2�n, thenm(Wn∆Wn + tn) ≤ 2N�n tn.
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Hence, we have
∞∑

n=1
‖1K − 1K+tn‖1 ≤

∞∑

n=1
‖1K − 1Wn‖1 +

∞∑

n=1
‖1Wn − 1Wn+tn‖1

+
∞∑

n=1
‖1Wn+tn − 1K+tn‖1

≤
∞∑

n=1
2�n +

∞∑

n=1
‖1Wn − 1Wn+tn‖1

≤
∞∑

n=1
2�n +

∞∑

n=1
2N�n tn.

Once again,
∑∞

n=1 ‖1K − 1K+tn‖1 <∞ and so a.e. 1K+tn → 1K as n →∞.

5. Edges
Consider a bounded set E. It is well-known that the characteristic function

1E is Riemann-integrable if and only if its topological boundary, )ℝ(E), has
Lebesgue measure zero– i.e. E is Jordanmeasurable. We would like to general-
ize the concept of boundary with translates inmind. The goal is to give a way to
distinguish levels of good functions for a.e. convergence of translates that are
converging to zero.

Consider a set S in ℝ. Formally it is arbitrary, but think of it as having zero
in its set of accumulation points. That is, zero is in its closure and is not an
isolated point in the closure. Denote the complement ℝ∖E by Ec.
De�nition 5.1. The base points E ⊂ ℝ relative to S, denoted byℬS(E) is the set
of points x such that for some � > 0, we have x + (S ∩ (−�, �)) ⊂ E.

That is, the base points are the values x such that x + s ∈ E when s ∈ S is
close enough to zero. If S is an interval containing zero, then the base points
give the usual topological interior of a set E.

If the base points of the set E are analogous to its interior, then the set of base
points of its complement, ℬS(Ec), is analogous to the interior of Ec. We thus
arrive at our notion of a boundary relative to a set S:
De�nition 5.2. The edge of E relative to S is the set

ℰS(E) = (ℬS(E) ∪ℬS(Ec))
c

The edge points are, then, the points that are neither base points for E nor for
Ec.
Example 5.3. For example, consider S to be the set of points in a sequence (tn)
of non-zero real numbers converging to 0. Then the base points of E relative
to S consists of all x such that x + tn ∈ E for all large enough n, and the base
points of Ec relative to S consists of all x such that x + tn ∈ Ec for all large
enough n. So the edge points relative to S are all x such that x + tn is in both
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E and Ec in�nitely often. That is, if x ∉ ℰS(E), then x + tn must eventually lie
entirely in either E or Ec.

Example 5.4. Another interesting type of set to consider is one homeomorphic
to the usual Cantor set: i.e., when S is a compact, totally disconnected set. If
0 ∈ S, then the notions of base points and edge points relative to S again address
where x + s lies for s ∈ S near zero.

Suppose that S is a class of sets S. We are interested in the behavior of the
edge points ℰS(E) is as S ∈ S varies. In addition to the question of how the
individual sets of edges grow as S ∈ S varies, it’s useful to have an handle on
the growth of the edges of all the sets in S; that is, to know the size of

⋃

S∈S
ℰS(E).

Consider the following basic principal.

Proposition 5.5. Suppose E is bounded set and ℰS(E) has Lebesgue measure
zero. Then for a.e. x, we have, for any sequence (tn) in S tending to zero,

lim
n→∞

1−tn+E(x) = 1E(x).

Proof. Noting that a.e. x ∉ ℰS(E), we have, for a.e. x, either x+ s is in E for all
values of s ∈ S su�ciently close to zero, or x + s is in Ec for all values of s ∈ S
su�ciently close to zero.

Hence, for a sequence (tn) in S converging to zero, we would have either
x + tn ∈ E or x + tn ∈ Ec for all n > N with N large enough; the particular N
depending on x. Thus, for a.e. x, 1−tn+E(x) converges as n converges to∞.

But we know that 1−tn+E converges in L1-norm to 1E . Hence, for some sub-
sequence (tnk ∶ k ≥ 1), we have 1−tnk+E(x) → 1E(x) for a.e. x. We must
therefore have that, for a.e. x, 1−tn+E(x)→ 1E(x) as n →∞. �

Corollary 5.6. If S is the set all sequences (tn) converging to 0, and for all S ∈ S
we have ℰS(E) has Lebesguemeasure zero, then for every sequence (tn) converging
to zero, we have

lim
n→∞

1tn+E(x) = 1E(x), for a.e. x.

Remark 5.7. It is not clear how di�erent it would be to require that
⋃

S∈S ℰS(E)
has Lebesgue measure zero. This is possibly a much stronger statement: it
means that a.e. x will give the conclusion for every S ∈ S. See Corollary 5.8
where this would be true.

This approach gives us an alternative proof of a fact that we already know.

Corollary 5.8. If E is Jordan measurable, then for a.e. x, we have
lim
n→∞

1tn+E(x) = 1E(x)

for every sequence (tn) converging to zero.
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Proof. Although we always have ℰS(E) ⊂ ℰℝ(E), a simpler way to observe this
corollary is to note that 1E must be continuous a.e. (at any point not an edge
point); convergence must hold at any point of continuity. �

In addition, we have this converse principle.

Proposition 5.9. Let S = {tn ∶ n ≥ 1}, where (tn) converges to zero. If

lim
n→∞

1−tn+E(x) = 1E(x), a.e.,

then ℰS(E)must have Lebesgue measure zero.

Question 5.10. The core question concerns what types of sets have the property
in Corollary 5.6. It is clear that the class must include the Jordanmeasurable sets,
but it might be larger– even much larger.

More generally, suppose that, for every sequence (tn) tending to zero drawn from
S, we havem

(
ℰ{−tn∶n≥1}(E)

)
= 0. If it follows that ℰS(E)must also have measure

zero, what does this reveal about S?

We close this sectionwith a few observations about the nature of edge points.

Lemma5.11. SupposeS0 ⊂ S. ThenℬS(E) ⊂ ℬS0(E). Consequentially,ℰS0(E) ⊂
ℰS(E) ⊂ ℰℝ(E).

Proof. It is clear from the de�nitions that ℬS(E) ⊂ ℬS0(E) and also ℬS(Ec) ⊂
ℬS0E

c. But then ℰS0(E) = ℬS0(E)
c ∩ℬS0(E

c)c ⊂ ℬS(E)c ∩ℬS(Ec)c = ℰS(E). �

Lemma 5.12. Suppose x ∈ ℰℝ(E), then there is a sequence (tn) tending to zero
such that x ∈ ℰ{tn∶n≥1}(E).

Proof. There are points in E and in Ec arbitrarily close to x. So we can choose
an with absolute values decreasing to zero so that x + an ∈ E for all n, and bn
with absolute values decreasing to zero that thatx+bn ∈ Ec for alln. Intertwine
these into a sequence (tn) tending to zero; we have that x ∈ ℰ{tn∶n≥1}(E). Note
that we may order elements from (an) and (bn) in such a way that |tn| → 0
monotonically if desired. �

Remark 5.13. There are other interesting issues that can be phrased in terms
of base points and edge points. When we have a particular class of sets S, then
having a non-trivial set of base points for all of the sets S ∈ S gives some struc-
tural information. For example, consider a �xed sequence (un) converging to 0.
Let S consist of the sets of terms in the sequences (s un)where s > 0 is arbitrary.
Then knowing that x ∈ ℰS(E) for some S ∈ S says that a similar copy of tail
(un ∶ n ≥ N) is in E. This is the famous unsolved Erdős similarity problem:
there should be no (un) for which this is true for all sets E of positive Lebesgue
measure. But currently not even the case where un =

1
2n

for all n is known. See
the discussion in Section 6 and the references [7, 12, 15, 17, 18, 26].
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6. Erdős similarity problem
Erdős asked: does there exist a sequence (xk ∶ k ≥ 1) of non-zero real num-

bers decreasing to zero such that every set E ⊂ ℝ with positive Lebesgue mea-
sure contains a similar copy of (xk ∶ k ≥ 1)? We call such a sequence a univer-
sal sequence (for the Erdős’ Similarity Problem). There are a number of articles
that have addressed this problem since Erdős’ question appeared in print. See
Erdős [10], problem 433.7∗ (the asterisk meaning it was asked in a problem
session at the 5th Balkan Mathematical Congress). But at this time, the Erdős
Similarity Problem remains unsolved.

The general belief is that the answer to this question is negative. The theorem
in Falconer [12] and Eigen [7] shows that a universal sequence cannot have
lim
k→∞

xk∕xk+1 = 1. This is why one should consider possible universal sequence

like xk = 1∕2k for all k. We do not know at this time if this is a universal
sequence or not.

We give here some ideas on how one might approach a construction that
would show there are no universal sequences. We note that Erdős’ question
could also be stated where we replace sets E of positive Lebesgue measure with
sets E that are second Baire category. But the method of construction we are
going to consider is de�nitely measure-theoretic.

One aspect of the similarity question is clear: it is necessary to use the scaling
factor s. This is well-known: there exists a Lebesgue measurable set of positive
measure E such that for all x, the elements xk + x ∉ E for in�nitely many k.
For example, see Komjáth [19]. Indeed, E ⊂ [0, 1] can be chosen to be compact
and have measure as close to 1 as we like. So, if one restricts the similarity to
allow for s only in some countable set, then there is not universal sequence.
The theorem in Kolountzakis [18] is stronger: there is always a compact set
E of positive Lebesgue measure such that for a.e. s > 0 and all x, we have
sxk + x ∉ E for in�nitely many k.

It is perhaps also worth pointing out here that as always the order of the
quanti�ers matters. Indeed, �x s > 0. One can always construct a sequence of
non-zero real numbers (xk ∶ k ≥ 1) decreasing to zero such that for a.e. x ∈ E,
eventually sxk + x ∈ E. This is because for any �xed sequence (xk ∶ k ≥ 1)
tending to zero, and any Lebesgue measurable set of �nite measure, 1sxk+E →
1E in L1-norm.

One can ask why this problem has resisted solution so far. The optimistic
view is that there has just not been a �exible enough construction found. The
pessimistic view is that the problem is actually an axiomatic issue. Indeed, the
two parameter nature of similarity, and the facts mentioned here, are why there
is a faint odor of the problem perhaps being independent of ZF(C), like some
of the technical issues involved in even the two variable Fubini Theorem.

In addition, one could reasonably change the Similarity Problem to be just
that every set of positive measure contains a similar copy of the tail of the se-
quence. That is, for every E of positive Lebesgue measure there exists K, s > 0,
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and x such that sxk + x ∈ E for all k ≥ K. It is not clear if this weaker form
of universality is actually equivalent to the one where K = 1. Also, one could
also ask that x ∈ E. If E is closed, then it must be. But formally this is not
necessary in general. However, since every set E of positive Lebesgue measure
contains a compact set K of positive Lebesgue measure, one can assume that
x ∈ E anyway.

Moreover, a universal sequence would have the property that for a.e. x ∈ E,
there must be some s > 0 such that sxk + x ∈ E for all k ≥ 1 (or for all large
enough k). To prove this, consider the setℬ of x ∈ E for which there is no such
s > 0with this property. Ifℬ is of positive Lebesguemeasure, then universality
implies that there is some x ∈ ℬ and s > 0 such that sxk + x ∈ ℬ for all k ≥ 1.
But then these elements are also in E, contradicting the choice of x ∈ ℬ ⊂ E
because of the de�nition of ℬ. Hence, ℬ is of Lebesgue measure zero, which
established the property.

The possible issue with this argument is that it is not clear if ℬ is Lebesgue
measurable because of the use of the continuous parameters s and x in the def-
inition. But we can �x this. First, there is no harm in assuming that E is a Borel
set. Consider the subset ℰk of (0,∞)×ℝ of all (s, x) such that for all k, we have
sxk + x ∈ E. Since (s, x)→ sxk + x is continuous, and E is a Borel set, we have

ℰk is a Borel set. Hence, so is G =
∞⋂
k=1

ℰk. But then ((0,∞)×ℝ)∖G is a Borel set

and its projection ℬ on the second coordinate is an analytic set. Analytic sets
are universally measurable and so this projection is a Lebesgue measurable set.

6.1. The Erdős similarity problem and depth. Our starting point is an ar-
gument that shows for any set of positive Lebesgue measure E and a �nite set
S, there is a similar copy of S in E. This is of course very well known, going
back at least to Steinhaus [25]. But the construction here brings up the role of
certain parameters that leads us to the concept of depth.

Proposition 6.1. Given a set E of positive Lebesguemeasure and x1,… , xK , there
is s > 0 and x such that sxk + x ∈ E for k = 1,… , K.

Proof. Take a Lebesgue point z ∈ E. Then for any � > 0, there is a � > 0 such
thatm([z, z+�] ∩E)∕� > 1− �. Hence,m([0, �] ∩ (E− z))∕� > 1− �. But then
for any � > 0, we havem([0, ��]∩�(E−z))∕�� = m([0, �]∩(E−z))∕� > 1−�.
Although we had to choose � possibly very small, we see that here we can take
� as large as we like.

Now we have m(
K⋂
k=1

[0, ��] − xk)∕(��) as close to 1 as we like by making �

large. So we claim that by making � smaller, choosing � as needed, and then

taking � su�ciently large, we would havem(
K⋂
k=1

�(E − z) − xk) > 0.
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Here are the precise estimate that verify this. We have

m
⎛
⎜
⎝

K⋂

k=1
�(E − z) − xk

⎞
⎟
⎠
≥ m

⎛
⎜
⎝

K⋂

k=1
[0, ��] − xk

⎞
⎟
⎠
− Km([0, ��]∖�(E − z)).

This estimate is because for any sets Ak and Bk, k = 1,… , K, we have
K⋂

k=1
Bk ⊂

K⋂

k=1
Ak ∪

K⋃

k=1
Bk∖Ak

and so

m(
K⋂

k=1
Bk) ≤ m(

K⋂

k=1
Ak) +

K∑

k=1
m(Bk∖Ak).

Apply this with Ak = �(E − z) − xk and Bk = [0, ��] − xk for all k.
Now let M = max

1≤k≤K
|xk|. Using the same principle above, but with Ak =

[0, ��] − xk and Bk = [0, ��] for all k, we see that

m
⎛
⎜
⎝

K⋂

k=1
[0, ��] − xk

⎞
⎟
⎠
≥ m([0, ��]) − KM = �� − KM.

But also because
m([0, ��] ∩ �(E − z))∕�� > 1 − �,

we have
m([0, ��]∖�(E − z)) ≤ ���.

Hence,

m
⎛
⎜
⎝

K⋂

k=1
�(E − z) − xk

⎞
⎟
⎠
≥ �� − KM − K���

So we see that if � < 1∕10K, and then � is chosen large enough for KM∕�� <
1∕10, then

m
⎛
⎜
⎝

K⋂

k=1
�(E − z) − xk

⎞
⎟
⎠
∕�� ≥ 1 − 2∕10 > 0.

Sincem(
K⋂
k=1

�(E−z)−xk) > 0. we certainly know that
K⋂
k=1

�(E−z)−xk is not

empty. So there are ek ∈ E, k = 1,… , K, and some y such that �(ek−z)−xk = y
for all k = 1,… , K. That is, 1

�
xk +

1
�
y + z = ek for all k. Or, with s = 1∕� and

x = 1
�
y + z, we have sxk + x ∈ E for all k = 1,… , K. �

In the proof of Proposition 6.1, we have to choose � possibly large, and so
s = 1∕� is possibly very small. Depending on x1,… , xK and z, and of course

E, we get m(
K⋂
k=1

�(E − z) − xk) > 0. What we really needed was only that this
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intersection be non-empty. It may be that � could be smaller than what was
chosen. But if E is bounded and x1,… , xK are distinct, then � cannot be very
small. This suggests this de�nition.

De�nition 6.2. Fix some sequence (xk ∶ k ≥ 1) and some K ≥ 1. De�ne
the depth of E at z, denoted by DK(E, z), to be the in�mum of values of � such
K⋂
k=1

�(E − z) − xk is not empty.

Remark 6.3. At least if E is compact, then the in�mum in this de�nition is
actually a minimum i.e. the depth is given by some value of �. The depth of
course depends on (xk ∶ k ≥ 1) andK. Clearly,K → DK(E, z) is non-decreasing
as K increases; that is DK+1(E, z) ≥ DK(E, z) for all K ≥ 1.

Remark 6.4. If (xk) is universal, then in fact we would have some s and x such

that sxk + x ∈ E for all k. Hence, 0 ∈
∞⋂
k=1

1
s
(E − x) − xk. But it is not clear if

actually also, even with E compact, thatm(
K⋂
k=1

1
s
(E−x)−xk) > 0 for all K. But

perhaps the right question is: if (xk) is universal, does there exist x and some

s > 0 such that for all K ≥ 1, we havem (
K⋂
k=1

1
s
(E − x) − xk) > 0?

We propose to construct a compact set E of positive measure that shows that
(xk ∶ k ≥ 1) cannot be universal. We propose to do this be constructing E such
that for all z ∈ E, the depth DK(E, z) goes to in�nity as K goes to in�nity. We
can see that this will accomplish what we want. Although the our proposed
approach here is only tentative, it has its interest anyway.

So then here is our Result 10: the solution of the Erdős Similarity Problem
can be phrased in terms of the concept of depth: a sequence (xk ∶ k ≥ 1),
converging to 0, is universal if and only if for all compact sets E of positive
measure, there is x ∈ E and an L such that the depth DK(E, x) ≤ L for all K.

Indeed, suppose (xk ∶ k ≥ 1) is universal. Then if E is compact and positive
measure, there exists x ∈ E with s > 0 such that sxk + x ∈ E for all k ≥ 1. So

we would have 0 ∈ 1
s
(E−x)−xk for all k = 1,… , K. But then

K⋂
k=1

1
s
(E−x)−xk

is not empty. This means that the depth DK(E, x) ≤
1
s
for all K.

Conversely, suppose there is some x ∈ E such that for some L the depth

DK(E, x) ≤ L for all K. Then for all K, there exists yK ∈
K⋂
k=1

�K(E − x) − xk for

some �K ≤ L. We then have yK∕�K + xk∕�K + x ∈ E for all k ≤ K. But there is
a subsequence of yK converging to y and a subsequence of �K → � ≤ L. Since
E is compact, it follows that with z = y∕� + x, we would have z + xk∕� ∈ E
for all k. Hence, (xk ∶ k ≥ 1) is universal.
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Remark 6.5. We can modify this idea to weaken the universal nature of (xk ∶
k ≥ 1) to be that every set of positive Lebesgue measure contains a similar
copy of some tail of the sequence. Then we would modify the notion of depth
accordingly.

Remark 6.6. We can also consider depth only for a.e. z ∈ E. This is because if
(xk ∶ k ≥ 1) is universal, then for a.e. x ∈ E, there exists s such that sxk+x ∈ E
for all k. Indeed, it is enough to prove this for compact setsE by inner regularity
of the measure.

To see how this holds, consider P =
∞⋂
k=1

{(s, x) ∶ x ∈ E, sxk+x ∈ E}. The sets

being intersected are the inverse images via the map (s, x)→ sxk + x, which is
continuous. So P is a Borel set because E is compact and so a Borel set. Hence,
the set of x ∈ E such that there is s with sxk + x ∈ E for all k is the projection
of a Borel set on the second coordinate. But continuous projections of Borel
sets are analytic, and hence are Lebesgue measurable. So this set of x ∈ E that
realizes the similarity property is a Lebesgue measurable set.

Now if this projection of P on the second coordinate is not of full measure in
E, then there is a compact set F ⊂ E of positive measure that misses it. This
is where measurability of the projection is used. But then universality means
there is x ∈ F ⊂ E and s such that sxk + x ∈ F ⊂ E for all k. This is a
contradiction because F misses the projection of P on the second coordinate.

So if (xk ∶ k ≥ 1) is universal, then for a compact set E of positive measure,
the depth DK(E, x) is bounded as K varies for a.e. x.

What this means is that we can get a counterexample to the universality if
we can construct a compact set E of positive measure that has for a.e. x ∈ E,
the depth DK(E, x)→∞ as K →∞.

Note: the same type of argument can be used for this weaker form of univer-
sality: for all compact sets E of positive measure, there is k0, x ∈ E, and s such
that sxk + x ∈ E for all k ≥ k0. If this holds, then one can argue that for a.e.
x ∈ E, there is k0 and s such that sxk + x ∈ E for all k ≥ k0. So "all" we have
to do is construct a compact set E of positive measure such that the tail depth
goes to in�nity for a.e. x ∈ E.

Remark 6.7. Here is a proposed scheme for the construction of a compact set
E of positive Lebesgue measure whose depth at (almost) every point in it tends
to in�nity, with respect to the sequence (xk ∶ k ≥ 1). We start with any set E0,
including for example the whole interval [0, 1]. We will inductively choose sets

Sn with
∞∑
n=1

m(Sn) <
1
2
m(E0). Let En = En−1∖Sn for n ≥ 1. We take E to be the

limit ofEn i.e. E = E0∖ (
∞⋃
n=1

Sn). Without loss of generality in the construction,

we may assume that the sets Snn are also open. So the set E will be a compact
set.
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The choice of Sn is designed to increase the overall depth DK(En, z) for z ∈
En. Indeed, suppose z ∈ En = En−1 ∩ ([0, 1]∖Sn). Let Scn = [0, 1]∖Sn. Now

K⋂

k=1
�(En − z) − xk =

⎛
⎜
⎝

K⋂

k=1
�(En−1 − z) − xk

⎞
⎟
⎠

⋂ ⎛
⎜
⎝

K⋂

k=1
�(Scn − z) − xk

⎞
⎟
⎠

⊂
K⋂

k=1
�(Scn − z) − xk

Hence, for any z, DK(Scn, z) ≤ DK(En, z). This tells us that if we have the depth
DK(Scn, z) large for all z ∈ Scn, thenwewill have increased the depthDK(En−1, z)
overall by passing to DK(En, z).

The proof of Proposition 6.1 suggests that to increase the depthDK(Scn, z), we
need to take Scn such that the Lebesgue derivativesm(Scn ∩[z, z+�)∕� converge
to 1 slowly for a.e. z ∈ Scn. But in some sense this thinking does not matter. We
just need to get the depth DK(Scn, z) large for some, presumably large, K.

Also, we know that if there is indeed a universal sequence (xk ∶ k ≥ 1), then
for a.e. z ∈ E, there is some s such that sxk + z ∈ E for all k. But we are gener-
ally expecting that we will need to use very small values of s. Correspondingly,
depth is used to show that s = 1∕� and � must be generally large. But if not,
would we have a universal (xk ∶ k ≥ 1) such that for some s0, for a.e. z ∈ E,
we would have sxk + z ∈ E for all k, but with s ≥ s0. Of course, s cannot be too
large, because our sets E ⊂ [0, 1].
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