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Properly in�nite corona algebras

P. W. Ng and Tracy Robin

Abstract. We investigate conditions under which the corona algebra of a
nonunital, simple C*-algebra is properly in�nite. Among other things, we
prove that if ℬ is a nonunital, separable, simple, Z-stable C*-algebra with
Property I and having an approximate unit consisting of projections, then
C(ℬ) is properly in�nite if and only if T(ℬ) is compact. We also provide other
characterizations.
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1. Introduction
Letℬ be a separable, stable C*-algebra. It is an elementary fact from operator

theory that
1ℳ(ℬ) ∼ 1ℳ(ℬ) ⊕ 1ℳ(ℬ),

whereℳ(ℬ) is themultiplier algebra ofℬ and∼ here isMurray–vonNeumann
equivalence of projections inM2⊗ℳ(ℬ). This is the basic observation under-
lying the Brown–Douglas–Fillmore (BDF) sumwhich led to the extension semi-
group Ext(A,ℬ), which is a group when A is separable and nuclear. When
ℬ = K and A = C(X) for X a compact subset of the plane, BDF used the
functorial properties of this object in their outstanding classi�cation of all es-
sentially normal operators via Fredholm indices ([4]).

Perhaps, as witnessed above, one of the reasons for the success of the BDF
theory is that theirmultiplier algebraℳ(K) = B(l2) and corona algebraB(l2)∕K
have particularly nice structure. For example, the BDF-Voiculescu absorption
theorem, which roughly says that all essential extensions are absorbing, would
not be true if the Calkin algebra B(l2)∕K were not simple ([31]).

Thus, structural properties of multiplier and corona algebras are indispensi-
ble for the advancement of extension theory and the associated operator theory

Received March 12, 2020.
2010Mathematics Subject Classi�cation. 46L05, 46L35, 46L85.
Key words and phrases. C*-algebras, corona algebras, properly in�nite, extensions, Brown–

Douglas–Fillmore.

ISSN 1076-9803/2022

69

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2022/Vol28.htm


70 P. W. NG AND TRACY ROBIN

beyond the small number of successful classical cases. This idea was well un-
derstood by previous workers, and has had its most successful realizations in
the de�nitive work of Lin (see, e.g., [13], [14], [15], [16], [17], [20]). One prob-
lem of the current moment is the case where the canonical ideal need not be
stable. One of the insights of previous workers is that, while this nonstable
case is very interesting in itself, it is also indispensible for progress in the classi-
cal case of stable canonical ideals (see, e.g., [14], [17], [20]). For instance, in the
classical stable case, under a nuclearity hypothesis, Kasparov’sKK1 only classi-
�es the absorbing extensions – a very thin class, and thus misses many relevant
essential extensions. To delve further, even in the classical stable case, requires
�ner examination of the structure of the corona algebras andmore delicate non-
stable absorption theory. Following in the footsteps of previous workers, this
has been the program that we have been pursuing (e.g., [11], [25], [27]).

A unital C*-algebra C is said to be properly in�nite if 1C ⪰ 1C ⊕ 1C, where
here⪯ isMurray–vonNeumann subequivalence of projections inM2⊗C. It was
observed in [6] that when a corona algebra C(ℬ) was properly in�nite, there is
a generalized BDF sum on the class of extensions whichmay serve the needs of
extension theory even for nonstable ℬ. This anticipated later works (e.g., [14],
[17])where de�nitive nonstable generalizations of the BDF index theoremwere
proven. In this paper, we give some characterizations of proper in�niteness for
corona algebras, generalizing the results of [6] who worked in the AF case.

We note that aside from connections to extension theory, proper in�nite-
ness of a C*-algebra (especially a corona algebra) is in itself an interesting and
fundamental structural property, which is connected to many other interesting
properties. For example, it is an open question whether every properly in�-
nite unital C*-algebra is K1-injective ([3]). Among other things, K1-injectivity
of the Paschke dual algebras (which are properly in�nite) imply interesting
uniqueness theorems and generalizations of the BDF essential codimension re-
sult (e.g., see [23]).

We end this introduction by introducing some notations that are to be used
in this paper. This paper uses only elementary techniques and should be ac-
cessible to a reader with basic knowledge of C*-algebra theory – modulo know-
ing about multiplier algebras, strict topology, Choquet simplexes, lower semi-
continuous a�ne functions on compact convex sets, and basic notions and
regularity properties (like AF-algebras, irrational rotations algebras, real rank
zero, strict comparison, stable rank one) from the current theory of simple C*-
algebras. We recall some notation here, and recall others in later parts of the
paper.

For a nonunital C*-algebra ℬ, ℳ(ℬ) and C(ℬ) =df ℳ(ℬ)∕ℬ denote the
multiplier and corona algebras (resp.) of ℬ. Recall that the multiplier algebra
ℳ(ℬ), of ℬ, is roughly speaking, the largest unital C*-algebra containing ℬ
as an essential ideal. Good references for multiplier algebras, corona algebras,
strict topology and associated subjects are [18] and [32].
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For a compact convex set K, let Aff(K) denote the vector space of all a�ne
continuous functions from K toℝ. Note that, with the uniform norm, Aff(K)
is a Banach space. LAff(K) denotes the vector space of all lower semicon-
tinuous, a�ne functions from K to (−∞,∞]. Aff(K)+ (resp. LAff(K)+) de-
notes all f ∈ Aff(K) (resp. LAff(K)) such that f ≥ 0. Aff(K)++ (resp.
LAff(K)++) denotes all f ∈ Aff(K)+ (resp. LAff(K)+) such that f(x) > 0
for all x ∈ K. References for the above material, especially for how it is used in
this paper, are [1], [9], [10], [11] and the references therein.

For a C*-algebraD (unital or nonunital), we let T(D) denote the tracial state
space ofD, given the weak* topology. We will be interested in T(ℬ), T(ℳ(ℬ))
and T(C(ℬ)) (some or all of which could be empty) for some nonunitalℬ. Note
that when D is unital, then T(D) is a compact convex set – in fact, if D is ad-
ditionally separable, then T(D) is a metrizable Choquet simplex. Suppose that
D is additionally separable. For an element e ∈ Ped(D)+ − {0}, we let Te(D)
denote all densely de�ned, norm-lower semicontinuous traces D+ → [0,∞]
which are normalized at e. Recall that Ped(D) denotes the Pedersen ideal ofD;
and when D is separable, then Te(D), with the topology of pointwise conver-
gence on Ped(D), is a metrizable Choquet simplex. Recall also that any densely
de�ned, norm lower semicontinuous trace � on D has a unique extension to a
strictly lower semicontinuous trace onℳ(D)+. Unless otherwise speci�ed, we
will also denote this extension trace by “�".

For any elementA ∈ℳ(D)+−{0},A induces an element Â ∈ LAff(Te(D))++
via

Â(�) =df �(A)
for all � ∈ Te(D). In a similar manner,A induces elements inAff(T(ℳ(D)))+
and Aff(T(D))+, which we will also denote by Â.

References for the above material are again [9], [10], [11] and the references
therein. We will assume that all our simple, separable C*-algebras have the
property that every quasitrace is a trace.

We caution the reader that in this paper, we use one terminology di�erent from
what is in the papers [9], [10], [11], and other works: In [9], [10], and [11], T(D)
means Te(D) for some e ∈ Ped(D)+ − {0}, but that isNOT the case in this paper.

We note that in this paper, when we write “Te(D)", we just mean the afore-
mentioned object with some element e ∈ Ped(D)+ − {0}. For our results, it
will not matter which positive nonzero element e of the Pedersen ideal is used.
Good basic references for the theory of simple C*-algebras are [5] and [18].

Finally, many of the ideas of this paper are generalizations of those from the
paper [6], though we need the comparison theory for multiplier algebras as
from [11], [22] and the references therein.

The above give the basic references required for understanding the contents
of this paper. To understand, for example, the connections with KK theory,
extension theory and operator theory, which requires a bit more work, we rec-
ommend beginning with the basics in [4], [12], [14], [17], [18], [19], [31], and
moving on to the more advanced theory from later references.
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2. Properly in�nite corona algebras
The �rst result is straightforward. For the convenience of the reader, we pro-

vide a proof.

Lemma 2.1. Let K be a compact convex set in a locally convex topological vector
space V such that �� ∈ K ⇒ � = 1 for all � ∈ K and all � ≥ 0. Let f ∈ Aff(K)
and g be the unique nonnegatively homogeneous extension of f to ℝ+K, where
ℝ+ =df [0,∞). Then g is continuous onℝ+K.
Proof. Since V is locally convex, let {‖.‖�}�∈I be a family of seminorms on V
which induces the topology on V.

Suppose that �j�j → �� inℝ+K. To show that lim g(�j�j) = g(��), it su�ces
to prove that every subnet has a subnet for which the equality holds. Hence,
passing to a subnet if necessary, we may assume that �j → �′ ∈ ℝ+ ∪ {∞} and
�j → �′ ∈ K. (Recall that we are assuming that K is compact.)
Claim: �′ ≠∞.

Suppose, to the contrary, that �′ = ∞. Choose � ∈ I so that ‖�′‖� > 0. Then
‖��‖� = lim ‖�j�j‖� = lim |�j|‖�j‖� = (lim |�j|)(lim ‖�j‖�) = ∞‖�′‖� = ∞

which is a contradiction. This completes the proof of the Claim.
From the Claim, 0 ≤ �′ <∞ and �′�′ = ��. Hence,

g(�j�j) = �jg(�j) = �jf(�j)→ �′f(�′) = �′g(�′) = g(�′�′) = g(��).
�

Remark 2.2. The function g in Lemma 2.1 is also additive. With notation from
Lemma 2.1, here is a short argument: Let �, �′ ∈ K, � > 0 and � ≥ 0. Then

g(�� + ��′) = g ((� + �)�� + ��′
� + � )

= (� + �)g (�� + ��′
� + � )

= (� + �)f (�� + ��′
� + � )

= (� + �) (�f(�)� + � + �f(�′)
� + � )

= �f(�) + �f(�′)
= g(��) + g(��′).

Corollary 2.3. LetK be ametrizable, compact convex set in a locally convex topo-
logical vector space such that �� ∈ K ⇒ � = 1 for all � ∈ K and all � ≥ 0. If
ℎ ∈ LAff(K)++, then ℎ has an extension to a nonnegatively homogeneous, ad-
ditive, lower semicontinuous function ℎ̃ on ℝ+K. (Here, we use the convention
0 ∗ ∞ = 0.)
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Proof. There exists a sequence {ℎn} in Aff(K)++ with 0 ≤ ℎn ≤ ℎn+1 for all n
such that ℎn → ℎ pointwise on K.

By Lemma 2.1, for all n, let ℎ̃n be the unique nonnegatively homogeneous,
continuous extension of ℎn to ℝ+K. Then 0 ≤ ℎ̃n ≤ ℎ̃n+1 for all n and

ℎ̃(x) =df lim
n→∞

ℎ̃n(x), x ∈ ℝ+K,

is the desired extension. �

We require some notions that are taken from [11].

De�nition 2.4. Let K be a compact convex set and let f, g ∈ LAff(K)++. f is
said to be complemented under g if there exists an ℎ ∈ LAff(K)++ such that
f + ℎ = g.
De�nition 2.5. Letℬ be a nonunital, separable, simple C*-algebra.

(1) ℬ is said to be projection surjective if for every f ∈ LAff(Te(ℬ))++
which is complementedunder 1̂ℳ(ℬ), there exists a projectionP ∈ℳ(ℬ)−
ℬ such that P̂ = f.

(2) ℬ is said to be projection injective if for all projections P,Q ∈ℳ(ℬ)−ℬ,
P̂ = Q̂ on Te(ℬ)

implies that P is Murray–von Neumann equivalent to Q inℳ(ℬ).
(3) ℬ is said to be stably projection surjective (resp. injective) if ℬ ⊗ K is

projection surjective (resp. injective).

From [11] and [22], we have that any nonunital, simple, separable, �nite,
Z-stable C*-algebra, with stable rank one, is both projection injective and pro-
jection surjective.

Remark 2.6. For the bene�t of the reader, we elaborate on a degenerate case for
De�nition 2.5, which should be immediate. Nonetheless, for expository purposes,
it is better to make it more explicit.

In the above de�nition, suppose thatℬ is stably projection injective and we are
in the degenerate case where T(ℬ) = ∅. Then for every full projection P ∈ℳ(ℬ)
and for every � ∈ Te(ℬ) (which can be empty or nonempty), �(P) = ∞. (For
otherwise, since P is full in ℳ(ℬ), we would have a nonzero bounded trace on
PℬP, which can be extended to anonzero bounded trace onℬ, and thus,T(ℬ) ≠ ∅
which gives a contradiction.) However, identifying ℳ(ℬ) with ℳ(ℬ) ⊗ e1,1 ⊆
ℳ(ℬ⊗K) and identifying e with e⊗e1,1, we have that Te(ℬ) = Te⊗e1,1(ℬ⊗K).
So �(P ⊗ e1,1) = ∞ = �(1ℳ(ℬ⊗K)), for all full projections P ∈ ℳ(ℬ) and for
all � ∈ Te⊗e1,1(ℬ ⊗ K). Thus, stable projection injectivity trivially implies that
for all full projections P ∈ℳ(ℬ), P⊗ e1,1 is Murray-von Neumann equivalent to
1ℳ(ℬ⊗K) inℳ(ℬ⊗K). Thus, for any full projection P ∈ℳ(ℬ),

PℬP ≅ (P ⊗ e1,1)(ℬ⊗K)(P ⊗ e1,1) ≅ ℬ⊗K,
which is stable. Soℳ(ℬ) is properly in�nite and T(ℳ(ℬ)) = ∅.
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LetD be a nonunital, separable, simple C*-algebra. For any densely de�ned,
(norm) lower semicontinuous trace � on D, we let ‖�‖ = �(1ℳ(D)). Of course,
as stated in the introduction, we are identifying � with its strictly lower semi-
continuous extension toℳ(D)+.

The next result is a variation on [6] Lemma 2.9.

Lemma 2.7. Letℬ be a nonunital, separable, simple C*-algebra with projection
injectivity and projection surjectivity such that T(ℬ) is compact. Suppose that
f ∈ Aff(T(ℬ))++ is such that f(�) < 1 for all � ∈ T(ℬ). Then there exists a
projection P ∈ℳ(ℬ) −ℬ such that f(�) = �(P) for all � ∈ T(ℬ).

Proof. Since T(ℬ) is compact, let � > 0 be such that � < f < 1 − �. Fix
e ∈ Ped(ℬ)+ − {0} and de�ne f ∶ Te(ℬ)→ (0,∞] by

f(�) =df

⎧
⎨
⎩

∞ if ‖�‖ = ∞
f ( �

‖�‖
) ‖�‖ if ‖�‖ <∞.

Firstly, we will show that f is an a�ne lower semicontinuous function on
Te(ℬ). To simplify notation, we also denote by f the unique nonnegatively ho-
mogeneous extension of f to the convex coneℝ+T(ℬ), which takes the value 0
at 0. Here, recall thatℝ+ = [0,∞). By Lemma 2.1 and Remark 2.2, f is contin-
uous and additive on ℝ+T(ℬ).

Claim 1: f is a�ne and lower semicontinuous on Te(ℬ).
Proof of Claim 1: Firstly, note that for all � ∈ Te(ℬ), if f(�) <∞, then f(�) =

f(�). Hence, since f is nonnegatively homogeneous, additive and continuous
on ℝ+T(ℬ), f is a�ne and lower semicontinuous whereever it is �nite.

Secondly, for all � ∈ Te(ℬ), f(�) = ∞ if and only if ‖�‖ = ∞. Hence, f is
a�ne on Te(ℬ). Here, we use the convention 0 ∗ ∞ = 0.

Finally, since f ≥ � on T(ℬ), we must have that f(�) ≥ �‖�‖ for all � ∈
ℝ+T(ℬ). Therefore, f(�) ≥ �‖�‖ for all � ∈ Te(ℬ). Since the map Te(ℬ) →
(0,∞] ∶ � ↦ ‖�‖ is lower semicontinuous,f is lower semicontinuouswhereever
it takes the value +∞. This ends the proof of Claim 1.

Let g ∈ Aff(T(ℬ)) be given by g =df 1 − f. Then � < g < 1 − �. Let
g ∶ Te(ℬ)→ (0,∞] be given by

g(�) =df

⎧
⎨
⎩

+∞ if ‖�‖ = ∞
g ( �

‖�‖
) ‖�‖ if ‖�‖ <∞.

By the same argument as that for f, we can show that g is an a�ne lower
semicontinuous function on Te(ℬ). (See Claim 1.)
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Claim 2: Viewed as a�ne functions on Te(ℬ), we have that
f + g = 1̂ℳ(ℬ).

Proof of Claim 2: Since g = 1 − f, we have that f(�′) + g(�′) = 1 for all
�′ ∈ T(ℬ). Thus

f ( �
‖�‖) + g ( �

‖�‖) = 1

for all � ∈ Te(ℬ) for which ‖�‖ <∞. Therefore,

f ( �
‖�‖) ‖�‖ + g ( �

‖�‖) ‖�‖ = ‖�‖ = 1̂ℳ(ℬ)(�)

for all � ∈ Te(ℬ) for which ‖�‖ <∞. So

f(�) + g(�) = 1̂ℳ(ℬ)(�)
for all � ∈ Te(ℬ) for which ‖�‖ <∞.

Also,
f(�) + g(�) = ∞ = 1̂ℳ(ℬ)(�)

for all � ∈ Te(ℬ) for which ‖�‖ = ∞. Therefore,

f + g = 1̂ℳ(ℬ).
This ends the proof of Claim 2.

By Claim 2, f is complemented under 1̂ℳ(ℬ). Therefore, since ℬ has projec-
tion surjectivity, there exists a projection P ∈ ℳ(ℬ) − ℬ such that f = P̂,
or �(P) = f(�) for all � ∈ Te(ℬ). As a consequence, �(P) = f(�) for all
� ∈ T(ℬ). �

We note that the statement of Lemma 2.9 in [6] is itself incorrect, and we
will provide a counterexample in Proposition 3.11. We note, though, that most
of the arguments and the main result of their paper, [6, Theorem 3.1], are still
correct and their main argument can be patched up by following the argument
of the present paper (which uses many of the ideas of [6]).

Remark 2.8. The projection P, in Lemma 2.7, satis�es that �(P) = f(�) for all
� ∈ T(ℬ) and �(P) = ∞ for all � ∈ Te(ℬ) for which ‖�‖ = ∞.

Recall that ifℬ is a nonunital, separableC*-algebra, and if � is any densely de-
�ned, (norm) lower semicontinuous trace on ℬ, then, unless otherwise stated,
we also denote by “�" the unique strictly lower semicontinuous extension on
ℳ(ℬ)+ (which is a trace). In particular, for all B ∈ ℳ(ℬ)+, for every approxi-
mate unit {en}∞n=1 for ℬ, �(B) = �(enBen).

Recall also that if � is bounded on ℬ then its strictly lower semicontinuous
extension is also bounded onℳ(ℬ), and ‖�‖ℬ∗ = ‖�‖ℳ(ℬ)∗ .

Traces on ℳ(ℬ), as in the above, are essentially the “computable" traces,
since they arise, in a natural, concrete way, via strict topology approximations,
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from traces onℬ. Part ofwhatmakes the subjectmatter of the present paper dif-
�cult is that we will also be dealing with “noncomputable" traces in T(ℳ(ℬ)).
We presently have no concrete way of getting a handle on these latter “noncom-
putable traces", and as a result will have to postulate principles like Property I.
(See De�nition 2.12.)

Before moving on, let us prove some more results about the “computable"
traces.

Lemma 2.9. Let ℬ be a nonunital, separable, simple C*-algebra, and suppose
that � is a bounded trace onℬ. Then the strictly lower semicontinuous extension of
� toℳ(ℬ) is the smallest extension of � to a bounded trace onℳ(ℬ). Equivalently,
if � is a bounded trace on ℳ(ℬ) such that �|ℬ = �, then for all B ∈ ℳ(ℬ)+,
�(B) ≤ �(B).
Proof. Let {en}∞n=1 be an approximate unit for ℬ, let B ∈ ℳ(ℬ)+ be arbitrary,
and let � > 0 be given. Choose N ≥ 1 so that

�(B) < �(B1∕2eNB1∕2) + �.
Then

�(B) < �(B1∕2eNB1∕2) + �
= �(B1∕2eNB1∕2) + �
≤ �(B) + �.

Since � > 0 was arbitrary, we have �(B) ≤ �(B). �

Next, we have a natural embedding

T(ℬ)↪ T(ℳ(ℬ)) ∶ � ↦ �.
Of course, we are bringing � ∈ T(ℬ) to its strictly lower semicontinuous exten-
sion trace � ∈ T(ℳ(ℬ)).
Lemma 2.10. The a�ne map

T(ℬ)↪ T(ℳ(ℬ)) ∶ � ↦ �
is weak*-weak* continuous.

Proof. This is Lemma 2.8 in [6]. �

With the embeddingT(ℬ)↪ T(ℳ(ℬ)), wemay also viewT(ℬ) as a subspace
of T(ℳ(ℬ)). In what follows, we sometimes do this implicitly.

For nonexperts, we state the following well-known and standard result:

Lemma 2.11. LetK be a compact convex set, and suppose that E ⊆ Aff(K) is a
linear subspace that contains 1 and separates the points ofK. ThenE is uniformly
dense in Aff(K).
Proof. This is a standard result. But we note, for the convenience of the reader,
that it follows immediately from [33]Corollary I.1.11 (on page 7) and theHahn–
Banach theorem for Banach spaces. (The result [33] Corollary I.1.11 says that
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every bounded linear functional on Aff(K) has the form �ev� − �ev�, where
�, � ∈ [0,∞), �, � ∈ K, and ev�, ev� ∈ Aff(K)∗ are the evaluations at �, �
respectively. This is not hard to prove. But since [33] is an unpublished manu-
script, we note that [33] Corollary I.1.11 can be replacedwith [1] Theorem I.2.6,
the Hahn–Banach theorem, and the Riesz representation theorem for C(K)∗
which can be found in [30] 13.5.25.) �

We next de�ne a notion which will be used prominently in this paper:

De�nition 2.12. Letℬ be a nonunital, separable, simple C*-algebra. We say that
ℬ has Property I if the natural map

K0(ℳ(ℬ))→ Aff(T(ℳ(ℬ)))
has image which separates the points of T(ℳ(ℬ)).

Of course, in the above, if T(ℳ(ℬ)) = ∅ then, trivially,ℬ has Property I. See
Remark 2.6 for remarks on this degenerate case.

Property I is a crucial assumption in the main result of this paper. As stated
previously, one key reason why we will need to assume Property I in our work
is the presence of mysterious traces inside T(ℳ(ℬ)). These mysterious traces
are not as accessible as the “computable" traces which are strict extensions of
traces onℬ. We will show in subsection 3.3 that many simple C*-algebras have
Property I.

The next result and its proof is essentially a variation on [6, Theorem 2.10]
(which was for AF algebras), except that we work with more general algebras,
and we bring in comparison theory for multiplier algebras to make the argu-
ment work in the more general context. We provide the proof for the conve-
nience of the reader.

Theorem 2.13. Let ℬ be a nonunital, separable, simple C*-algebra with stable
projection injectivity and surjectivity such that T(ℬ) is compact. Suppose, in ad-
dition, thatℬ has Property I. Then T(ℬ) = T(ℳ(ℬ)).
Proof. By Remark 2.6, T(ℬ) = ∅ if and only if T(ℳ(ℬ)) = ∅. So we may
assume that T(ℬ) ≠ ∅ ≠ T(ℳ(ℬ)). This implies that Te(ℬ) ≠ ∅.

SinceK0(ℳ(ℬ)) separates the points of T(ℳ(ℬ)), it follows, by Lemma 2.11,
that ℚ times the image of K0(ℳ(ℬ)) is uniformly dense in AffT(ℳ(ℬ)).

Let x ∈ K0(ℳ(ℬ)) be arbitrary. Suppose that x = [P] − [Q], where P,Q are
projections inℳ(ℬ)⊗K−ℬ⊗K. By Lemma 2.7, we know that if x is strictly
greater than 0 on T(ℬ), then there exists a projection R ∈ℳ(ℬ)⊗K −ℬ⊗K
such that �(x) = �(R) for all � ∈ T(ℬ). Hence,

P̂ + 1̂ℳ(ℬ) = Q̂ + R̂ + 1̂ℳ(ℬ)

on Te(ℬ), for some e ∈ Ped(ℬ)+ − {0}.
Since ℬ⊗K has projection injectivity,

P ⊕ 1ℳ(ℬ) ∼ Q⊕ R ⊕ 1ℳ(ℬ),
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where ∼ is Murray–von Neumann equivalence of projections inℳ(ℬ)⊗K. It
follows that x = [R], i.e., x is nonnegative in Aff(T(ℳ(ℬ))).

If an element x in ℚ times the image of K0(ℳ(ℬ)) in Aff(T(ℳ(ℬ))) is
strictly positive on T(ℬ), then x is nonnegative in Aff(T(ℳ(ℬ))). Since ℚ
times the image of K0(ℳ(ℬ)) is uniformly dense in Aff(T(ℳ(ℬ))), we have
that if an arbitrary element of Aff(T(ℳ(ℬ))) is nonnegative on T(ℬ) then it
is nonnegative on T(ℳ(ℬ)). Here is the argument: Let f ∈ Aff(T(ℳ(ℬ))). If
f ≥ 0 on T(ℬ) then for every � > 0, f + � > 0 on T(ℬ) and hence, f + � ≥ 0 on
T(ℳ(ℬ)). Hence, f ≥ 0 on T(ℳ(ℬ)).)

By the Hahn–Banach separation theorem (applied to Aff(T(ℳ(ℬ)))∗ with
the weak* topology), it follows that T(ℬ) is weak* dense in T(ℳ(ℬ)). Since
T(ℬ) is compact, we have that T(ℬ) = T(ℳ(ℬ)). �

We recall somemore terminology from the theory of simple C*-algebras. Let
D be a separable C*-algebra. For all n ≥ 1, we have a *-embedding

Mn ⊗D↪ Mn+1 ⊗D
given by b ↦ diag(b, 0). We letM∞(D) denote the *-algebra

M∞(D) =df

∞⋃

n=1
Mn ⊗D.

We have a subequivalence relation on positive elements, which generalizes
Murray-von Neumann subequivalence of projections, that is given as follows:
For all a, b ∈ M∞(D)+, a ⪯ b means that there exists an N ≥ 1 with a, b ∈
MN⊗D and a sequence {xk} inMN⊗D such that xkbx∗k → a. We de�ne a ∼ b
to mean a ⪯ b and b ⪯ a.

We note that, when a and b are projections, a ∼ b, as above de�ned, is not
the same as Murray–von Neumann equivalence of projections. In fact, in any
simple purely in�nite C*-algebra (e.g., O∞), any two nonzero positive elements
a, b will satisfy a ∼ b, as above de�ned – this includes the case where a, b are
nonzero projections that are not Murray–von Neumann equivalent. In the rest
of the paper, we will let ∼ be as above de�ned (even for projections), and when we
have Murray–von Neumann equivalent projections, we will explicitly say so.

For all a ∈ M∞(D)+, we let [a] be the equivalence class of a under ∼ in
M∞(D) and let

W(D) =df {[a] ∶ a ∈ M∞(D)+}.
W(D) is an ordered semigroup under the order induced by⪯ and with addition
given by

[a] + [b] =df [diag(a, b)].
Note that W(D) is a generalization of the Murray–von Neumann semigroup
(which consists of equivalence classes of projections).

Suppose that D is, additionally, simple. Then for all [a] ∈ W(D) − {0}, [a]
induces an element

[̂a] ∈ LAff(Te(D))++
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given by
[̂a](�) =df d�(a)

where
d�(a) =df lim

n→∞
�(a1∕n), � ∈ Te(D).

By the same procedure, [a] also induces elements in LAff(T(D))+ as well as
in LAff(T(ℳ(D)))+ which we also denote by [̂a].

Let
M∞(D)̂+ =df {â ∶ a ∈ (Mn ⊗D)+ and n ≥ 1}.

Suppose, in addition, thatD is unital. We let S(W(D)) denote the collection of
all order preserving, semigroup maps � ∶W(D)→ [0,∞) such that �([1]) = 1.

The next result, Theorem 2.15, is a main result of this paper. Before work-
ing on this theorem, we elaborate, for the bene�t of the reader, a degenerate
case. As witnessed by Remark 2.14, this case leads to trivially true statements.
However, for expository purposes, it is better to make it explicit.

Remark 2.14. Letℬ be a separable, simple, nonunital, Z-stable C*-algebra with
an approximate unit consisting of projections. Sinceℬ isZ-stable, it is stably pro-
jection injective ([22]). By Remark 2.6, T(ℬ) = ∅ if and only if T(ℳ(ℬ)) = ∅.
Suppose that we have T(ℬ) = ∅. It follows, from the discussion of Remark 2.6,
thatℬ is stable and hence,ℳ(ℬ) contains a unital copy of O2.

From the above, it follows trivially that C(ℬ) is properly in�nite, T(ℬ) = ∅
is weak*-compact (by de�nition), the image of T(ℬ) = ∅ in T(ℳ(ℬ)) = ∅ is
weak* compact (by de�nition), T(ℳ(ℬ)) = ∅ = T(ℬ), T(C(B)) = ∅, for every
r ∈ Proj(ℬ)+−{0},M∞(rℬr)̂+ is uniformly dense inAff(T(ℳ(ℬ)))++∪{0} = ∅,
DW(C(ℬ)) = {[a] ∈ W(C(ℬ)) ∶ a ∈ C(ℬ)} is a semigroup, and S(W(C(ℬ))) =
∅. In otherwords, all the statements in Theorem 2.15 are trivially satis�ed.

Theorem2.15. Letℬ be a separable, simple, nonunital,Z-stable C*-algebrawith
an approximate unit consisting of projections. Suppose, further, thatℬ has Prop-
erty I. Then the following statements are equivalent:

(1) C(ℬ) is properly in�nite.
(2) T(ℬ) is weak*-compact.
(3) The image of T(ℬ) in T(ℳ(ℬ)) is weak*-compact.
(4) T(ℳ(ℬ)) = T(ℬ)
(5) T(C(ℬ)) = ∅.
(6) For every r ∈ Proj(ℬ)+ − {0},M∞(rℬr)̂+ is uniformly dense in

Aff(T(ℳ(ℬ)))++ ∪ {0}.

(7) DW(C(ℬ)) =df {[a] ∈W(C(ℬ)) ∶ a ∈ C(ℬ)+} is a semigroup.
(8) S(W(C(ℬ))) = ∅.

Proof. By Remark 2.14, we may assume T(ℬ) ≠ ∅ ≠ T(ℳ(ℬ)). So Te(ℬ) ≠ ∅.
(5)⇒ (4): Let � ∈ T(ℳ(ℬ)) be arbitrary. Let �′ be the unique strictly lower

semicontinuous extension of �|ℬ to a bounded trace onℳ(ℬ). By Lemma 2.9,
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� − �′ is a (positive) bounded trace on T(ℳ(ℬ)) which is zero on ℬ. Hence,
�− �′ induces a (positive) bounded trace on C(ℬ). Since T(C(ℬ)) = ∅, we have
� − �′ = 0, i.e., � = �′. So � ∈ T(ℬ).

(4)⇒ (3): This implication is immediate since T(ℳ(ℬ)) is weak* compact.
(3)⇒ (2): This implication follows from the fact that the restriction map

T(ℳ(ℬ))→ (bounded traces on ℬ) ∶ � ↦ �|ℬ
is weak*-weak* continuous. Note that the above map takes the image of T(ℬ)
in T(ℳ(ℬ)) back to T(ℬ).

(4)⇒ (6): Let f ∈ Aff(T(ℳ(ℬ)))++ = Aff(T(ℬ))++ be arbitrary. Since ℬ
has projection surjectivity, by Lemma 2.7, there exists a P ∈ Proj(ℳ(ℬ)) − ℬ
such that �(P) = f(�) for all � ∈ T(ℬ).

Let b ∈ (PℬP)+ with ‖b‖ = 1 be a strictly positive element. Then d�(b) =
f(�) for all � ∈ T(ℬ). Therefore,

b̂1∕n ↗ f
pointwise on T(ℬ). Since f is continuous and T(ℬ) is compact,

b̂1∕n ↗ f
uniformly on T(ℬ).

Let � > 0 be given and choose N ≥ 1 so that
b̂1∕N ≈ �

2
f

on T(ℬ). By a similar argument,
ˆ(b − )1∕N+ ↗ b̂1∕N

uniformly on T(ℬ) as  → 0+. Choose � > 0 so that
ˆ(b − �)1∕N+ ≈� f

on T(ℬ). Since f and � were arbitrary and since ℬ is simple, theM∞(rℬr)̂+ is
uniformly dense in Aff(T(ℬ))++ ∪ {0}. Since T(ℬ) = T(ℳ(ℬ)), we are done.

(6) ⇒ (5): Suppose, to the contrary, that T(C(ℬ)) ≠ ∅. So let � ∈ T(ℳ(ℬ))
be such that �|ℬ = 0. SinceM∞(rℬr)̂+ is uniformly dense in

Aff(T(ℳ(ℬ)))++ ∪ {0}.
Let n ≥ 1 and b ∈ Mn(ℬ)+ such that

|�(b) − �(1ℳ(ℬ))| < 1∕3
for all � ∈ T(ℳ(ℬ)), that is, |�(b) − 1| < 1∕3 for all � ∈ T(ℳ(ℬ)). Hence,
�(b) > 2∕3 for all � ∈ T(ℳ(ℬ)). But this contradicts that �(b) = 0 ≤ 2∕3.
Thus we must have T(C(ℬ)) = ∅.

(2)⇒ (1): Let {en} be an approximate unit for ℬ, consisting of an increasing
sequence of projections. Note that

ên ↗ 1̂ℳ(ℬ)



PROPERLY INFINITE CORONA ALGEBRAS 81

pointwise on T(ℬ).
Since ên and 1̂ℳ(ℬ) are continuous on T(ℬ), and since T(ℬ) is compact, we

can �nd N ≥ 1 so that
0 < 2�(1ℳ(ℬ) − eN) < 1

for all � ∈ T(ℬ). By Lemma 2.7, there exists a projection P ∈ ℳ(ℬ) − ℬ such
that

�(P) = 2�(1ℳ(ℬ) − eN)
for all � ∈ T(ℬ). Hence,

1 = �(1 − P) + 2�(1ℳ(ℬ) − eN)
for all � ∈ T(ℬ) and

�(1ℳ(ℬ)) = �(1 − P) + 2�(1 − eN)
for all � ∈ Te(ℬ).

Since ℬ is Z-stable, ℬ⊗K has projection injectivity. So we have a Murray-
von Neumann equivalence of projections

1ℳ(ℬ) ∼ (1ℳ(ℬ) − P)⊕ (1ℳ(ℬ) − eN)⊕ (1ℳ(ℬ) − eN).
Hence,

1C(ℬ) ⪰ 1C(ℬ) ⊕ 1C(ℬ)
inM2 ⊗ C(ℬ) and C(ℬ) is properly in�nite, as required.

(1)⇒ (7): Since C(ℬ) is properly in�nite, let S, T ∈ C(ℬ) be isometries with
pairwise orthogonal ranges such that

SS∗ + TT∗ ≤ 1C(ℬ).
Let [a], [b] ∈ DW(C(B)) be arbitrary, where a, b ∈ C(B)+. Then

a ⊕ b ∼ SaS∗ + TbT∗

inM2 ⊗ C(B). Since SaS∗ + TbT∗ ∈ C(ℬ)+, we have that
[a] + [b] = [SaS∗ + TbT∗] ∈ DW(C(ℬ)).

Since [a], [b] ∈ DW(C(ℬ)) were arbitrary, we have that DW(C(ℬ)) is a semi-
group.

(7) ⇒ (1): Since DW(C(ℬ)) is a semigroup, let a ∈ C(ℬ)+ with ||a|| < 1 be
such that [1] + [1] = [a]. Then 1⊕ 1 ∼ a ≤ 1, so C(ℬ) is properly in�nite.

(1)⇒ (8): Since C(ℬ) is properly in�nite, we have [1]+[1] ≤ [1] inW(C(ℬ)).
If we apply any � ∈ S(W(C(ℬ))), we get that 1 + 1 ≤ 1, i.e., 1 ≤ 0, which is
false.

(8) ⇒ (5): This is immediate, since any � ∈ T(C(ℬ)) induces an element of
S(W(C(ℬ))) which is given by

W(C(ℬ))→ [0,∞) ∶ [C]↦ d�(C).
�
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Remark 2.16. In Theorem 2.15, the hypothesis that ℬ has an approximate unit
consisting of projections is only used in the implication (2)⇒ (1). The hypothesis
of Z-stability is only used in the implications (4)⇒ (6) and (2)⇒ (1). In fact, in
(2)⇒ (1), the hypothesis of Z-stability can be replaced by the weaker hypotheses
of stable projection injectivity and surjectivity forℬ.
Remark 2.17. In analogy with condition (v) of Theorem 3.1 in [6], it is tempting
to believe that the following condition is equivalent to the statements in Theorem
2.15:

(9) For some b ∈ ℬ+, �(b) ≥ 1 for all � ∈ T(ℬ).

However, we do not at present know how to prove the equivalence. Also, given the
gap in the argument of [6] (see the discussion after the proof of Lemma 2.7 and
Proposition 3.11), the statement may not be equivalent.

3. Examples
3.1. Examples of corona algebras which are not properly in�nite. We
here construct a large class of nonproperly in�nite corona algebras. In fact, we
will show that whenever ℬ is a simple, �nite, stable C*-algebra with standard
regularity properties and in�nite )extTe(ℬ), thenℬ always has a hereditary C*-
subalgebra with a corona algebra which is not properly in�nite.

The construction involves using many ideas from [11], and we �rst review
some notations introduced in that and previous papers.

Let ℬ be a nonunital, separable, simple C*-algebra. Thenℳ(ℬ) contains a
unique smallest ideal ℐmin properly containing ℬ (see, for example, [13]). Let
e ∈ Ped(ℬ)+−{0}. Whenℬ is, additionally, nonelementary and has strict com-
parison of positive elements by traces, then ℐmin is the ideal ofℳ(ℬ) generated
by

{A ∈ℳ(ℬ)+ ∶ Â is continuous on Te(ℬ)}.
See [10] Theorem 5.6.

Next, ℐfin is the ideal ofℳ(ℬ) generated by

{A ∈ℳ(ℬ)+ ∶ Â(�) <∞,∀� ∈ )extTe(ℬ)}.
Note that ℐmin ⊆ ℐfin.
Proposition 3.1. Letℬ be a nonelementary, separable, simple, stable C*-algebra
with strict comparison of positive elements by traces, and projection surjectivity
and injectivity such that Te(ℬ) has in�nitely many extreme points for some e ∈
Ped(ℬ)+ − {0}. Then there exists a nonunital hereditary C*-subalgebra D ⊆ ℬ
such that C(D) is not properly in�nite.
Proof. By Corollary 7.12 of [11], ℐmin ≠ ℐfin. LetA ∈ℳ(ℬ)+ be such thatA ∈
ℐfin − ℐmin. Since ℬ is projection surjective, let P ∈ℳ(ℬ) −ℬ be a projection
such that P̂ = Â. As A ∉ ℐmin, P̂ = Â is not continuous. By Proposition
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5.2(iii) of [10], P ∈ ℐfin − ℐmin. Therefore, by Proposition 7.2 of [11], �(P) is
not properly in�nite, where � ∶ ℳ(ℬ) → C(ℬ) is the natural quotient map.
Hence, if we de�neD = PℬP, thenD is a nonunital hereditary C*-subalgebra
of ℬ such that C(D) is not properly in�nite. �

Remark 3.2. Proposition 3.1 provides lots of examples. For example, if A is a
unital, separable, simple C*-algebra with in�nite )extT(A) such that either i. A
is an AF algebra, or ii. A is the crossed product from a Cantor minimal system,
then A ⊗K has a nonunital hereditary C*-subalgebra D for which C(D) is not
properly in�nite.

In fact, ifA is any simple, unital, separable, nuclear, Z-stable C*-algebra with
in�nite )extT(A), then A ⊗ K has a nonunital hereditary C*-subalgebra D for
which C(D) is not properly in�nite.
3.2. Properly in�nite corona algebraswhich arenot purely in�nite. Re-
call that a nonzero C*-algebra C is said to be purely in�nite if c ⊕ c ⪯ c for all
c ∈ C+, where the relation ⪯ is a subequivalence relation between positive ele-
ments in C⊗K which generalizes Murray–von Neumann subequivalence for
projections. Here is the precise de�nition (again): For all a, b ∈ (C ⊗ K)+,
a ⪯ b if there exists a sequence {xn} in C⊗K such that xnbx∗n → a.

Following a long history of much previous research (e.g., [13]; see also the
references in [11]), purely in�nite corona algebras were characterized in [11].
This was partly motivated by the longstanding recognition by previous work-
ers that, in the stable classical extension theory, the only cases for which we
have a complete classi�cation are the ones for which the corona algebras are
simple purely in�nite (e.g., see [14], [21], [8] and the references therein). Thus,
following previous authors, the study in [11] was meant to map out a class of
algebras for which we expect to develop a “nicest extension theory". Nonethe-
less, properly in�nite corona algebras, which are not necessary purely in�nite,
have suitable features which should allow for the development of a reasonable
theory, and this is one motivation for the present paper.

Among other things, the classical stable case itself gives many examples of
properly in�nite, but not purely in�nite, corona algebras. This follows imme-
diately from the examples in the previous section.

Proposition 3.3. Letℬ be a separable, simple, stable C*-algebra with strict com-
parison of positive elements by traces, and projection surjectivity and injectivity
such that Te(ℬ) has in�nitely many extreme points for some e ∈ Ped(ℬ)+ − {0}.
Then C(ℬ) is properly in�nite but not purely in�nite.
Proof. Since ℬ is stable, C(ℬ) is certainly properly in�nite. By the proof of
Proposition 3.1, C(ℬ) cannot be purely in�nite, since every nonzero hereditary
subalgebra of a purely in�nite C*-algebra is purely in�nite. (With notation as
in the proof of Proposition 3.1,D = PℬP. So C(D) ≅ �(P)C(ℬ)�(P).) �

While Proposition 3.3 is nice, of greater interest are examples where the
canonical ideal is not stable. Here is a such a result:
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Proposition 3.4. LetX be a compactmetric space and letK be the Bauer simplex
with extreme boundary )extK = X. Suppose that C ⊆ X is a closed subset such
thatX−C has in�nitely many points. And suppose thatℬ is a separable, simple,
stable C*-algebra with real rank zero, and projection surjectivity and injectivity
such that Te(ℬ) ≅ K. Then there exists a nonunital, nonstable hereditary C*-
subalgebraD ⊆ ℬ such that C(D) is properly in�nite but not purely in�nite.
Proof. Let f ∈ LAff(K)++ be given by

f(�) =df {1 � ∈ C
∞ � ∈ X − C.

Since ℬ is projection surjective, let P ∈ ℳ(ℬ) − ℬ be a projection such that
P̂ = f. LetD =df PℬP.

Note that
T(D) ≅ Conv(C),

where the closure is taken in K. By Theorem 2.15 and Remark 2.16, C(D) is
properly in�nite. Since T(D) ≠ ∅, D is not stable. Finally, by [11] Theorem
7.11, C(D) cannot be purely in�nite. �

3.3. Simple C*-algebras with property I. Recall that one of the present dif-
�culties is the presence of mysterious traces in T(ℳ(ℬ)) which are not as ac-
cessible. These mysterious traces are di�cult to get a handle on, since they are
not like the “computable traces" which are strictly lower semicontinuous ex-
tensions of traces on ℬ. (See Lemma 2.9 and the paragraphs before that.) As a
consequence, in our main result, we need to have Property I as an assumption.
Wewill presently prove thatmany simple C*-algebras have Property I, and thus,
this hypothesis is not too stringent.

Recall that a nonunital, separable, simple C*-algebra ℬ has Property I if the
image of K0(ℳ(ℬ)), in Aff(T(ℳ(ℬ))), separates the points of T(ℳ(ℬ)).
Proposition 3.5. If ℬ is a separable, simple, and stable C*-algebra, then ℬ has
Property I.

Proof. This follows immediately from the fact that since ℬ is stable,ℳ(ℬ) is
properly in�nite and so, T(ℳ(ℬ)) = ∅. �

Proposition 3.6. Ifℬ is a nonunital, separable, simple C*-algebrawith real rank
zero, thenℬ has Property I.

Proof. This follows immediately from Theorem 1.1 in [34], which implies that
ℳ(ℬ) is the closed linear span of its projections. �

Remark 3.7. We note that the class in Proposition 3.6 is a large class which in-
cludes all nonunital hereditary C*-subalgebras ofA⊗K, whereA can be a simple
nonelementary AF algebra, an irrational rotation algebra, a simple noncommu-
tative torus, a crossed product coming from a Cantor minimal system, and many
other C*-algebras.
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The next result and its proof is, in itself, of interest.

Lemma 3.8. Letℬ be a nonunital, separable, simple, �nite, Z-stable C*-algebra
with stable rank one such that T(C(ℬ)) = ∅. Then every element of ℳ(ℬ) is a
�nite linear combination of projections.

Proof. Let A ∈ ℳ(ℬ)+. We will show that A is a �nite linear combination of
projections. We may assume that ‖A‖ < 1.

Since ℬ has projection-surjectivity, let P ∈ ℳ(ℬ) − ℬ be a projection such
that �(P) = �(A) for all � ∈ Te(ℬ), where e ∈ Ped(ℬ)+ − {0}. Consider B =
A − P. It su�ces to prove that B is a �nite linear combination of projections.

Since T(C(ℬ)) = ∅, it follows, by [28], that there exist X1, X2, ..., Xn ∈ℳ(ℬ)
such that

�(B) =
n∑

j=1
�([Xj, X∗

j ]).

Let b ∈ ℬSA be such that

B =
n∑

j=1
[Xj, X∗

j ] + b.

Since �(B) = 0 for all � ∈ T(ℬ), it follows that �(b) = 0 for all � ∈ T(ℬ). Hence,
by [26], there existm ≥ 1 and yj, zj ∈ ℬ, 1 ≤ j ≤ m, such that

b =
m∑

j=1
[yj, zj].

Thus B is the sum of n +m commutators inℳ(ℬ).
Let f ∈ LAff(Te(ℬ))++ be given by f = 1̂ℳ(ℬ)∕2. Since ℬ has projection

surjectivity, let Q ∈ℳ(ℬ) −ℬ be a projection such that Q̂ = f on Te(ℬ). Since
ℬ has stable projection injectivity, 1ℳ(ℬ) ∼ Q⊕Q. Hence, there exist orthogonal
projections Q1, Q2 ∈ℳ(ℬ) such that 1ℳ(ℬ) = Q1 + Q2 and Q1 ∼ Q2. It follows
that

ℳ(ℬ) ≅ M2 ⊗Q1ℳ(ℬ)Q1.
By Theorem 5.6 of [24], every commutator inℳ(ℬ) is a �nite linear combi-

nation of projections. So B is a �nite linear combination of projections. �

Proposition 3.9. Let ℬ be a nonunital, separable, simple, �nite, Z-stable C*-
algebra with stable rank one such that T(C(ℬ)) = ∅. Thenℬ has Property I.

Proof. This follows immediately from Lemma 3.8. �

Remark 3.10. From Proposition 3.9, if A is any simple, separable, stable rank
one, Z-stable, �nite C*-algebra, then any hereditary C*-subalgebra of A ⊗ K,
with continuous scale or quasicontinous scale (see [11]), will have Property I. For
example, any nonunital hereditary C*-subalgebra of a unital, simple, separable,
Z-stable C*-algebra will have Property I. If ℬ is any nonunital, simple, separa-
ble,Z-stable C*-algebra with Te(ℬ) having �nitely many extreme points, then any
nonunital hereditary C*-subalgebra ofℬ⊗K has Property I.



86 P. W. NG AND TRACY ROBIN

3.4. Counterexample to a statement of Elliott–Handelman. Wenow�nd
a counterexample to [6, Lemma 2.9]. Before continuing, we note, again, that
most of the proofs and the main result of [6] are still correct, and the main
argument of [6] can be patched up by following the argument of the present
paper (which uses many ideas from [6]).

Proposition 3.11. There exist a nonunital, nonelementary, separable, simple AF
algebra ℬ, an f ∈ Aff(T(ℳ(ℬ))), and � > 0 such that � ≤ f(�) ≤ 1 − � for all
� ∈ T(ℬ), and there exists no projection P ∈ℳ(ℬ) for which f(�) = �(P) for all
� ∈ T(ℬ).
Proof. Let K be the Bauer simplex with extreme boundary

)extK = {0} ∪ { 1n ∶ n ≥ 1}.
By [2], there exists a unital, simple, nonelementary AF algebra A such that
T(A) = K. Identifying A with A⊗ e1,1 in A⊗K, we have that

T1A⊗e1,1(A⊗K) = T(A) = K.
We will denote the extreme trace corresponding to the point 1∕n (or 0) by

�1∕n (resp. �0). Since A is AF, A⊗K has projection surjectivity. Let

Q,Q1, Q2 ∈ℳ(A⊗K) − (A⊗K)
be projections such that the following statements are true:

(1) Q̂
(
�1∕n

)
= 1 for all n ≥ 1, and Q̂(�0) = 1∕2.

(2) Q̂1 = Q̂∕5.
(3) Q̂2(�) = 2∕5 for all � ∈ T1A⊗e1,1(A⊗K).
Since

Q̂1 +
4
5 Q̂ = Q̂,

Q̂1 is complemented under Q̂. Since A⊗K has projection injectivity and sur-
jectivity, we have Q1 ⪯ Q. Thus we may assume that Q1 ≤ Q.

Similarly, we have that Q̂2 + g = Q̂, where
g ∶ T1A⊗e1,1(A⊗K)→ (0, 1)

is the a�ne lower semicontinuous function given by g = Q̂ − (2∕5). Hence,
again, Q̂2 is complemented under Q̂. Since A ⊗ K has projection injectivity
and surjectivity, we have Q2 ⪯ Q. Thus we may again assume that Q2 ≤ Q.

Let ℬ = Q(A⊗K)Q. Then Q1, Q2 ∈ℳ(ℬ) −ℬ and

Q̂2 − Q̂1 ∈ Aff(T(ℳ(ℬ)).
Note that

1
5 ≤ �(Q2) − �(Q1) ≤

3
10

and
1
2 ≤ �(Q) ≤ 1
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for all � ∈ T1A⊗e1,1(A⊗K). The map

T1A⊗e1,1(A⊗K)→ T(ℬ) ∶ � ↦ 1
�(Q)�|ℬ

is a bijective map. Hence,
1
5 ≤ �(Q2 − Q1) ≤

3
5

for all � ∈ T(ℬ).
Let f ∈ Aff(T(ℳ(ℬ))) be given by f(�) = �(Q2 −Q1) for all � ∈ T(ℳ(ℬ)).

Then we certainly have that there exists an � > 0 such that � ≤ f(�) ≤ 1 − �
for all � ∈ T(ℬ). Now, assume, to the contrary, that there exists a projection
P ∈ℳ(ℬ) such that f(�) = �(P) for all � ∈ T(ℬ). Then

P̂ + Q̂1 = Q̂2 on T1A⊗e1,1(A⊗K).

This is impossible, because Q̂2 is continuous on T1A⊗e1,1 (A⊗K), P̂ and Q̂1 are
both lower semicontinuous, but Q̂1 is not continuous on T1A⊗e1,1 (A⊗K). �
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