
New York Journal of Mathematics
New York J. Math. 28 (2022) 1317–1328.

Sharp bound for embedded eigenvalues of
Dirac operators with decaying potentials

VishwamKhapre, Kang Lyu and Andrew Yu

Abstract. We study eigenvalues of the Dirac operator with canonical form

Lp,q (
u
v) = (0 −1

1 0 )
d
dt (

u
v) + (−p q

q p) (
u
v) ,

where p and q are real functions. Under the assumption that

lim sup
x→∞

x
√
p2(x) + q2(x) <∞,

the essential spectrum of Lp,q is (−∞,∞). We prove that Lp,q has no eigen-
values if

lim sup
x→∞

x
√
p2(x) + q2(x) < 1

2 .

Given any A ≥ 1
2
and any � ∈ ℝ, we construct functions p and q such that

lim supx→∞ x
√
p2(x) + q2(x) = A and � is an eigenvalue of the correspond-

ing Dirac operator Lp,q . We also construct functions p and q so that the cor-
responding Dirac operator Lp,q has any prescribed set (�nitely or countably
many) of eigenvalues.
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1. Introduction and main results
The Schrödinger operator given by

Hu = −u′′ + Vu (1)
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and the Dirac operator given by

L (uv) = (0 −1
1 0 )

d
dx (

u
v) + (p11 p12

p21 p22
) (uv) (2)

are two basic models in mathematics and physics. We are interested in the
embedded eigenvalue (eigenvalue embeds into the essential spectrum) prob-
lem of Schrödinger operators and Dirac operators. For Schrödinger operators,
the problem is well understood. Kato’s classical results [9] show that if

lim sup
x→∞

|||xV(x)||| = A,

then the Schrödinger operator has no eigenvalues larger than A2. Wigner and
vonNeumann’s examples [25] imply that there exist potentialswithA = 8, such
that � = 1 is an eigenvalue of the associated Schrödinger operator. Finally, (see
the survey [23] for the history), Atkinson and Everitt [1] obtained the sharp
bound 4A2

�2
. They proved that there are no eigenvalues larger than 4A2

�2
, and for

any 0 < � < 4A2

�2
, there are potentials with lim supx→∞

|||xV(x)||| = A so that � is
an eigenvalue of the associated Schrödinger operator.

Equations (1) and (2) are closely related. For example, by letting p11 = V,
and p12 = p21 = p22 = 0, one can obtain

−u′′ + �Vu = �2u
from

L (uv) = � (uv) .

In this article, we study embedded eigenvalue problems of a particular type
of Dirac operators on L2[0,∞)⨁L2[0,∞), namely Dirac operators with canon-
ical form,

Lp,q (
u
v) = (0 −1

1 0 )
d
dx (

u
v) + (−p q

q p) (
u
v) , (3)

where p ∈ L2[0,∞) and q ∈ L2[0,∞) are real functions (referred to as poten-
tials). The canonical form of Dirac operators plays an important role in spectral
theory [19, Theorem 5.1]. In the study of asymptotics of eigenvalues and the
inverse problems of Dirac operators, it is crucial to use the canonical form [10,
pp. 185-187], [27, 28]. We refer readers to [3, 4, 5, 6, 7, 20] for more recent
development about various types of Dirac operators.

For any �0 ∈ [0, �), under the boundary condition
u(0) sin�0 − v(0) cos�0 = 0, (4)

the Dirac operator Lp,q de�ned by (3) is self-adjoint.
Denote by �ess(Lp,q) the essential spectrum of Lp,q. Recall that � ∈ �ess(Lp,q)

if and only if there is an orthonormal sequence {'n}∞n=1 such that

||Lp,q'n − �'n||→ 0, n →∞.
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It is well known that

�ess(L0,0) = (−∞,∞),
and L0,0 has no eigenvalues.

By [26, Theorem 6.4], if
√
p2(x) + q2(x) = o(1),

as x →∞, then
�ess(Lp,q) = (−∞,∞).

In the �rst part of our paper, under the assumption that p and q are Coulomb
type potentials (but without singularity at x = 0), we study the question when
Lp,q has embedded eigenvalues.

Theorem 1.1. If

lim sup
x→∞

x
√
p(x)2 + q(x)2 = A < 1

2 ,

then under any boundary condition (4), Lp,q has no eigenvalues in (−∞,∞).

Theorem 1.2. For any �0 ∈ [0, �), � ∈ (−∞,∞), and A ≥ 1
2
, there exist

potentials p and q such that

lim sup
x→∞

x
√
p(x)2 + q(x)2 = A,

and the Dirac operator Lp,q has an eigenvalue � under the boundary condition
(4).

We say that the potential is C∞ if p, q are C∞. In the second part of the paper,
we will construct C∞ potentials with which Lp,q has many embedded eigenval-
ues.

Theorem 1.3. Let S = {�j}Nj=1 be a set of distinct real numbers. Let {�j}Nj=1 ⊂
[0, �) be a set of angles. There exist C∞ potentials satisfying

√
p(x)2 + q(x)2 = O(1)

1 + x ,

where O(1) depends on S, such that the associated Lp,q has L2[0,∞)⨁L2[0,∞)
solutions (uj, vj)T satisfying

Lp,q (
u
v) = �j (

u
v)

with the boundary condition
u(0)
v(0)

= cot �j,

for j = 1,⋯ , N.
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Theorem 1.4. Let S = {�j}∞j=1 be a set of distinct real numbers. Let {�j}∞j=1 ⊂
[0, �) be a set of angles. If ℎ(x) is a positive function with limx→∞ ℎ(x) = ∞, then
there exist C∞ potentials satisfying

√
p(x)2 + q(x)2 ≤ ℎ(x)

1 + x ,

such that the associated Dirac operator Lp,q has L2[0,∞)⨁L2[0,∞) solutions
(uj, vj)T satisfying

Lp,q (
u
v) = �j (

u
v)

with the boundary condition
u(0)
v(0)

= cot �j,

for j = 1, 2,⋯ .
For Dirac operators with single embedded eigenvalue, Evans and Harris [2]

obtained the sharp bound for the separated Dirac equation with the form

L̃ (uv) = (0 −1
1 0 )

d
dt (

u
v) + (p + 1 q

q p − 1) (
u
v) = � (uv) ,

where their results are under the assumption that q is locally absolutely contin-
uous. Formore results on embedded single eigenvalue, one can refer to [11, 15].

For many embedded eigenvalues of Schrödinger operators or Dirac opera-
tors, Naboko [18] constructed smooth potentials such that L0,q has dense (ra-
tionally independent) embedded eigenvalues. Naboko’s constructions work for
Schrödinger operators as well. Simon [22] constructed potentials such that the
associated Schrödinger operator has dense embedded eigenvalues. More re-
cently, Jitomirskaya and Liu [8] introduced a novel idea to construct embedded
eigenvalues for Laplacian on manifolds, which is referred to as piecewise con-
structions. This approach turns out to be quite robust. Liu and his collabora-
tors developed the approach of piecewise constructions to construct embedded
eigenvalues for various models [13, 15, 16, 17]. For more results on embedded
eigenvalue problems, one can refer to [12, 14, 21].

In this paper, we adapt the approach of piecewise construction to study em-
bedded eigenvalue problems of Dirac operators. Themain strategy of proofs for
our main theorems follow from that of [8, 13, 17]. In the current case of Dirac
operators, new di�culties and challenges arise from the Dirac operator being
vector valued and its potential consisting of a pair of functions p and q (unlike
the models in [8, 13, 15, 16, 17]).

2. Proof of Theorems 1.1 and 1.2
Let (u(x), v(x))T be a solution of

Lp,q (
u
v) = � (uv) .
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We de�ne the Prüfer variables R(x) and �(x) of � by

u(x) = R(x) cos �(x),

and

v(x) = R(x) sin �(x).

Clearly, we have

Proposition 2.1. Let R(x) and �(x) be the Prüfer variables of �. Then � is an
eigenvalue of the Dirac operator if and only if R ∈ L2(0,∞).

By the equation

Lp,q (
u
v) = � (uv) ,

we obtain

R′
R = −q(x) cos 2�(x) − p(x) sin 2�(x), (5)

and

�′ = −� + q(x) sin 2�(x) − p(x) cos 2�(x). (6)

Set q(x) = V(x) cos'(x), p(x) = V(x) sin'(x). Note that p and q are com-
pletely determined by V and '. By (5) and (6), one has

R′
R = −V(x) cos(2�(x) − '(x)), (7)

and

�′ = −� + V(x) sin(2�(x) − '(x)). (8)

It is obvious that equations (7) and (8) are equivalent to

Lp,q (
u
v) = � (uv) .

By Proposition 2.1, we only need to study (7) and (8).

Proof of Theorem 1.1. Assume

lim sup
x→∞

|xV(x)| = lim sup
x→∞

x
√
p(x)2 + q(x)2 = A < 1

2 . (9)

For any � > 0 (small enough so that A + � < 1
2
), there exists x0 so that for any

x > x0, one has

|V(x)| ≤ A + �
1 + x .
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By (7) and (9), we have

lnR(x) = lnR(x0) − ∫
x

x0
V(t) cos(2�(t) − '(t))dt

≥ O(1) − (A + �) ∫
x

x0

1
1 + t dt

= O(1) − (A + �) lnx.
By the assumption, there exists a positive constant k such that, for large x, we
have

R(x) ≥ kx−
1
2 .

This implies thatR ∉ L2(0,∞). Hence by Proposition 2.1, � is not an eigenvalue
of Lp,q. �

Proof of Theorem 1.2 for A > 1
2
. We construct p and q as follows:

V(x) = A
1 + x , x ≥ 0,

and

'(x) = −2�x + 2�(0), x ≥ 0.
By (8) and the uniqueness theorem (see for example [24, Theorem 2.2]), one
has for any x ≥ 0,

2�(x) − '(x) ≡ 0.
Thus from (7) we obtain

lnR(x) = lnR(0) − ∫
x

0

A
1 + t dt

= O(1) − A lnx.
We immediately obtain that for some small � > 0 and any large x,

R(x) ≤ x−
1
2
−�.

Therefore, R ∈ L2(0,∞) and by Proposition 2.1, � is an eigenvalue of the corre-
sponding Dirac operator Lp,q. �

Proof of Theorem 1.2 for A = 1
2
. Let �n =

1
2n
, an = en3 . Set

V(x) = A + �n
x , x ∈ [an, an+1),

and

'(x) = −2�x + 2�(0).
By (8) and the uniqueness theorem, one has for any x ≥ 0,

2�(x) − '(x) ≡ 0.
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By (7), one has

lnR(an+1) − lnR(an) = − ∫
an+1

an

A + �n
x dx

= −(A + �n) ln
an+1
an

. (10)

For t ∈ [an, an+1), we have

lnR(t) − lnR(an) = − ∫
t

an

A + �n
x dx

= −(A + �n) ln
t
an
. (11)

From (10), we obtain

lnR(an) = lnR(a0) −
n−1∑

j=0
(A + �j) ln

aj+1
aj

.

Therefore, one has

R(an) = O(1)e
−∑n−1

j=0 (A+�j) ln
aj+1
aj

= O(1)
n−1∏

j=0
a−(A+�j)j+1 aA+�jj

= O(1)
n∏

j=1
a−(A+�j−1)j

n−1∏

j=1
aA+�jj

= O(1)a−(A+�n−1)n

n−1∏

j=1
a�j−�j−1j . (12)

By (11) and (12), we conclude

R(t) = O(1)R(an)e
−(A+�n) ln

t
an

= O(1)R(an)t−(A+�n)a
A+�n
n

= O(1)
n∏

j=1
a�j−�j−1j t−(A+�n). (13)
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It follows that

∫
an+1

an
R(t)2dt = O(1) ∫

an+1

an

n∏

j=1
a

1
j
− 1
j−1

j t−1−
1
ndt

≤ O(1)
n∏

j=1
e−j n

en2

≤ O(1) n
en2

. (14)

This implies that R ∈ L2(0,∞), by Proposition 2.1, � is an eigenvalue of the
corresponding Dirac operator Lp,q. �

3. Proof of Theorems 1.3 and 1.4
We assume that � and �j are di�erent values. Denote the Prüfer variables of

� and �j by R(x), �(x) and Rj(x), �j(x), respectively.
Recall that V(x) and '(x) uniquely determine p and q. De�ne V(x) =

V(x, b) and '(x) = '(x, �, a, '0) on [a,∞) by

V(x, b) = C
1 + x − b , (15)

and

'(x, �, a, '0) = −2�(x − a) + 2'0, (16)

where C is a constant will be de�ned later, a > b and '0 = �(a).

Lemma 3.1. Fix b > 0. Let V(x) be de�ned by (15). Let '(x) be de�ned by (16),
and � ≠ �j. Let �j(x) be a solution of

�′j(x) = −�j + V(x) sin(2�j(x) − '(x)), (17)

then we have

∫
x

x0

1
1 + t − b cos(2�j(t) − '(t))dt = O(1)

x0 − b , (18)

for any x > x0 > a.

Proof. By (16) and (17) we have

2�′j(t) − '′(t) = 2(� − �j) +
O(1)

1 + t − b ,

and

2�′′j (t) − '′′(t) = O(1)
1 + t − b .
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It follows that

∫
x

x0

1
1 + t − b cos(2�j(t) − '(t))dt

=
sin(2�j(t) − '(t))

2(� − �j) +
O(1)
1+t−b

1
1 + t − b

|||||||||

x

x0

+ O(1) ∫
x

x0

1
(1 + t − b)2

dt

= O(1)
x0 − b .

�

Lemma 3.2. Fix b > 0. Let V(x) be de�ned by (15) on [a,∞). Let '(x) be
de�ned by (16) on [a,∞), and � ≠ �j. Let R(x), �(x) and Rj(x), �j(x) be the
Prüfer variables of � and �j , respectively. For any x > a,

lnR(x) − lnR(a) ≤ −100 ln x − b
a − b + C, (19)

lnR(x) ≤ lnR(a), (20)

where C is a large constant depending on � and �j , and for any x > x0 ≥ a with
large enough x0 − b, we have

Rj(x) ≤ 1.5Rj(x0). (21)

Proof. By (8), (15) and (16), and the uniqueness theorem, one has

2�(x) − '(x) = 0.
Therefore, by (7) and (15), we have

lnR(x) = lnR(a) − ∫
x

a

C
1 + t − bdt

= lnR(a) − C ln 1 + x − b
1 + a − b .

Then we immediately obtain (19) and (20).
By (5) and (18), we have

lnRj(x) = lnRj(x0) − ∫
x

x0

C cos(2�j(t) − '(t))
1 + t − b dt

= lnRj(x0) +
O(1)
x0 − b .

Hence we obtain (21). �

Proposition 3.3. Let � and S = {�j}kj=1 be distinct real numbers. Given '0 ∈
[0, �), if x1 > x0 > b, then there exist constants K(�, S), C(�, S) (independent of
b, x0 and x1) and Ṽ(x, �, S, x0, x1, b) ∈ C∞ and '(x, �, S, x0, x1, b, '0) such that
for x0 − b > K(�, S) the following holds:
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(1): for x0 ≤ x ≤ x1, supp(Ṽ) ⊂ (x0, x1), and

|Ṽ(x, �, S, x0, x1, b)| ≤
C(�, S)
x − b . (22)

(2): the solution of Dirac equation

Lp,q (
u
v) = � (uv) ,

with the boundary condition u(x0)
v(x0)

= cot'0 satis�es

R(x1) ≤ C(�, S) (x1 − b
x0 − b)

−100
R(x0), (23)

and for x0 < x < x1,
R(x) ≤ 2R(x0). (24)

(3): the solution of Dirac equation

Lp,q (
u
v) = �j (

u
v) ,

with any boundary condition satis�es for x0 < x ≤ x1,
Rj(x) ≤ 2Rj(x0). (25)

Proof. Let V(x) be given by (15) and '(x) be given by (16), with a = x0 and
C = C(�, S). Let x = x1 in (19), (20) and (21). We smooth V(x) near x0, x1
to obtain Ṽ(x). Notice that by (7), a small perturbation of V(x) will only give
a small change of R(x) and Rj(x). Hence Lemma 3.2 still holds with slightly
larger constants. We complete the proof. �

Proof of Theorems 1.3 and 1.4. With the help of Proposition 3.3, the proofs
of Theorems 1.3 and 1.4 follow from the construction step by step as appearing
in [8, 13, 17] 1.

We only give an outline of the proof here. Let {Nr}r∈ℤ+ be a non-decreasing
sequence which goes to in�nity arbitrarily slowly depending on ℎ(x) 2. We fur-
ther assume Nr+1 = Nr + 1 when Nr+1 > Nr. At the rth step, we take Nr
eigenvalues into consideration. Applying Proposition 3.3, we construct poten-
tials with Nr pieces, where each piece comes from (22) with � being an eigen-
value. The main di�culty is to control the size of each piece (denote by Tr).
The construction in [8, 13, 17] only uses inequalities (22), (23) and (24) to ob-
tain appropriate Tr and Nr. Hence Proposition 3.3 implies Theorems 1.3 and
1.4.

�

1We should mention that although models in [8, 13, 17] are second-order di�erential equa-
tions, the �rst step is to write those equations in a system of two �rst order di�erential equations.

2For most r ∈ ℕ, we haveNr+1 = Nr, and whenNr+1 > Nr, we takeNr+1 = Nr + 1. This will
ensure Nr increases to in�nity slowly.
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