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A note on Hardy spaces on quadratic
CRmanifolds

M. Calzi

Abstract. Given a quadratic CRmanifoldℳ embedded in a complex space,
and a holomorphic function f on a tubular neighbourhood of ℳ, we show
that the Lp-norms of the restrictions of f to the translates ofℳ is decreasing
for the ordering induced by the closed convex envelope of the image of the
Levi form ofℳ.
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1. Introduction
Let f be a holomorphic function on the upper half-planeC+ = R+ iR∗

+. If f
belongs to the Hardy space Hp(C+), that is, if supy>0‖fy‖Lp(R) is �nite, where
fy ∶ x ↦ f(x + iy), then it is well known that the function y ↦ ‖fy‖Lp(R) is
decreasing onR∗

+, for every p ∈]0,∞]. Nontheless, if f is simply holomorphic,
then the lower semicontinuous function y ↦ ‖fy‖Lp(R) need not be decreas-
ing. Actually, the set where it is �nite may be any interval in R∗

+, or even a
disconnected set.

Now, replace the upper half-plane C+ with a Siegel upper half-space

D ∶=
{
(�, z) ∈ Cn × C∶ Im z − |�|2 > 0

}
,

and de�ne
fℎ ∶ Cn ×R ∋ (�, x)↦ f(�, x + i|�|2 + ℎ)
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for every ℎ > 0 and for every function f on D. This de�nition is motivated by
the fact that

bD ∶=
{
(�, x + i|�|2)∶ (�, x) ∈ Cn ×R

}

is the boundary of D, and the sets bD + (0, iℎ), for ℎ > 0, foliate D as the sets
R + iy, for y > 0, foliate C+. If f is holomorphic on D, then the mapping
ℎ ↦ ‖fℎ‖Lp(Cn×R) is always decreasing (though not necessarily �nite), in con-
trast to the preceding case (cf. Theorem 3.1). This fact is closely related with the
fact that evey holomorphic function de�ned in aneighbourhood of bD automat-
ically extends to D. More precisely, if one observes that bD has the structure of
a CR submanifold ofCn ×C, one may actually prove that every CR function (of
class C1) is the boundary values of a unique holomorphic function on D (cf. [2,
Theorem 1 of Section 15.3]).

In this note, we show that an analogous property holds when bD is replaced
by a general quadratic, or quadric, CR submanifold of a complex space, and
then discuss some examples of Šilov boundaries of (homogeneous) Siegel do-
mains.

2. Preliminaries
We �x a complex hilbertian space E of dimension n, a real hilbertian space

F of dimensionm, and a hermitian map Φ∶ E × E → FC. De�ne
ℳ ∶= { (�, x + iΦ(�))∶ � ∈ E, x ∈ F } = { (�, z) ∈ E × FC∶ Im z − Φ(�) = 0 },
where FC denotes the complexi�cation of F, while Φ(�) ∶= Φ(�, �) for every
� ∈ E. We de�ne

�∶ E × FC ∋ (�, z)↦ Im z − Φ(�) ∈ F.
We endow E × FC with the product

(�, z)(�′, z′) ∶= (� + �′, z + z′ + 2iΦ(�′, �))
for every (�, z), (�′, z′) ∈ E × FC, so that E × FC becomes a 2-step nilpotent Lie
group, andℳ a closed subgroup of E ×FC. In particular, the identity of E ×FC
is (0, 0) and (�, z)−1 = (−�,−z + 2iΦ(�)) for every (�, z) ∈ E × FC. It will
be convenient to identifyℳ with the 2-step nilpotent Lie groupN ∶= E × F,
endowed with the product

(�, x)(�′, x′) ∶= (� + �′, x + x′ + 2ImΦ(�, �′))
for every (�, x), (�′, x′) ∈N, by means of the isomorphism

�∶ N ∋ (�, x)↦ (�, x + iΦ(�)) ∈ E × FC.
In particular, the identity ofN is (0, 0) and (�, x)−1 = (−�,−x) for every (�, x) ∈
N. Notice that, in this way, N acts holomorphically (on the left) on E × FC.
Given a function f on E × FC, we shall de�ne

fℎ ∶ N ∋ (�, x)↦ f(�, x + iΦ(�) + iℎ) ∈ C
for every ℎ ∈ F.
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Observe that the preceding group structures show that, if we de�ne the com-
plex tangent space ofℳ at (�, z) as

H(�,z)ℳ ∶= T(�,z)ℳ ∩ (iT(�,z)ℳ)
for every (�, z) ∈ ℳ, where T(�,z)ℳ denotes the real tangent space to ℳ at
(�, z), identi�ed with a subspace of E × FC, then

H(�,z)ℳ = dL(�,z)H(0,0)ℳ,
where L(�,z) denotes the left translation by (�, z) (in E × FC), and dL(�,z) its
di�erential at (0, 0). Therefore, dimCH(�,z) = n for every (�, z) ∈ℳ, so thatℳ
is a CR submanifold of E ×FC (cf. [2, Chapter 7]), called a quadratic or quadric
CR manifold (cf. [2, Section 7.3] and [10, 11]).

We observe explicitly thatℳ is generic (that is, dimRℳ − dimRH(0,0)ℳ =
dimR E × FC − dimRℳ, cf. [2, De�nition 5 and Lemma 4 of Section 7.1]) and
that its Levi form may be canonically identi�ed with Φ (cf. [2, Chapter 10]
and [11]).

3. A property of Hardy spaces
We denote by C the convex envelope of Φ(E).

Theorem 3.1. Let Ω be an open subset of F such that Ω = Ω + C, and set D ∶=
�−1(Ω). Then, for every f ∈ Hol(D), for every p ∈]0,∞], for every ℎ ∈ Ω and for
every ℎ′ ∈ C,

‖fℎ+ℎ′‖Lp(N) ⩽ ‖fℎ‖Lp(N).
The proof is based on the ‘anaytic disc technique’ presented in [2, Section

15.3].
Observe that the assumption thatΩ = Ω+C is not restrictive. Indeed, ifΩ is

connected and C has a non-empty interior IntC, then every function which
is holomorphic on �−1(Ω) extends (uniquely) to a holomorphic function on
�−1(Ω+(IntC∪{ 0 })) by [2, Theorem 1 of Section 15.3], andΩ+(IntC∪{ 0 }) =
Ω+C sinceΩ is open and C = IntC by convexity. The case in which IntC = ∅
may be treated directly using similar techniques.

We also mention that, if p < ∞ and either Φ is degenerate or the polar of
Φ(E) has an empty interior (that is, the closed convex envelope ofΦ(E) contains
a non-trivial vector subspace), then either fℎ = 0 or fℎ ∉ Lp(N) (at least for
p ⩾ 1 when Φ is non-degenerate). Cf. [6] for more details in a similar case.

Proof. For every v = (vj) ∈ Em, consider

Av ∶ C ∋ w ↦ (
m∑

j=1
vjwj, i

m∑

j=1
Φ(vj) + 2i

∑

k<j
Φ(vj, vk)wj−k) ∈ E × FC,

and

Ψ(v) ∶=
m∑

j=1
Φ(vj) ∈ C,
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and observe that the following hold:
∙ Av(0) = (0, iΨ(v));
∙ Ψ(Em) is the convex envelopeC ofΦ(E), thanks to [12, Corollary 17.1.2];
∙ �(Av(w)) = 0 for every w ∈ T;
∙ the mapping A∶ Em ∋ v ↦ Av ∈ Hol(C;E × FC) is continuous (actu-
ally, polynomial).

Now, take ℎ ∈ Ω. By continuity, there is " > 0 such that Av(U) + iℎ ⊆ D
for every v ∈ BEm(0, "), where U denotes the unit disc in C, and U its closure.
Then, Av(U) + iℎ′ ⊆ D for every v ∈ BEm(0, ") and for every ℎ′ ∈ ℎ + C.
For every ℎ′ ∈ Ψ(BEm(0, ")), denote by �ℎ′ the image of the normalized Haar
measure on T under the mapping �◦Av , for some v ∈ BEm(0, ") ∩ Ψ−1(ℎ′),
where �∶ E ×FC ∋ (�, z)↦ (�,Re z) ∈N. Observe that, for every (�, x) ∈N
and for every ℎ′′ ∈ ℎ + C, the mapping

U ∋ w ↦ f((�, x + iΦ(�)) ⋅ [Av(w) + (0, iℎ′′)]) ∈ C
is continuous and holomorphic on U, so that, by subharmonicity (cf., e.g., [13,
Theorem 15.19]),

|f(�, x + iΦ(�) + i(ℎ′ + ℎ′′))|min(1,p)

⩽ ∫
T

|f((�, x + iΦ(�)) ⋅ [Av(w) + (0, iℎ′′)])|min(1,p) dw

= ∫
N
|fℎ′′((�, x)(�′, x′))|min(1,p) d�ℎ′(�′, x′)

= (|fℎ′′|min(1,p) ∗ �̌ℎ′)(�, x),

where �̌ℎ′ denotes the re�ection of �ℎ′ , whilev is a suitable element ofBEm(0, ")∩
Ψ−1(ℎ′). Since �ℎ′ is a probability measure, by Young’s inequality (cf., e.g., [4,
Chapter III, § 4, No. 4]) we then infer that

‖fℎ′+ℎ′′‖Lp(N) = ‖|fℎ′+ℎ′′|min(1,p)‖
1∕min(1,p)
Lmax(1,p)

⩽ ‖|fℎ′′|min(1,p)‖
1∕min(1,p)
Lmax(1,p)(N) = ‖fℎ′′‖Lp(N)

for every ℎ′ ∈ Ψ(BEm(0, ")) and for every ℎ′′ ∈ ℎ+ C. Since every element of C
may we written as a �nite sum of elements of Ψ(BEm(0, ")), the arbitrariness of
ℎ′′ shows that

‖fℎ+ℎ′‖Lp(N) ⩽ ‖fℎ‖Lp(N)

for every ℎ′ ∈ C, hence for every ℎ′ ∈ C by lower semi-continuity. The proof is
complete. �

Corollary 3.2. Assume thatC has a non-empty interiorΩ, and setD ∶= �−1(Ω).
Then, for every p ∈]0,∞] and f ∈ Hol(D),

sup
ℎ∈Ω

‖fℎ‖ℎ∈Lp(N) = lim inf
ℎ→0,ℎ∈Ω

‖fℎ‖Lp(N).
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In particular, if we de�ne the Hardy space Hp(D) as the set of f ∈ Hol(D)
such that supℎ∈Ω‖fℎ‖ℎ∈Lp(N) is �nite, the preceding result states that Hp(D)
maybe equivalently de�ned as the set off ∈ Hol(D) such that lim inf

ℎ→0,ℎ∈Ω
‖fℎ‖Lp(N)

is �nite. This result should be compared with [3], where the boundary values
of the elements of Hp(D) are characterized as the CR elements of Lp(N), for
p ∈ [1,∞]. In particular, Corollary 3.2 could be deduced from the results of [3],
when p ∈ [1,∞], though at the expense of some further technicalities.

This result extends [7, Corollary 1.43].

4. Examples
We shall now present some exmples of homogeneous Siegel domains D =

�−1(Ω) for whichΩ is the closed convex envelope ofΦ(E), so that Corollary 3.2
applies.

We recall that D is said to be a Siegel domain ifΩ is an open convex cone not
containing a�ne lines, Φ is non-degenerate, and Φ(E) ⊆ Ω. In addition, D is
said to be homogeneous if the group of its biholomorphisms acts transitively on
D. It is known (cf., e.g., [5, Proposition 1]) that D is homogeneous if and only
if there is a triangular Lie subgroup T+ of GL(F)which acts simply transitively
on Ω, and for every t ∈ T+ there is g ∈ GL(E) such that tΦ = Φ(g × g).

If T′+ is another Lie subgroup of GL(F) with the same properties as T+, then
T+ and T′+ are conjugated by an automorphism of F preserving Ω. Thanks
to this fact, we may use the results of [7] even if a di�erent T+ is chosen. In
particular, there is a surjective (open and) continuous homomorphism of Lie
groups

∆∶ T+ → (R∗
+)r

for some r ∈ N, called the rank of Ω, so that
∆s = ∆s11 ⋯∆srr ,

s ∈ Cr, are the characters of T+. Once a base point eΩ ∈ Ω has been �xed, ∆s
induces a function ∆sΩ on Ω, setting ∆sΩ(t(eΩ)) = ∆s(t) for every t ∈ T+.

Up to modifying ∆, we may then assume that the functions ∆sΩ are bounded
on the bounded subsets of Ω if and only if Re s ∈ Rr

+ (cf. [7, Lemma 2.34]). In
particular, there is b ∈ Rr

− such that ∆−b(t) = |detC g|2 for every t ∈ T+ and
for every g ∈ GL(E) such that tΦ = Φ(g × g) (cf. [7, Lemma 2.9]), and one
may prove that b ∈ (R∗

−)r if and only if Φ(E) generates F as a vector space, in
which case Ω is the interior of the convex envelope of Φ(E) (cf. [7, Proposition
2.57 and its proof, and Corollary 2.58]). Therefore, we are interested in �nding
examples of homogeneous Siegel domains for which b ∈ (R∗

−)r.
Notice, in addition, that if b ∉ (R∗

−)r, thenΦ(E) is contained in a hyperplane,
so that the interior of its convex envelope is empty.

The Siegel domainD is said to be symmetric if it is homogeneous and admits
an involutive biholomorphism with a unique �xed point (equivalently, if for
every (�, z) ∈ D there is an involutive biholomorphism of D for which (�, z) is
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an isolated (or the unique) �xed point). The domain D is said to be irreducible
if it is not biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to
a product of irreducible ones, and that the irreducible symmetric Siegel do-
mains can be classi�ed in four in�nite families plus two exceptional domains
(cf., e.g., [1, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain,
either b = 0 (that is, E = { 0 }, in which case D is ‘of tube type’), or b ∈ (R∗

−)r
(cf., e.g., [7, Example 2.11]). Hence, whenD is a symmetric Siegel domain,Ω is
the closed convex envelope of Φ(E) if and only if none of the irreducible com-
ponents of D is of tube type. Note that these domains can be also characterized
as those which do not admit any non-constant rational inner functions, thanks
to [8].

We now present some examples of (homogeneous) Siegel domains.
Example 4.1. Let K be either C or the division ring of the quaternions. In
addition, �x r, k, p ∈ N with p ⩽ r, and de�ne

∙ E as the space of k × r matrices over K whose j-th columns have zero
entries for j = p + 1,… , r;

∙ F as the space of self-adjoint r × r matrices overK;
∙ Ω as the cone of non-degenerate positive self-adjoint r×rmatrices over
K;

∙

Φ∶ E × E ∋ (�, �′)↦ 1
2[(�

′∗� + �∗�′) + i(�∗i�′ − �′∗i�)] ∈ FC;

∙ T+ as the group of upper triangular r × r-matrices over K with strictly
positive diagonal entries, acting on Ω (and F) by the formula t ⋅ ℎ ∶=
tℎt∗;

∙ ∆∶ T+ ∋ t ↦ (t1,1,… , tr,r) ∈ (R∗
+)r.

Then, Ω is an irreducible symmetric cone1 of rank r on which T+ acts simply
transitively by [7, Example 2.6]. In addition, Φ is well de�ned, since �′∗� +
�∗�′, �∗i�′ − �′∗i� ∈ F for every �, �′ ∈ E, and clearly Φ(�) ∈ Ω and

t ⋅ Φ(�) = t ⋅ (�∗�) = (�t∗)∗(�t∗) = Φ(�t∗)
for every t ∈ T+ and for every � ∈ E (with �t∗ ∈ E), so that D is homogeneous.
Then, b = (bj), with bj = −k dimCK for j = 1,… , p and bj = 0 for j =
p + 1,… , r. Consequently, Ω is the closed convex envelope of Φ(E) if and only
if p = r and k > 0.

Notice that D is irreducible sinceΩ is irreducible (cf. [9, Corollary 4.8]), and
that D is symmetric if kp = 0 or if p = r and K = C (cf. [7, Examples 2.14
and 2.15]). If kp(r − p) > 0, or if K ≠ C, r ⩾ 3, and k ⩾ 2, then D cannot be
symmetric.

1A cone is said to be homogeneous if the group of its linear automorphisms acts transitively
on it. It is said to be symmetric if, in addition, it is self-dual for some scalar product. A convex
cone is said to be irreducible if it is not isomorphic to a product of non-trivial convex cones.
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Example 4.2. Take k, p, q ∈ N, p ⩽ 2. De�ne:
∙ E as the space of formal k×2matrices whose entries of the �rst column
belong toC (and are 0 ifp = 0), andwhose entires of the second column
belong to Cq (and are 0 if p ⩽ 1);

∙ F as the space of formally self-adjoint 2 × 2 matrices whose diagonal
entries belong toR, and whose non-diagonal entries belong to Cq;

∙ Ω as the cone of
(
a b
b c

)
∈ F with a, c > 0, b ∈ Cq, and ac − |b|2 > 0;

∙ Φ so that

Φ
⎛
⎜
⎝

a1 b1
⋮ ⋮
ak bk

⎞
⎟
⎠
= (

∑
j|aj|

2 ∑
j ajbj∑

j ajbj
∑

j|bj|
2)

for every (
a1 b1
⋮ ⋮
ak bk

) ∈ E;
∙ T+ as the group of formal 2×2 upper triangular matrices with diagonal
entries inR∗

+ and non-diagonal entries in Cq, with the action2

(a b
0 c) ⋅ (

a′ b′

b
′

c′
) ∶= (

a′a2 + c′|b|2 + 2aRe ⟨b, b′⟩ acb′ + cc′b
acb′ + cc′b c2c′ );

∙ ∆∶ T+ ∋ t ↦ (t1,1, t2,2).
Then, Ω is an irreducible symmetric cone of rank 2 on which T+ acts simply
transitively (cf. [7, Example 2.7]). In addition, Φ(�) ∈ Ω for every � ∈ E, and

t ⋅ Φ(�) = Φ(�t∗)
for every t ∈ T+ and � ∈ E (with �t∗ ∈ E), provided that p ⩽ 1. Then, D is
an irreducible Siegel domain, and it is homogeneous if p ⩽ 1 (it is symmetric
if p = 0). In addition, b = 0 if p = 0, while b = (k, 0) if p = 1. Further, if

p = 2, then Φ(E) contains the boundary ofΩ, since
(
a b
b c

)
= Φ(

a1∕2 a−1∕2b
0 0
⋮ ⋮
0 0

), for

every a > 0, for every c ⩾ 0 and for every b ∈ Cq such that |b|2 = ac (the case
a = 0, b = 0, c ⩾ 0 is treated similarly). Then, Ω is the closed convex envelope
of Φ(E) if and only if p = 2.

References
[1] Arazy, Jonathan. A survey of invariant Hilbert spaces of analytic functions on

bounded symmetric domains.Multivariable operator theory (Seattle, WA, 1993), 7–65. Con-
temp. Math., 185, Amer. Math. Soc., Providence, RI, 1995. MR1332053, Zbl 0831.46014,
doi: 10.1090/conm/185. 1503

[2] Boggess, Albert.CRmanifolds and the tangential Cauchy–Riemann complex. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1991. xvii+364 pp. ISBN: 0-8493-7152-
X. MR1211412, Zbl 0760.32001, doi: 10.1201/9781315140445. 1499, 1500

[3] Boggess, Albert. CR extension for Lp CR functions on a quadric submani-
fold of Cn. Paci�c J. Math. 201 (2001), no. 1, 1–18. MR1867889, Zbl 1090.32020,
doi: 10.2140/pjm.2001.201.1. 1502

2Formally,
( a b
0 c

)
⋅
( a′ b′
b
′
c′
)
=

( a b
0 c

)( a′ b′
b
′
c′
)( a b

0 c
)∗
.

http://www.ams.org/mathscinet-getitem?mr=1332053
http://www.emis.de/cgi-bin/MATH-item?0831.46014
http://dx.doi.org/10.1090/conm/185
http://www.ams.org/mathscinet-getitem?mr=1211412
http://www.emis.de/cgi-bin/MATH-item?0760.32001
http://dx.doi.org/10.1201/9781315140445
http://www.ams.org/mathscinet-getitem?mr=1867889
http://www.emis.de/cgi-bin/MATH-item?1090.32020
http://dx.doi.org/10.2140/pjm.2001.201.1


A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS 1505

[4] Bourbaki, Nicolas. Integration. II. Chapters 7–9. Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 2004. vii+326 pp. ISBN: 3-540-20585-3. MR2098271, Zbl
1095.28002, doi: 10.1007/978-3-662-07931-7. 1501

[5] Calzi, Mattia. Besov spaces of analytic type: interpolation, convolution, Fourier multi-
pliers, inclusions. Preprint, 2021. arXiv:2109.09402. 1502

[6] Calzi, Mattia. Paley–Wiener–Schwartz theorems on quadratic CR manifolds. Preprint,
2021. arXiv:2112.07991. 1500

[7] Calzi, Mattia; Peloso, Marco M. Holomorphic function spaces on homogeneous
Siegel domains. Dissertationes Math. 563 (2021), 168 pp. MR4300902, Zbl 07413827,
arXiv:2009.11083, doi: 10.4064/dm833-3-2021. 1502, 1503, 1504

[8] Korányi, Adam; Vági, Stephen. Rational inner functions on bounded symmetric
domains. Trans. Amer. Math. Soc. 254 (1979), 179–193. MR0539914, Zbl 0439.32006,
doi: 10.2307/1998265. 1503

[9] Nakajima, Kazufumi. Some studies on Siegel domains. J. Math. Soc. Japan 27 (1975),
54–75. MR0367317, Zbl 0293.32030, doi: 10.2969/jmsj/02710054. 1503

[10] Peloso, Marco M.; Ricci, Fulvio. Tangential Cauchy–Riemann equations on quadratic
CR manifolds. Harmonic analysis on complex homogeneous domains and Lie groups
(Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.
13 (2002), no. 3-4, 285–294. MR1984107, Zbl 1225.32037, doi: 10.4171/RLM. 1500

[11] Peloso, Marco M.; Ricci, Fulvio. Analysis of the Kohn Laplacian on quadratic
CR manifolds. J. Funct. Anal. 203 (2003), no. 2, 321–355. MR2003351, Zbl 1043.32021,
doi: 10.1016/S0022-1236(03)00176-9. 1500

[12] Rockafellar, R. Tyrrel. Convex analysis. Princeton Mathematical Series, 28. Prince-
ton University Press, Princeton, NJ, 1970. xviii+451 pp. MR0274683, Zbl 0193.18401,
doi: 10.1515/9781400873173. 1501

[13] Rudin, Walter. Real and complex analysis. Third edition. McGraw-Hill Book Co. New
York, 1987. xiv+416 pp. ISBN: 0-07-054234-1. MR0924157, Zbl 0925.00005. 1501

(M. Calzi)Dipartimento diMatematica, Università degli Studi diMilano, Via C. Sal-
dini 50, 20133 Milano, Italy
mattia.calzi@unimi.it

This paper is available via http://nyjm.albany.edu/j/2022/28-64.html.

http://www.ams.org/mathscinet-getitem?mr=2098271
http://www.emis.de/cgi-bin/MATH-item?1095.28002
http://www.emis.de/cgi-bin/MATH-item?1095.28002
http://dx.doi.org/10.1007/978-3-662-07931-7
http://arXiv.org/abs/2109.09402
http://arXiv.org/abs/2112.07991
http://www.ams.org/mathscinet-getitem?mr=4300902
http://www.emis.de/cgi-bin/MATH-item?07413827
http://arXiv.org/abs/2009.11083
http://dx.doi.org/10.4064/dm833-3-2021
http://www.ams.org/mathscinet-getitem?mr=0539914
http://www.emis.de/cgi-bin/MATH-item?0439.32006
http://dx.doi.org/10.2307/1998265
http://www.ams.org/mathscinet-getitem?mr=0367317
http://www.emis.de/cgi-bin/MATH-item?0293.32030
http://dx.doi.org/10.2969/jmsj/02710054
http://www.ams.org/mathscinet-getitem?mr=1984107
http://www.emis.de/cgi-bin/MATH-item?1225.32037
http://dx.doi.org/10.4171/RLM
http://www.ams.org/mathscinet-getitem?mr=2003351
http://www.emis.de/cgi-bin/MATH-item?1043.32021
http://dx.doi.org/10.1016/S0022-1236(03)00176-9
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.emis.de/cgi-bin/MATH-item?0193.18401
http://dx.doi.org/10.1515/9781400873173
http://www.ams.org/mathscinet-getitem?mr=0924157
http://www.emis.de/cgi-bin/MATH-item?0925.00005
mailto:mattia.calzi@unimi.it
http://nyjm.albany.edu/j/2022/28-64.html

	1. Introduction
	2. Preliminaries
	3. A property of Hardy spaces
	4. Examples
	References

