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Representations of the weakWeyl
commutation relation

S. Sundar

Abstract. Let G be a locally compact, second countable, Hausdor� abelian
group with Pontryagin dual Ĝ. Suppose P is a closed subsemigroup of G con-
taining the identity element 0. We assume that P has dense interior and P
generates G. Let U ∶= {U�}�∈Ĝ be a strongly continuous group of unitaries
and let V ∶= {Va}a∈P be a strongly continuous semigroup of isometries. We
call (U,V) a weak Weyl pair if U�Va = �(a)VaU� for every � ∈ Ĝ and for
every a ∈ P.

We work out the representation theory (the factorial and the irreducible
representations) of the above commutation relation under the assumption
that {VaV∗

a ∶ a ∈ P} is a commuting family of projections. Not only does this
generalise the results of [4] and [5], our proof brings out the Morita equiv-
alence that lies behind the results. For P = ℝ2

+, we demonstrate that if we
drop the commutativity assumption on the range projections, then the repre-
sentation theory of the weak Weyl commutation relation becomes very com-
plicated.

Contents

1. Introduction 1512
2. The equivalence between Isomc(P) and Rep(C0(Yu)⋊ G) 1515
3. Proof of the main theorem 1520
References 1530

1. Introduction
The classical Stone-von Neumann theorem that asserts the uniqueness of

the Weyl commutation relationUsVt = eitsVtUs, where {Us}s≥0 and {Vt}t≥0 are
strongly continuous 1-parameter group of unitaries is a fundamental theorem
in both quantummechanics and in operator algebras. In [4] and in [5], aweaker
version of the above commutation relation was considered, where {Vt}t≥0 is
only assumed to be a semigroup of isometries. The representation theory (the
factorial representations and the irreducible representations) of such relations
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was worked out by Bracci and Picasso in [4] and in [5]. Bracci and Picasso con-
sider such a weak form of the commutation relation as the quantisation pos-
tulate for systems whose con�guration space is semibounded like the half-line.
This is because, on the half-line, though the position operator generates a group
of unitaries, the momentum operator (which is not self-adjoint) generates only
a semigroup of isometries. The purpose of this paper is to extend slightly the
resuts to systems with d degrees of freedom where d ≥ 2. We work in the more
general setting of subsemigroups of locally compact abelian groups.

Our proof is similar to the operator algebraic proof of the Stone-von Neu-
mann theorem. It is well known ([10], [14]) that the C∗-algebra that encodes
the usual Weyl commutation relation is Morita equivalent toℂ. The Stone-von
Neumann theorem is then an immediate consequence of this Morita equiva-
lence. We establish a similar reasoning here. Based on the results obtained in
[13], we prove that the C∗-algebra that encodes the weak version of the Weyl
commutation relation considered in this paper is Morita equivalent to a com-
mutativeC∗-algebra. Thus, it follows at once that every factorial representation
is a multiple of an irreducible representation and the irreducible representa-
tions are parameterised by the character space of the underlying commutative
C∗-algebra. In the one-dimensional case, i.e. when P = [0,∞) and G = ℝ, the
commutative C∗-algebra is C0((−∞,∞]). This recovers the results obtained in
[4] and in [5].

The results obtained are next explained. Let G be a locally compact, second
countable, Hausdor� abelian group. We denote the dual group of G by Ĝ. We
use additive notation for the group operations in G. Let P ⊂ G be a closed
subsemigroup containing 0 such that P − P = G. Set Ω ∶= Int(P). We assume
that Ω is dense in P. For x, y ∈ G, we write x ≤ y if y − x ∈ P and x < y if
y − x ∈ Ω

Let U ∶= {U�}�∈Ĝ be a strongly continuous group of unitaries and let V ∶=
{Va}a∈P be a strongly continuous semigroup of isometries. We call (U,V) a
weak Weyl pair if U�Va = �(a)VaU� for every � ∈ Ĝ and for every a ∈ P.

Let (U,V) be a weak Weyl pair. For a ∈ P, let Ea ∶= VaV∗
a . We say that

(U,V) has commuting range projections if {Ea ∶ a ∈ P} is a commuting family
of projections. Note that if P = [0,∞) or, more generally, if the preorder ≤ is a
total order, every weakWeyl pair has commuting range projections (for a proof
see, for example, Example 7.7 of [13]).

Examples of weak Weyl pairs with commuting range projections are given
below. Let A be a non-empty closed subset of G which is P-invariant, i.e. A +
P ⊂ A. Such subsets will be called P-spaces. Let K be a Hilbert space whose
dimension we denote by k. Consider the Hilbert space H ∶= L2(A,K). For
� ∈ Ĝ, let U� be the unitary on H de�ned by U�f(y) = �(y)f(y). Then,
U ∶= {U�}�∈Ĝ is a strongly continuous group of unitaries on H. For a ∈ P, let
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Va be the isometry onH de�ned by

Va(f)(y) ∶=
⎧

⎨
⎩

f(y − a) if y − a ∈ A,

0 if y − a ∉ A.

Then, V = {Va}a∈P is a strongly continuous semigroup of isometries onH. It is
clear thatV has commuting range projections. It is routine to verify that (U,V)
is a weakWeyl pair. We call (U,V) the weakWeyl pair associated to the P-space
A with multiplicity k. If we want to stress the dependence of (U,V) on A and
k, we denote (U,V) by (U(A,k), V(A,k)).

The main theorem of this paper is stated below.

Theorem 1.1. We have the following.
(1) LetA be aP-space and letk ∈ {1, 2,⋯}∪{∞} be given. TheweakWeyl pair

(U(A,k), V(A,k)) is a factorial representation. Moreover, it is irreducible if
and only if k = 1.

(2) Let A, B be P-spaces and let k,l ∈ {1, 2,⋯} ∪ {∞}. The weak Weyl pair
(U(A,k), V(A,k)) is unitarily equivalent to (U(B,l), V(B,l)) if and only ifA =
B and k = l.

(3) Suppose (U,V) is a weak Weyl pair with commuting range projections.
Assume that the vonNeumannalgebra generated by the set {U�, Va ∶ � ∈
Ĝ, a ∈ P} is a factor. Then, there exists aP-spaceA andk ∈ {1, 2,⋯}∪{∞}
such that (U,V) is unitarily equivalent to (U(A,k), V(A,k)).

Thus, for weak Weyl pairs with commuting range projections, facto-
rial representations are completely reducible. Moreover, irreducible weak
Weyl pairs with commuting range projections are precisely those associ-
ated to P-spaces with multiplicity 1.

For P = [0,∞), as already mentioned, every weakWeyl pair has commuting
range projections. Also, every P-space is either ℝ or of the form [a,∞) for a
unique a ∈ ℝ. It is now clear that the results obtained in [4] and [5] for the
semibounded case follow from Thm. 1.1.

Morever, for irreducible weakWeyl pairs with commuting range projections,
we have the following uniqueness result. We need a bit of notation. Let U ∶=
{U�}�∈Ĝ be a strongly continuous group of unitaries on aHilbert spaceH. Then,
U determines a representation �U of C0(G) ≅ C∗(Ĝ) on H. We denote the
unique closed subset of G that corresponds to the ideal Ker(�U) by Spec(U).

Corollary 1.2. Let (U,V) and (Ũ, Ṽ) be irreducible weak Weyl pairs with com-
muting range projections. Assume that (U,V) acts on H and (Ũ, Ṽ) acts on H̃.
Suppose Spec(U) = Spec(Ũ). Then, there exists a unitary X ∶ H → H̃ such that
for � ∈ Ĝ and a ∈ P,

XU�X∗ = Ũ� ; XVaX∗ = Ṽa.
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What about weak Weyl pairs which do not have commuting range projec-
tions? For P = ℝ2

+, we demonstrate that working out the irreducible weak
Weyl pairs is a complicated task. We explain a procedure (preserving factorial-
ity, type and irreducibility) that allows us to buildweakWeyl pairs starting from
a representation of the free product c0(ℕ) ∗ c0(ℕ). We also prove that Corollary
1.2 no longer stays true if we relax the commutativity assumption on the range
projections.

We end this introduction by mentioning that weak Weyl relations, for one
degree of freedom, in the unbounded picture were analysed extensively in the
literature. Some of the important papers that deal with the unbounded version
are [11], [12], [7], [1], [2], and [3]. We do not touch the unbounded version here.
The author is of the belief that the C∗-algebra machinery may not be su�cient
to handle domain issues.

All the Hilbert spaces considered in this paper are assumed to be separable.
Moreover, we use the convention that the inner product is linear in the �rst
variable.

2. The equivalence between Isomc(P) and Rep(C0(Yu)⋊ G)
For the rest of this paper,G stands for an arbitrary but a �xed locally compact,

second countable, Hausdor� abelian group. The letter P stands for a closed
subsemigroup of G containing the identity element 0. We assume that Ω ∶=
Int(P) is dense in P. We also assume P − P = G. For x, y ∈ G, we say x ≤ y
(x < y) if y − x ∈ P (y − x ∈ Ω).

Let Isomc(P) be the collection (up to unitary equivalence) of isometric rep-
resentations of P with commuting range projections. In this section, we show
that there is a bijective correspondence between Isomc(P) and the collection of
non-degenerate representations of a certain crossed product. The proof is based
on the results obtained in [13].

Let C(G) be the set of closed subsets of G endowed with the Fell topology.
Let

Yu ∶= {A ∈ C(G) ∶ A ≠ ∅,−P + A ⊂ A}.
EndowYu with the subspace topology inherited from the Fell topology onC(G).
Then, Yu is a locally compact, second countable, Hausdor� space. Moreover,
the map

Yu × G ∋ (A, x)→ A + x ∈ Yu
de�nes an action of G on Yu. Set

Xu ∶= {A ∈ Yu ∶ −P ⊂ A} = {A ∈ Yu ∶ 0 ∈ A}.

Then, Xu is a compact subset of Yu. Clearly, Xu + P ⊂ Xu.
Let (sn) be a co�nal sequence in Ω. We claim that

Yu =
⋃

n≥1
(Xu − sn). (2.1)
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Let A ∈ Yu be given. Pick a point x ∈ A. Since (sn) is co�nal, there exists
a natural number n such that −x < sn. Hence, −x − sn ∈ −Ω ⊂ −P. Since
−P + A ⊂ A, it follows that −sn = (−x − sn) + x ∈ A. This implies that
0 ∈ A + sn. Hence, A + sn ∈ Xu. Equivalently, A ∈ Xu − sn. This proves the
claim.

Lemma 2.1. The collection {Xu + x ∶ x ∈ G} generates the Borel �-algebra of
Yu.

Proof. Let ℬ be the Borel �-algebra of Yu. Denote the �-algebra generated by
the collection {Xu + x ∶ x ∈ G} by ℬ0. Since Xu is compact, we have ℬ0 ⊂ ℬ.
For a compact subset F of G and for an open subset O of G, de�ne

UF ∶ = {A ∈ Yu ∶ A ∩ F = ∅},
UO ∶ = {A ∈ Yu ∶ A ∩ O ≠ ∅},
U ′

O ∶ = {A ∈ Yu ∶ A ∩ O = ∅}.
The sets UF ∩ UO1 ∩ UO2 ∩⋯UOn , as F and Oi’s vary, form a basis for the Fell
topology on Yu. Moreover, Yu is second countable. Thus, it su�ces to show
that for every compact set F and for every open set O, UO,UF ∈ ℬ0.

Fix an open set O of G. Let D ∶= {x1, x2,⋯} be a dense subset of O. Let
A ∈ Yu be given. Observe that A+Ω = ⋃

a∈A(a +Ω) is an open set contained
in A. Thus, A + Ω ⊂ Int(A). Since 0 ∈ Ω, Int(A) is dense in A. Thus, for
A ∈ Yu, A ∩ O ≠ ∅ if and only if Int(A) ∩ O ≠ ∅ if and only if A ∩ D ≠ ∅.
Therefore,

UO =
⋃

n≥1
(Xu + xn).

Hence, UO ∈ ℬ0 for every open set O of G.
Since U ′

O is the complement of UO, it follows that U
′

O ∈ ℬ0 for every open
set O of G. Let F be a compact subset of G. Choose a decreasing sequence of
open sets (On) such that {On ∶ n ≥ 1} forms a base at F. This means that if O
is an open set that contains F, then On ⊂ O eventually. Note that for a closed
subset A of G, A ∩ F = ∅ if and only if A ∩ On = ∅ eventually. Thus,

UF =
∞⋃

m=1

∞⋂

n=m
U ′

On
.

Hence, UF ∈ ℬ0 for every compact set F of G. This completes the proof. □

Let Rep(C0(Yu) ⋊ G) be the collection (up to unitary equivalence) of non-
degenerate representations of the crossed product C0(Yu) ⋊ G. We construct,
in this section, maps

Φ ∶ Rep(C0(Yu)⋊ G)→ Isomc(P)
and

Ψ ∶ Isomc(P)→ Rep(C0(Yu)⋊ G)
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that are inverses of each other.
Let (�,W) be a covariant representation of the dynamical system (C0(Yu), G)

on a separable Hilbert space K and let R be the projection valued measure on
Yu that corresponds to the homomorphism �. Then, we have the following
covariance relation: for a Borel subset E ⊂ Yu and x ∈ G,

WxR(E)W∗
x = R(E + x).

Set H ∶= R(Xu)K. Since Xu + P ⊂ Xu, it follows that the subspace H is
invariant under {Wa ∶ a ∈ P}. For a ∈ P, let Va be the operator on H de�ned
by Va ∶= Wa|H . Then, V ∶= {Va}a∈P is a strongly continuous semigroup of
isometries. Moreover, the collection {VaV∗

a ∶ a ∈ P} is a commuting family
of projections on H. If we want to stress the dependence of V on (�,W), we
denote V by V(�,W).

De�ne Φ ∶ Rep(C0(Yu)⋊ G)→ Isomc(P) by
Φ((�,W)) = V(�,W).

The construction of the map Ψ ∶ Isomc(P) → Rep(C0(Yu)⋊ G) is based on
the results obtained in [13]. Let V ∶= {Va}a∈P be a strongly continuous semi-
group of isometries on a Hilbert space H. For a ∈ P, set Ea ∶= VaV∗

a . Assume
that V has commuting range projections, i.e. {Ea ∶ a ∈ P} is a commuting
family of projections. Let z ∈ G be given. Write z = a − b with a, b ∈ P and
set Tz ∶= V∗

bVa. The following facts were proved in Prop. 3.4 of [13].
(1) The operator Tz is well-de�ned and is a partial isometry.
(2) For z ∈ G, denote the range projection of Tz by Ez. Then, the family

{Ez ∶ z ∈ G} is a commuting family of projections.
(3) The map G ∋ z → Tz ∈ B(H) is strongly continuous. Consequently,

the map G ∋ z → Ez ∈ B(H) is strongly continuous.
For f ∈ Cc(G), set

Ef ∶= ∫ f(z)Ezdz.

Denote the C∗-algebra generated by {Ef ∶ f ∈ Cc(G)} by D. Note that for
f ∈ Cc(G), if supp(f) ⊂ −Ω and ∫ f(z)dz = 1, then Ef = 1. Thus, D is a
unital commutative C∗-subalgebra of B(H). Let D̂ be the space of characters of
D. By Prop. 4.6 and by Prop. 4.7 of [13], there exists an injective continuous
map D̂ ∋  → A ∈ Xu, denoted �, such that

 
(
∫ f(z)Ezdz

)
= ∫ f(z)1A (z)dz

for every f ∈ Cc(G).
Let � ∶ C(D̂) → D ⊂ B(H) be the inverse of the Gelfand transform. De�ne

a unital ∗-homomorphism � ∶ C(Xu) → D ⊂ B(H) by �(f) = �(f◦�). Denote
the spectral measure of � by Q. By Lemma 7.1 of [13], we have the following
covariance relations. For a Borel set E ⊂ Xu and a ∈ P,

VaQ(E)V∗
a = Q(E + a) (2.2)
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and
V∗
aQ(E)Va = Q((E − a) ∩ Xu). (2.3)

Let (W,K) be the minimal unitary dilation of V. This means the following.
(1) The Hilbert space K containsH as a closed subspace.
(2) W = {Wx}x∈G is a strongly continuous group of unitaries on K.
(3) For a ∈ P and � ∈ H,Wa� = Va�.
(4) The union

⋃
a∈PW

∗
aH is dense in K.

For the existence of theminimal unitary dilation of an isometric representation,
we refer the reader to Thm. 3.2 of [8].

Next, we construct a projection valued measure R on Yu taking values in
B(K). Wewillwrite operators onK in blockmatrix formw.r.t the decomposition
K = H ⊕H⟂. For a ∈ P, sinceWa|H = Va, the operatorWa is of the form

Wa = [Va ∗
0 ∗] .

Let (sn) be a co�nal sequence in Ω. By replacing sn with
∑n

k=1 sk, we can
make the sequence (sn) increasing, i.e. sn < sn+1 for every n. SinceXu+P ⊂ Xu,
we have Xu − sn ⊂ Xu − sn+1. By Eq. 2.1, (Xu − sn)n≥1 ↗ Yu. Let n ≥ 1 be
given. For a Borel subset E ⊂ Xu − sn, de�ne

Rn(E) ∶=W∗
sn [

Q(E + sn) 0
0 0]Wsn .

Then, Rn is a projection valued measure on Xu − sn.
Let n ≥ 1 be given. Let E ⊂ Xu − sn ⊂ Xu − sn+1 be a Borel subset. We claim

that Rn+1(E) = Rn(E). Write sn+1 = sn + tn with tn ∈ Ω. Then,

Rn+1(E) =W∗
sn+tn [

Q((E + sn) + tn) 0
0 0]Wsn+tn

=W∗
snW

∗
tn [

VtnQ(E + sn)V∗
tn 0

0 0]WtnWsn

=W∗
snW

∗
tn [
Vtn ∗
0 ∗] [

Q(E + sn) 0
0 0] [

Vtn ∗
0 ∗]

∗
WtnWsn

=W∗
snW

∗
tnWtn [

Q(E + sn) 0
0 0]W

∗
tnWtnWsn

=W∗
sn [

Q(E + sn) 0
0 0]Wsn

= Rn(E).
This proves the claim.

Since the sequence of projection valued measures (Rn)n≥1 is consistent and
the sequence (Xu − sn)n≥1 ↗ Yu, there exists a unique projection valued mea-
sure, denoted R, on Yu that takes values in B(K) such that for a Borel subset
E ⊂ Xu − sn, R(E) = Rn(E).
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Let b ∈ P be given. Suppose E ⊂ Xu − b is a Borel subset. We claim that

R(E) =W∗
b [Q(E + b) 0

0 0]Wb. (2.4)

Choose n ≥ 1 such that sn > b. Note thatXu−b ⊂ Xu−sn andR(E) = Rn(E).
Write sn = b + tn for some tn ∈ Ω. A computation exactly similar to the one
required to prove Rn+1|Xu−sn = Rn shows that

R(E) =W∗
sn [

Q(E + sn) 0
0 0]Wsn =W∗

b [Q(E + b) 0
0 0]Wb.

This proves the claim.
Next, we prove that R(Yu) = 1. Let b ∈ P be given. It follows from Eq. 2.4

that R(Xu−b) is the orthogonal projection ontoW∗
bH. Hence, R(Yu)K contains

W∗
bH for every b ∈ P. Consequently, R(Yu)K contains the union

⋃
b∈PW

∗
bH

which is dense in K. Therefore, R(Yu) = 1.
Let a ∈ P be given. Let n ≥ 1. Suppose E ⊂ Xu − sn is a Borel subset. We

claim thatW∗
aR(E)Wa = R(E−a). Note that E−a ⊂ Xu −(sn +a). By Eq. 2.4,

we have

R(E − a) =W∗
sn+a [Q((E − a) + sn + a) 0

0 0]Wsn+a

=W∗
aW∗

sn [
Q(E + sn) 0

0 0]WsnWa

=W∗
aR(E)Wa.

This proves the claim. Since (Xu − sn) ↗ Yu, it follows that for every Borel
subset E ⊂ Yu and for a ∈ P,

W∗
aR(E)Wa = R(E − a).

Since P − P = G, we have the following covariance relation. For z ∈ G and a
Borel subset E ⊂ Yu,

WzR(E)W∗
z = R(E + z). (2.5)

Let � be the non-degenerate representation of C0(Yu) associated to the pro-
jection valued measure R, i.e. for f ∈ C0(Yu),

�(f) = ∫ fdR.

Thanks to Eq. 2.5, it follows that (�,W) is a covariant representation of the
dynamical system (C0(Yu), G). To denote the dependence of (�,W) on V, we
denote (�,W) by (�V ,WV). De�ne Ψ ∶ Isomc(P)→ Rep(C0(Yu)⋊ G) by

Ψ(V) = (�V ,WV).

Theorem 2.2. The map

Φ ∶ Rep(C0(Yu)⋊ G) ∋ (�,W)→ V(�,W) ∈ Isomc(P)
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and the map

Ψ ∶ Isomc(P) ∋ V → (�V ,WV) ∈ Rep(C0(Yu)⋊ G)
are inverses of each other.

Proof. Let (�,W) ∈ Rep(C0(Yu)⋊G) be given. Let R be the projection valued
measure onYu associated to�. Suppose that (�,W) acts onK. SetV ∶= V(�,W).
We need to show that (�V ,WV) = (�,W).

First, we claim thatW is the minimal unitary dilation of V. Recall that, by
de�nition,V acts onH = R(Xu)K andV = {Va}a∈P is the restriction of {Wa}a∈P
ontoH. Thus,W is a dilation ofV. It is enough to show that

⋃
a∈PW

∗
aH is dense

in K.
Let (sn) be an increasing co�nal sequence in Ω. Observe that the sequence

(Xu − sn)n≥1 ↗ Yu. Thus, R(Xu − sn) = W∗
snR(Xu)Wsn ↗ 1 strongly. Clearly,

R(Xu − sn) is the orthogonal projection ontoW∗
snH. Thus,

⋃
n≥1W

∗
snH is dense

in K. This proves thatW is the minimal unitary dilation of V. Thus,WV =W.
Next, we show that � = �V . Denote the projection valued measure associ-

ated to �V by RV . By de�nition, for x ∈ G, R(Xu + x) is the orthogonal pro-
jection ontoWxH and by Eq. 2.4 and by Eq. 2.5, RV(Xu + x) is the orthogonal
projection ontoWxH. Thus,

R(Xu + x) = RV(Xu + x) (2.6)

for every x ∈ G. By Lemma 2.1, R(E) = RV(E) for every Borel set E ⊂ G.
Hence, R = RV and consequently, � = �V . This completes the proof of the
assertion Ψ◦Φ = Id.

Let V ∈ Isomc(P) be given. Suppose that V acts on H. Denote (�V ,WV)
by (�,W) and let K be the Hilbert space on which (�,W) acts. Denote the
projection valued measure on Yu associated to � by R. Let Ṽ = V(�,W). For
a ∈ P,Va is the restriction ofWa toH and Ṽa is the restriction ofWa toR(Xu)K.
By Eq. 2.4, R(Xu)K = H. Consequently, Ṽ = V. Hence Φ◦Ψ = Id. The proof
is now complete. □

3. Proof of the main theorem
With Thm. 2.2 in hand, the conceptual explanation for Thm. 1.1 is quite

simple. Having a unitary group, indexed by Ĝ, implementing theWeyl commu-
tation relation is equivalent to having a unitary group implementing the dual
action on C0(Yu) ⋊ G. Then, Thm. 1.1 is a straightforward consequence of
Takai duality. We explain some details below.

LetWc(P, Ĝ) denote the collection (up to unitary equivalence) of weakWeyl
pairs with commuting range projections. Consider the dual action of Ĝ on
C0(Yu)⋊ G. We prove below thatWc(P, Ĝ) ≅ Rep((C0(Yu)⋊ G)⋊ Ĝ).

Theorem 3.1. There exist maps

Ψ ∶Wc(P, Ĝ)→ Rep((C0(Yu)⋊ G)⋊ Ĝ)
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and
Φ ∶ Rep((C0(Yu)⋊ G)⋊ Ĝ)→Wc(P, Ĝ)

such that Φ and Ψ are inverses of each other.

Proof. Let ((�,W), U) ∈ Rep((C0(Yu)⋊G)⋊ Ĝ) be given. The projection val-
ued measure on Yu associated to � will be denoted R. Suppose that ((�,W), U)
acts on K. Set V ∶= V(�,W). By de�nition, V acts on H = R(Xu)K. Since
U ∶= {U�}�∈Ĝ commutes with �(C0(Yu)), it follows that U� commutes with
R(Xu) and consequently mapsH ontoH. Clearly, (U|H , V(�,W)) is a weakWeyl
pair onH with commuting range projections. We de�ne

Φ((�,W), U) = (U|H , V(�,W)).

Let (U,V) ∈ Wc(P, Ĝ) be given. Suppose that (U,V) acts on H. By Thm.
2.2, there exists (�,W) ∈ Rep(C0(Yu)⋊G) such that V = V(�,W). Suppose that
(�,W) acts onK. Then,H = R(Xu)K where R is the projection valued measure
associated to �. Recall thatW is the minimal unitary dilation of V.

Let � ∈ Ĝ be given. We claim that there exists a unique unitary operator Ũ�
on K such that
(C1) for � ∈ H, Ũ�� = U��, and
(C2) for x ∈ G, Ũ�Wx = �(x)WxŨ�.

Conditions (C1) and (C2) together with the fact that
⋃

a∈PW
∗
aH is dense in K

clearly determine the operator Ũ� uniquely.
We show below the existence. De�ne Ũ� on the dense subspace

⋃
a∈PW

∗
aH

as follows: for � ∈W∗
aH, set

Ũ�� = �(a)W∗
aU�Wa�.

Let a, b ∈ P and let � ∈ W∗
aH ∩W∗

bH be given. SinceWxH ⊂ H for x ∈ P,
it follows thatW∗

aH ∩W∗
bH ⊂ W∗

a+bH. Calculate as follows to observe that

�(a + b)W∗
a+bU�Wa+b� = �(a + b)W∗

aW∗
bU�WbWa�

= �(a + b)W∗
aW∗

bU�VbWa� (sinceWa� ∈ H)

= �(a + b)W∗
aW∗

b�(b)VbU�Wa�

= �(a)W∗
aW∗

bWbU�Wa� (since U�Wa� ∈ H)

= �(a)W∗
aU�Wa�.

Similarly, �(a + b)W∗
a+bU�Wa+b� = �(b)W∗

bU�Wb�. This shows that Ũ� is
well de�ned. It is clear from the de�nition that Ũ� is an isometry on D ∶=⋃

a∈PW
∗
aH and maps D onto D. Thus, Ũ� extends to a unitary operator on K

which we again denote by Ũ�.
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By de�nition, Ũ� restricted to H coincides with U�. Next, we check that on
the dense subspace D ∶= ⋃

b∈PW
∗
bH

Ũ�Wa = �(a)WaŨ�

for a ∈ P.
Let a ∈ P be given. Suppose b ∈ P and � ∈ W∗

bH. Then,W∗
a� ∈ W∗

a+bH.
Calculate as follows to observe that

WaŨ�W∗
a� = �(a + b)WaW∗

a+bU�Wa+bW∗
a�

(
by the defn. of Ũ�

)

= �(a) �(b)W∗
bU�Wb�

= �(a)Ũ��
(
by the defn. of Ũ�

)
.

Thus, WaŨ�W∗
a = �(a)Ũ� on the dense subspace D. Consequently, we have

Ũ�Wa = �(a)WaŨ� for every a ∈ P.
Since P spans G and {Wx}x∈G is a group of unitaries, it follows that

Ũ�Wx = �(x)WxŨ�

for x ∈ G. Thus, we have established the existence of the unitary operator Ũ�
on K for which (C1) and (C2) are satis�ed.

Note that for x ∈ G, R(Xu + x) is the orthogonal projection ontoWxH. Let
� ∈ Ĝ be given. By the de�nition of Ũ�, Ũ� mapsW∗

aH ontoW∗
aH for every

a ∈ P. Thus, Ũ� commutes with {R(Xu − a) ∶ a ∈ P}. Let x ∈ G be given.
Write x = a− b with a, b ∈ P. Then, R(Xu + x) =WaR(Xu − b)W∗

a . Thanks to
theWeyl commutation relation and the fact that Ũ� commutes with R(Xu−b),
it follows that Ũ� commutes with R(Xu + x) for every x ∈ G. By Lemma 2.1,
Ũ� commutes with R(E) for every Borel set E ⊂ Yu. Thus, Ũ� ∈ �(C0(Yu))

′ .
We leave it to the reader to verify that Ũ ∶= {Ũ�}�∈Ĝ is a strongly continuous

group of unitaries on K. We have now proved that ((�,W), Ũ) is a representa-
tion of the dynamical system (C0(Yu)⋊ G, Ĝ). Set

Ψ(U,V) = ((�,W), Ũ).
Then, Ψ and Φ are inverses of each other. We omit this routine veri�cation.

□

Next, we show that the maps Φ and Ψ of Thm. 3.1 take factorial represen-
tations to factorial representations and take irreducible representations to irre-
ducible representations.

Let ((�,W), U) be a representation of (C0(Yu)⋊G, Ĝ) and letK be theHilbert
space onwhich it acts. The projection valuedmeasure onYu associated to�will
be denoted by R. Let Φ((�,W), U) = (U|H , V)whereH = R(Xu)K. Denote the
von Neumann algebra generated by {�(�),Wx, U� ∶ � ∈ C0(Yu), x ∈ G, � ∈
Ĝ} by M and the von Neumann algebra on H generated by {Va, U�|H ∶ a ∈
P, � ∈ Ĝ} by N.
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Proposition 3.2. Keep the foregoing notation. The map

M′ ∋ T → T|H ∈ N′

is an isomorphism of von Neumann algebras. Consequently, the maps Φ and Ψ
map factorial representations to factorial representations and irreducible repre-
sentations to irreducible representations.

Proof. Let T ∈ M′ be given. Since T commutes with {�(�) ∶ � ∈ C0(Yu)}, it
follows thatT commuteswithR(E) for every Borel subsetE ⊂ Yu. In particular,
T commutes with R(Xu) which is the projection onto H. We decompose K as
K = H⊕H⟂ and write operators onK in blockmatrix form. Since T commutes

with [1 0
0 0], T is of the form

T = [T0 0
0 T1

] .

Let � ∈ Ĝ and a ∈ P be given. Then, U� andWa are of the form

U� = [U�|H 0
0 U�|H⟂

]

and

Wa = [Va ∗
0 ∗] .

Since T commutes with U�, it follows that T0 commutes with U�|H . Since T
commuteswithWa andW∗

a , it follows thatT commuteswithVa andV∗
a . Hence,

T0 ∈ N′ .
Thus, the mapM′ ∋ T → T0 = T|H ∈ N′ is well de�ned. Writing operators

in M′ in the block diagonal form as above and performing routine computa-
tions, we see that the map

M′ ∋ T → T0 = T|H ∈ N′

is a ∗-algebra homomorphism.
Let T ∈ M′ . Suppose T|H = 0. Let a ∈ P and � ∈ H be given. Since T

commutes withW∗
a , it follows that

TW∗
a� =W∗

aT� = 0.

Therefore, T vanishes on
⋃

a∈PW
∗
aH which is dense in K. Hence, T = 0. This

shows that the mapM′ ∋ T → T0 = T|H ∈ N′ is injective.
LetU0 ∈ N′ be a unitary operator. We claim that there exists a unitary oper-

ator U on K such that
(D1) for � ∈ H, U� = U0�, and
(D2) for x ∈ G, UWx =WxU.
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The construction of U is similar to the construction of Ũ� done in Thm. 3.1.
We de�neU on the dense subspaceD ∶= ⋃

a∈PW
∗
aH as follows: for � ∈W∗

aH,
set

U� =W∗
aU0Wa�.

Calculations similar to the one carried out in Thm. 3.1 show that U is a well
de�ned unitary operator that satisfy (D1) and (D2).

SinceU agrees withU0 onH, it follows thatUmapsH ontoH. Moreover,U
commutes withWx for every x ∈ G. Thus, U mapsWxH ontoWxH for every
x ∈ G. Consequently, for x ∈ G, U commutes with the orthogonal projection
ontoWxH which is R(Xu+x). By Lemma 2.1, it follows thatU commutes with
R(E) for every Borel subset E ⊂ Yu. Thus, U ∈ �(C0(Yu))

′ .
Let � ∈ Ĝ be given. Suppose a ∈ P and � ∈ W∗

aH. Observe that U�� ∈
W∗

aH. Calculate as follows to observe that

UU�� =W∗
aU0WaU��

= �(a)W∗
aU0U�Wa�

= �(a)W∗
aU�U0Wa�

(
sinceWa� ∈ H and U�U0� = U0U�� if � ∈ H

)

= �(a)�(a)U�W∗
aU0Wa�

= U�U�.

Thus,UU� andU�U agree on the dense subspace
⋃

a∈PW
∗
aH. Therefore,UU� =

U�U for every � ∈ Ĝ.
We have now shown that U ∈ M′ and by (D1), U|H = U0. This shows that

every unitary operator inN′ lies in the image of the homomorphismM′ ∋ T →
T|H ∈ N′ . Consequently, the map

M′ ∋ T → T|H ∈ N′

is surjective. This completes the proof. □

Thm. 1.1 is an immediate consequence of Thm. 3.1, Prop. 3.2 and Takai
duality. Takai duality asserts that (C0(Yu)⋊G)⋊ Ĝ ≅ C0(Yu)⊗K(L2(G)). As a
consequence, Rep((C0(Yu)⋊G)⋊ Ĝ) ≅ Rep(C0(Yu)). The proof of Thm. 1.1 is
essentially transporting the representation theory of C0(Yu) toWc(P, Ĝ) using
Thm. 3.1 and by making using of the explicit isomorphism between the C∗-
algebras (C0(Yu)⋊G)⋊Ĝ andC0(Yu)⊗K(L2(G)). For the explicit isomorphism
involved in Takai duality, we refer the reader to either [9] or [14].

Proof of Thm. 1.1. We denote the set {1, 2,⋯} ∪ {∞} by ℕ∞. Suppose K is
a Hilbert space of dimension k ∈ ℕ∞. Let K ∶= L2(G,K). Fix an element
B ∈ Yu. De�ne a representation �(B,k) of C0(Yu) on K by

�(B,k)(f)�(x) = f(B + x)�(x).
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For x ∈ G, letWx be the unitary on K de�ned by

Wx�(y) = �(y − x).
For � ∈ Ĝ, let U� be the unitary operator on K de�ned by

U��(y) = �(y)�(y).

Let V ∶= V(�(B,k),W) and let R ∶= R(B,k) be the projection valued measure
associated to �(B,k). Observe that for � ∈ K,

R(Xu)�(x) = 1Xu(B + x)�(x) = 1B(−x)�(x) = 1−B(x)�(x).
Thus, R(Xu)K = L2(−B,K). By de�nition, V is the compression of the left
regular representation onto L2(−B,K). Thus, V coincides with the isometric
representation V(−B,k) de�ned in the introduction. Clearly, the restriction of
{U�}�∈Ĝ to the subspace R(Xu)K = L2(−B,K) coincides with U(−B,k) de�ned
in the introduction. Thus,

Φ((�(B,k),W), U) = (U(−B,k), V(−B,k)).
By Takai duality, it follows that {((�(B,k),W), U) ∶ (B, k) ∈ Yu × ℕ∞} form a

mutually inequivalent exhaustive list of factorial representations of (C0(Yu)⋊
G)⋊ Ĝ. By Thm. 3.1 and by Prop. 3.2, it follows that

{Φ(((�(B,k),W), U)) ∶ (B, k) ∈ Yu × ℕ∞},
which coincides with the collection

{(U(−B,k), V(−B,k)) ∶ (B, k) ∈ Yu × ℕ∞},
form a mutually inequivalent exhaustive list of weak Weyl pairs with commut-
ing range projections that are factorial.

Again by Takai duality, it follows that {((�(B,1),W), U) ∶ B ∈ Yu} form a
mutually inequivalent exhaustive list of irreducible representations of the C∗-
algebra (C0(Yu)⋊ G)⋊ Ĝ. Thanks to Thm. 3.1 and Prop. 3.2, it follows that

{Φ(((�(B,1),W), U)) ∶ B ∈ Yu},
which coincides with the collection

{(U(−B,1), V(−B,1)) ∶ B ∈ Yu},
form a mutually inequivalent exhaustive list of irreducible weak Weyl pairs
with commuting range projections. This completes the proof of Thm. 1.1.
□

What about weak Weyl pairs which do not have commuting range projec-
tions? If we drop the assumption that the range projections commute, then
we show that, for P = ℝ2

+, we can construct weak Weyl pairs that generate
a factor of both type II and type III. Moreover, we also illustrate that classify-
ing all the irreducible weak Weyl pairs is a complicated task, a task that is at
least as hard as classifying the irreducible representations of the free product
c0(ℕ) ∗ c0(ℕ). More precisely, we explain a procedure (preserving factoriality,
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type and irreducibility) that allows us to build weak Weyl pairs starting from a
non-degenerate representation of the free product c0(ℕ) ∗ c0(ℕ).

For the rest of this paper, we assume that P = ℝ2
+ = [0,∞) × [0,∞) and

G = ℝ2. We identify Ĝ with ℝ2 in the usual way. Let {Pm}m≥1 and {Qn}n≥1 be
two sequences of projections on a Hilbert space K such that PiPj = �ijPi and
QkQl = �klQk. Writing down two such sequences of projections on a Hilbert
space K is clearly equivalent to de�ning a representation of the free product
c0(ℕ) ∗ c0(ℕ) on K.

Denote the set of projections on K by P(K). De�ne F ∶ ℤ2 → P(K) by

F(m,n) ∶=

⎧
⎪
⎨
⎪
⎩

∑m
k=1 Pk ifm ≥ 1 and n = 0,∑n
k=1 Qk ifm = 0 and n ≥ 1,

1 ifm ≥ 1, n ≥ 1,
0 otherwise.

Note that if (m, n) ∈ ℤ2 and (p, q) ∈ ℕ2, F(m+p,n+q) ≥ F(m,n).
Let R ∶= [0, 1] × [0, 1] be the unit square and suppose that � is the Lebesgue

measure on R. Consider L∞(R, d�) as a C∗-algebra and let X be the character
space of L∞(R, d�). Fix a, b, c, d ∈ (0, 1) such that a < b and c < d. Fix a point
z0 ∈ X such that 1[a,b]×[c,d](z0) ≠ 0.

De�ne a map E ∶ ℝ2
+ → P(K) as follows. Let (s, t) ∈ ℝ2

+ be given. Letm be
the integral part of s and let n be the integral part of t. Set

R0(s, t) ∶ = [0, m + 1 − s] × [0, n + 1 − t]
R1(s, t) ∶ = [0, m + 1 − s] × [n + 1 − t, 1]
R2(s, t) ∶ = [m + 1 − s, 1] × [0, n + 1 − t]
R3(s, t) ∶ = [m + 1 − s, 1] × [n + 1 − t, 1].

De�ne E(s,t) by the following formula.

E(s,t) ∶=1R0(s,t)(z0)F(m,n) + 1R1(s,t)(z0)F(m,n+1)
+ 1R2(s,t)(z0)F(m+1,n) + 1R3(s,t)(z0)F(m+1,n+1).

Since {1Ri }
3
i=0 is an orthogonal family in L∞(R, d�) that sum up to 1, exactly one

term survives in the above expression. Consequently, E(s,t) is a projection.

Lemma 3.3. With the foregoing notation, we have the following.
(1) The map E ∶ ℝ2

+ → P(K) is increasing, i.e E(s,t) ≤ E(s+s0,t+t0) for (s, t) ∈
ℝ2
+ and for every (s0, t0) ∈ ℝ2

+.
(2) For �, � ∈ K, the map

ℝ2
+ ∋ (s, t)→ ⟨E(s,t)�|�⟩ ∈ ℂ

is Lebesgue measurable.
(3) Let (m, n) ∈ ℕ2 be given. The set {(s, t) ∈ ℝ2

+ ∶ E(s,t) = F(m,n)} contains
a Lebesgue measurable set of positive measure.



REPRESENTATIONS OF THE WEAK WEYL COMMUTATION RELATION 1527

Proof. The proof of (1) is a case by case veri�cation. Let (s, t) ∈ ℝ2
+ be given.

Suppose s1 > s. Let m be the integral part of s, p the integral part of s1 and n
the integral part of t.
Case 1: m < p.
Let r ∶= m + 1 − s and r1 = p + 1 − s1.
Case (a): r ≤ r1.
Case (i): 1R0(s,t)(z0) = 1. In this case, E(s,t) = F(m,n). Note that R0(s1, t) con-

tains R0(s, t). Thus, 1R0(s,t) ≤ 1R0(s1,t) in L
∞(R, d�). Consequently, 1R0(s1,t)(z0) =

1. Therefore, E(s1,t) = F(p,n). Since F(p,n) ≥ F(m,n), we have E(s1,t) ≥ E(s,t).
Case (ii): 1R1(s,t)(z0) = 1. We can argue as in Case (i) and deduce E(s1,t) ≥

E(s,t).
Case (iii): 1R2(s,t)(z0) = 1. In this case, E(s,t) = F(m+1,n). Note that the

union R2(s1, t) ∪ R0(s1, t) contains R2(s, t). Therefore, either 1R0(s1,t)(z0) = 1 or
1R2(s1,t)(z0) = 1. This means that E(s1,t) is either F(p,n) or F(p+1,n). Both F(p,n)
and F(p+1,n) are greater than F(m+1,n) as F is increasing and as p ≥ m+1. Thus,
E(s1,t) ≥ E(s,t).
Case (iv): 1R3(s,t)(z0) = 1. In this case, E(s,t) = F(m+1,n+1). Note that the

union R3(s1, t) ∪ R1(s1, t) contains R3(s, t). Therefore, either 1R3(s1,t)(z0) = 1 or
1R1(s1,t)(z0) = 1. This means that E(s1,t) is either F(p+1,n+1) or F(p,n+1). In either
case, E(s1,t) ≥ E(s,t).
Case (b): r > r1. The analysis here is similar and we can conclude E(s,t) ≤

E(s1,t).
Case 2: m = p. The analysis here is similar to Case 1 (in this case, Case (a)

does not arise) and we can conclude that E(s,t) ≤ E(s1,t).
Thus, we have proved that E(s,t) ≤ E(s+s0,t) for every (s, t) ∈ ℝ2

+ and for every
s0 ≥ 0. An exactly similar argument shows E(s,t) ≤ E(s,t+t0) for every (s, t) ∈ ℝ2

+
and t0 ≥ 0. Hence, the function E is increasing. This proves (1).

To prove (2), thanks to the polarisation identity, it su�ces to show, that for
every � ∈ K, the map ℝ2

+ ∋ (s, t) → ⟨E(s,t)�|�⟩ ∈ ℝ is Lebesgue measurable.
To that e�ect, let � ∈ K be given and de�ne � ∶ ℝ2 → [0,∞) by

�(s, t) ∶=
⎧

⎨
⎩

⟨E(s,t)�|�⟩ if (s, t) ∈ ℝ2
+,

0 if (s, t) ∉ ℝ2
+.

Then, � is increasing, i.e. if s1 ≤ s2 and t1 ≤ t2, then �(s1, t1) ≤ �(s2, t2). It
follows from Thm. 4 of [6] that � is Lebesgue measurable. This proves (2).

Let (m, n) ∈ ℕ2. Let
A ∶= {(s, t) ∈ [m,m + 1) × [n, n + 1) ∶ (m + 1 − s, n + 1 − t) ∈ (b, 1) × (d, 1)}.
Then, A is a Borel set of positive measure. Let (s, t) ∈ A be given. Note that
R0(s, t) contains [a, b] × [c, d]. Since 1[a,b]×[c,d](z0) = 1, 1R0(s,t)(z0) = 1. Con-
sequently, for (s, t) ∈ A, E(s,t) = F(m,n). This proves that A is contained in
{(s, t) ∈ ℝ2

+ ∶ E(s,t) = F(m,n)}. The proof of (3) is complete. □
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Extend E to the whole of ℝ2 by setting E(s,t) = 0 if (s, t) ∉ ℝ2
+. Then, the

extended map E ∶ ℝ2 → P(K) is still increasing and Lebesgue measurable.
Let L ∶= L2(ℝ2, K) be the space of square integrable Lebesgue measurable

functions taking values in K. For (x, y) ∈ ℝ2, let U(x,y) be the unitary on L
de�ned by

U(x,y)f(u, v) ∶= ei(ux+vy)f(u, v).
For (s, t) ∈ ℝ2, letW(s,t) be the unitary on L de�ned by

W(s,t)f(u, v) = f(u − s, v − t).

De�ne a projection Ẽ ∶ L → L by

Ẽf(u, v) = E(u,v)f(u, v).

SetH ∶= Ran(Ẽ). Note thatU(x,y) commutes with Ẽ. Thus,U(x,y)mapsH onto
H. We denote the restriction of U(x,y) toH again by U(x,y).

Using the fact that E is increasing, it is routine to verify that if (s, t) ∈ ℝ2
+,

then ẼW(s,t)Ẽ = W(s,t)Ẽ. In other words, the subspace H is invariant under
{W(s,t) ∶ (s, t) ∈ ℝ2

+}. For (s, t) ∈ ℝ2
+, let V(s,t) be the isometry onH de�ned by

V(s,t) =W(s,t)|H .

Then, V ∶= {V(s,t)}(s,t)∈ℝ2
+
is a strongly continuous semigroup of isometries

on H. Similarly, U ∶= {U(x,y)|H}(x,y)∈ℝ2 is a strongly continuous group of uni-
taries. Clearly, (U,V) is a weak Weyl pair.

Let us �x notation. De�ne

M0 ∶ =W∗{U(x,y)|H , V(s,t) ∶ (x, y) ∈ ℝ2, (s, t) ∈ ℝ2
+},

M1 ∶ =W∗{U(x,y),W(s,t), Ẽ ∶ (x, y) ∈ ℝ2, (s, t) ∈ ℝ2},
N ∶ =W∗{F(m,n) ∶ (m, n) ∈ ℕ2} =W∗{1, Pm, Qn ∶ m ∈ ℕ, n ∈ ℕ}.

Note thatM0 acts onH,M1 acts on L andN acts on K. For a bounded operator
T on K, let T̃ be the operator on L de�ned by

T̃f(y) = Tf(y).

Proposition 3.4. With the foregoing notation, we have the following.
(1) The mapN′ ∋ T → T̃ ∈ M′

1 is an isomorphism.
(2) (W,L) is the minimal unitary dilation of V.
(3) Let t ∈ {I, II, III}. The von Neumann algebra M0 is a factor of type t if

and only ifN is a factor of type t.
(4) The weak Weyl pair (U,V) is irreducible if and only ifN′ = ℂ.

Proof. From a routine computation, we see that if T ∈ N′ , then T̃ ∈ M′

1. Let
S ∈ M′

1 be given. Note that

W∗{U(x,y),W(s,t) ∶ (x, y) ∈ ℝ2, (s, t) ∈ ℝ2} = B(L2(ℝ2))⊗ 1 ⊂ B(L2(ℝ2)⊗K).
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Therefore, there exists T ∈ B(K) such that S = T̃. The fact that S commutes
with Ẽ translates to the equation

TE(s,t) = E(s,t)T

for almost all (s, t) ∈ ℝ2
+. By (3) of Lemma 3.3, T commutes with F(m,n) for

every (m, n) ∈ ℕ2. Thus, T ∈ N′ . This completes the proof of (1).
By de�nition, (W,L) is a dilation of V. Let Q be the projection onto the

closure of the subspace
⋃

(s,t)∈ℝ2
+
W∗

(s,t)H. Note that Ran(Q) is invariant un-
der U(x,y) and W(s,t) for every (x, y) ∈ ℝ2 and for every (s, t) ∈ ℝ2. Thus,
Q ∈ {U(x,y),W(s,t) ∶ (x, y), (s, t) ∈ ℝ2}′ . Consequently, Q = R̃ for some projec-
tion R on K.

The conditionQ ≥ Ẽ translates to the fact thatR ≥ E(s,t) for almost all (s, t) ∈
ℝ2
+. Thanks to (3) of Lemma 3.3, R ≥ F(1,1) = 1. Thus, R = 1 and hence Q = 1.

This proves (2).
As in Prop. 3.2, it is not di�cult to prove using the fact that (W,L) is the

minimal unitary dilation of V thatM′

1 ∋ T → T|H ∈ M′

0 is an isomorphism of
von Neumann algebras. Now, (3) and (4) follow from (1). □

Remark 3.5. We conclude this paper with the following remarks.

(1) Thanks to Prop. 3.4, we can construct an irreducible weakWeyl pair start-
ing from an irreducible representation of the free product c0(ℕ) ∗ c0(ℕ).
Moreover, inequivalent irreducible representations of c0(ℕ) ∗ c0(ℕ) lead
to inequivalent weakWeyl pairs. Thus, listing out all the irreducible weak
Weyl pairs is at least as hard as describing the dual of c0(ℕ) ∗ c0(ℕ). Up to
the author’s knowledge, a “good description" of the dual of c0(ℕ) ∗ c0(ℕ)
(or even the dual of some of its natural quotients like C∗(ℤn ∗ ℤm)) is not
available in the literature.

(2) Observe that for theweakWeyl pair (U,V) constructed inProp. 3.4, Spec(U)
is independent of the underlying representation of the free product c0(ℕ) ∗
c0(ℕ) as long asF(m,n) ≠ 0 for (m, n) ∈ ℕ2∖{(0, 0)}. Thus, Corollary 1.2 is
not true without the commutativity assumption on the range projections.

(3) Prop. 3.4 allows us to construct weak Weyl pairs that generate a factor of
both type II and type III. This is because c0(ℕ) ∗ c0(ℕ) admit factorial
representations of type II and type III as the C∗-algebra c0(ℕ) ∗ c0(ℕ) is
not of type I.

(4) Let P be a closed convex cone in ℝd which we assume is spanning, i.e.
P − P = ℝd and pointed, i.e. P ∩ −P = {0}. Assume d ≥ 2. Building on
the two dimensional case, it is not di�cult to construct, in this case, weak
Weyl pairs (U,V) that generate a factor of both type II and type III. Also, it
is possible to construct a continuum of irreducible weakWeyl pairs which
do not have commuting range projections.
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