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Embedding dimension of the Dirichlet space

Michael Hartz

Abstract. The classical Dirichlet space is a complete Pick space, hence by a
theorem of Agler and McCarthy, there exists an embedding b of the unit disc
into a d-dimensional ball such that composition with b realizes the Dirichlet
space as a quotient of the Drury–Arveson space. We show that d = ∞ is nec-
essary, even if we only demand that composition with b induces a surjective
map between the multiplier algebras.
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1. Introduction
1.1. Background. The classical Dirichlet space on the open unit disc D ⊂ ℂ
is de�ned as

D =
{
f ∈ O(D) ∶ ∫

D
|f′|2dA <∞

}
,

where dA denotes the normalized areameasure onD. Equippedwith the norm

‖f‖2 = ∫
D
|f′|2dA + ‖f‖2H2 ,

whereH2 denotes the classical Hardy space and

‖f‖2H2 = sup
0≤r<1

∫
2�

0
|f(reit)|2 dt2� ,
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the Dirichlet space is a reproducing kernel Hilbert space of functions onDwith
reproducing kernel

k(z, w) = 1
zw

log
( 1
1 − zw

)
.

For background and motivation, the reader is referred to the books [12, 5].
An important feature of the Dirichlet space is the complete Pick property,

meaning that D satis�es a version of the classical Pick interpolation theorem;
see [2] for background. This key realization, due toAgler, has led to the solution
of some open problems in the Dirichlet space, such as the characterization of
interpolating sequences due to Marshall and Sundberg [19] (a di�erent proof
was given independently by Bishop [7]), quotient representations of functions
inD by Aleman, McCarthy, Richter and the author [3], and factorization in the
weak product space by Jury and Martin [15].

A theorem of Agler andMcCarthy [1] shows that the complete Pick property
ofD is equivalent to the existence of a number d ∈ ℕ∪{∞} and amap b ∶ D→
Bd, so that

k(z, w) = 1
1 − ⟨b(z), b(w)⟩

(z, w ∈ D). (1)

Here, Bd is the open unit ball in ℂd, which is understood as l2 if d = ∞. (In

general, one needs to allow rescalings of the form �(z)�(w)
1−⟨b(z),b(w)⟩

for a nowhere
vanishing function �, but one can achieve that � = 1 since k(z, 0) = 1 for all z.)
In fact, the complete Pick property ofD is often applied by using that (1) holds,
as in the works [3, 15] mentioned above. We will explicitly construct such a
map b in Section 5.

The relation (1) can be interpreted in the followingway. LetK(z, w) = 1
1−⟨z,w⟩

for z, w ∈ Bd. This is a positive de�nite kernel, and the corresponding repro-
ducing kernel Hilbert space is denoted by H2

d and called the Drury–Arveson
space [6]. The theorem of Agler andMcCarthy can be interpreted as saying that
H2
d is a universal complete Pick space. In particular, in the case of the Dirichlet

space, (1) can be rephrased by saying that b induces a co-isometric composition
operator

H2
d → D, f ↦ f◦b;

see Proposition 4.1 formore details. As a consequence, on the level ofmultiplier
algebras, b induces a (complete) quotient mapping

Φ ∶ Mult(H2
d)→ Mult(D), ' ↦ '◦b,

meaning that the induced mapMult(H2
d)∕ ker(Φ)→ Mult(D) is a (completely)

isometric isomorphism. In particular, Φ is surjective. These implications will
also be reviewed in Proposition 4.1.

It turns out thatH2
d and its multiplier algebra are signi�cantlymore tractable

if d < ∞. To give a concrete example, the maximal ideal spaceℳ(Mult(H2
d))
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ofMult(H2
d) is �bered over Bd via the map

� ∶ℳ(Mult(H2
d))→ Bd, � ↦ (�(z1), �(z2),…).

If d < ∞, the �bers over the open ball Bd are singletons. But if d = ∞, the
�bers are extremely complicated. Indeed, �−1(0) contains a copy of the Stone-
Čech remainder �ℕ ⧵ ℕ if d = ∞. This has led to some issues in the area; cf.
[10].

1.2. Main result. Since H2
d is more tractable if d < ∞, the question arose for

which complete Pick spaces one can achieve d <∞ in theAgler–McCarthy the-
orem. In particular, it was askedwhether this is possible for the Dirichlet space,
see [23, Section 7.5]. It was shown independently by Rochberg [21] and by the
author [13, Corollary 11.9] that an embedding b ∶ D → Bd for which relation
(1) holds only exists if d = ∞. However, for a number of questions, a weaker
relation than (1) would be su�cient. For instance, onemight only demand that
b induces a surjective composition operatorH2

d → D. Perhaps one of the weak-
est reasonable notions of embedding is to demand that b induces a surjective
mapMult(H2

d)→ Mult(D), which is still su�cient for understanding algebraic
properties of Mult(D), such as the maximal ideal space. The relationship be-
tween this and other notions of embedding will be explained in Proposition 4.1.

The main result of this note shows that even with this weak notion of em-
bedding, d = ∞ is necessary. In particular, this answers the question raised by
Salomon and Shalit in [23, Section 7.5]. For a statement adapted to the setting
of [23], see also Theorem 4.2.

Theorem 1.1. There does not exist a map b ∶ D → Bd with d ∈ ℕ that induces
a surjective homomorphism

Mult(H2
d)→ Mult(D), ' ↦ '◦b.

This result will be proved in Section 3. The arguments involving ranks of
kernels, which were used in [13] to show that (1) cannot hold for d < ∞, do
not seem to generalize to the setting of Theorem 1.1. Instead, we will re�ne
Rochberg’s geometric arguments of [21]. He observed that if (1) holds, then b is
an isometric embedding from the disc, equipped with a suitable metric related
to theDirichlet space, into the ball, equippedwith the pseudohyperbolicmetric.
He then used geometric arguments to show that this is impossible for d <∞.

The proof of Theorem 1.1 follows a similar outline. First, we will show that
if b ∶ D → Bd induces a surjective homomorphism as in Theorem 1.1, then
b has to be a bi-Lipschitz embedding with respect to the metrics mentioned
above. Wewill then identify geometric obstructions showing that this is impos-
sible if d < ∞. The basic idea of the geometric argument is similar to that in
Rochberg’s proof, but the bi-Lipschitz setting necessitates signi�cant changes
compared to the isometric setting.
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1.3. An explicit embedding into B∞. In Section 5, we will explicitly con-
struct a map b ∶ D → B∞ such that the reproducing kernel k of the Dirichlet
space has the representation

k(z, w) = 1
1 − ⟨b(z), b(w)⟩

(z, w ∈ D).

As is well known, the key point in proving the existence of an embedding is to
show that the real numbers (cn)∞n=1 de�ned by the power series identity

∞∑

n=1
cn(zw)n = 1 − 1

k(z, w)
(2)

satisfy cn ≥ 0 for all n ≥ 1. In this case, considering (2) on the diagonal z = w,
we �nd that

∑∞
n=1 cn ≤ 1, so de�ning

b ∶ D→ B∞, b(z) = (
√
c1z,

√
c2z2,

√
c3z3,…),

we obtain the desired embedding.
In the literature on complete Pick spaces, the usual proof of the fact that the

numbers cn in (2) are non-negative makes use of a lemma of Kaluza; see [19]
or [2, Corollary 7.41]. While the coe�cients cn can be obtained from the Tay-
lor coe�cients of k through a recursive formula, this does not give an explicit
formula for cn. In the discussion following Corollary 11 in [19], Marshall and
Sundberg ask if it is possible to see directly from from the formula for the kernel
k that cn ≥ 0 for all n ≥ 1.

We show that an argument from the work of Kluyver [17] yields an explicit
formula for cn, which shows in particular that cn ≥ 0 for all n ≥ 1.

Proposition 1.2. For n ≥ 1, we have

cn = ∫
1

0
t

Γ(n − t)
Γ(n + 1)Γ(1 − t)

dt ≥ 0.

This result will be proved in Section 5.

1.4. Reader’s guide. The remainder of this note is organized as follows. In
Section 2, we recall some necessary preliminaries for the proof of the main re-
sult, which occupies Section 3. In Section 4, we show that Theorem 1.1 also
rules out the existence of some other types of embedding for theDirichlet space.
Finally, in Section 5, we prove Proposition 1.2.

Remark. A draft version of this note was circulated in 2016. Since the draft
has been cited a few times, the author decided to make this note more widely
available.

2. Preliminaries about metrics
In this section, we collect the necessary background on metrics induced by

reproducing kernels. More information on this topic can be found in [4] and
[2, Chapter 9].
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2.1. Metrics inducedbykernels. Supposeℋ is a reproducing kernelHilbert
space of functions on a set X with reproducing kernel K. Throughout, we will
assume that K(z, z) ≠ 0 for all z ∈ X. We say that ℋ separates the points
of X if whenever z, w ∈ X with z ≠ w, there exists f ∈ ℋ with f(z) = 0
and f(w) = 1. This is equivalent to saying that K(⋅, z) and K(⋅, w) are linearly
independent whenever z ≠ w.

We can de�ne a pseudo-metric �ℋ on X by

�ℋ(z, w) =
(
1 −

|K(z, w)|2

K(z, z)K(w,w)

)1∕2
. (3)

This is a metric ifℋ separates the points ofX, see [2, Lemma 9.9] or [4, Section
4].

If ℋ = H2, the Hardy space on the disc, then a computation with Szegő
kernels shows that

�H2(z, w) =
|||||
z − w
1 − zw

||||| (z, w ∈ D),

so �H2 is the pseudohyperbolic metric on D; see [4, Section 2].
More generally, the metric �H2

d
associated with the Drury–Arveson space

turns out to be the pseudohyperbolic metric on Bd for d ∈ ℕ. Background
information on the pseudohyperbolic metric on the ball can be found in [11].
To recall, we have for each a ∈ Bd the biholomorphic automorphism

'a ∶ Bd → Bd, 'a(z) =
a − Pa(z) − saQa(z)

1 − ⟨z, a⟩
,

where Pa is the orthogonal projection onto ℂa, Qa = I − Pa and sa = (1 −
‖a‖2)1∕2; see [22, Section 2.2]. The identity

1 − ‖'w(z)‖2 =
(1 − ‖w‖2)(1 − ‖z‖2)

|1 − ⟨z, w⟩|2

(see [22, Theorem 2.2.2 (iv)]) shows that

�H2
d
(z, w) = ‖'w(z)‖,

which by de�nition is the pseudohyperbolic distance between z andw, usually
denoted by �(z, w).

In the case of the Dirichlet space, we obtain the formula

�D(z, w) =
(
1 −

| log(1 − zw)|2

log(1 − |z|2) log(1 − |w|2)

)1∕2
(4)

for z, w ∈ D ⧵ {0}.

2.2. Length of curves. The metrics �ℋ de�ned in (3) will not be quite su�-
cient in our setting. In addition, we will make use of length metrics induced by
the metrics �ℋ . Background on this topic can be found in [4] and [20], see also
[14].
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If (X, d) is a metric space and  ∶ [a, b] → X is a (continuous) curve, the
length of  with respect to d is de�ned by

ld() = sup
⎧

⎨
⎩

n−1∑

j=0
d((tj), (tj+1)) ∶ a = t0 < t1 < … < tn = b

⎫

⎬
⎭

.

We also set

d∗(z, w) = inf {ld() ∶  is a curve joining z to w}.

It is well known that if � is the pseudo-hyperbolic metric on Bd, then �∗ is
the Poincaré–Bergman metric

�(z, w) = tanh−1 �(z, w) = 1
2 log

(1 + �(z, w)
1 − �(z, w)

)
.

Wewill indicate below how to see this fact in the present framework of metrics
induced by kernels; see also [14, Chaper 1] for a direct proof in the case d = 1.

Mazur, P�ug and Skwarzcyński [20] showed that if the metric d is derived
from the Bergman kernel of a domain inℂd in a manner similar to (3), then the
associated metric d∗ is essentially the Bergman metric of the domain, which is
a Riemannianmetric that can be explicitly computed from the Bergman kernel;
see for instance [18, Section 1.4] for background on the Bergman metric. Ar-
cozzi, Rochberg, Sawyer and Wick [4] observed that the results of [20] extend
to much more general spaces of holomorphic functions. We will make use of
these results in the case of the Dirichlet space and of the Drury–Arveson space.

Lemma 2.1.
(a) For the pseudohyperbolic metric � on Bd, the metric �∗ coincides with the

Poincaré–Bergman metric �.
(b) Let  ∶ [a, b] → D be a piecewise C1 curve. Then the length of  with

respect to the Dirichlet space metric �D is given by

l�D() = ∫
b

a
g((t))1∕2|′(t)|dt,

where g ∶ D→ [0,∞) is the continuous function given by

g(z) =
log

( 1
1−|z|2

)
− |z|2

(
log

( 1
1−|z|2

))2
(1 − |z|2)2

(z ≠ 0)

and g(0) = 1
2
.

Proof. It was shown in [20, Theorem 1] that ifK is the square root of the kernel
of the Bergman space on a bounded domain D in ℂd and if �ℋ is de�ned as in



160 MICHAEL HARTZ

(3), then the length of any piecewise C1 curve  ∶ [a, b]→ D is given by

l�ℋ () = ∫
b

a

( d∑

j,k=1

)2 logK((t), (t))
)zj)zk

′j(t)
′
k(t)

)1∕2
dt. (5)

(The result in [20] involves additional factors of 1
2
and

√
2 because they consider

the square root of the reproducing kernel.) It was observed in [4, Proposition
9] that this formula, which is proved by second order Taylor approximations to
the kernel functions, holds much more generally, and in particular in the case
of the Drury–Arveson space and of the Dirichlet space.

(a) Applying (5) to the Drury–Arveson kernel K and recalling that the ordi-
nary Bergman kernel on Bd is given by Kd+1, it follows from standard results
about the Poincaré–Bergman metric (see, for example, [26, Proposition 1.21])
that

�(z, w) = inf {l�() ∶  is a piecewise smooth curve in Bd joining z and w}.
Moreover, [20, Theorem 2] (see also [4, Proposition 9]) shows that the right-
hand side remains unchanged when taking the in�mum over all continuous
curves, hence � = �∗.

(b) We apply (5) to the Dirichlet kernel k. A simple computation shows that
for z ≠ 0, we have

)2 log k(z, z)
)z)z

= )2

)z)z
log log

( 1
1 − |z|2

)
= g(z).

Direct inspection of the Taylor series of log(1 − z) at the origin shows that g
extends continuously to 0 with g(0) = 1

2
, so the above identity holds for all

z ∈ D, and the statement follows from (5). �

Remark 2.2. In Lemma 2.1 (a), wewill actually only need the lower bound � ≤
�∗. This lower bound can be proved in amore elementary way as follows. Since
� = tanh(�) and since the derivative of tanh at 0 equals 1, a simple estimate
shows that l�() = l�() for any continuous curve , see [14, Lemma 2.5.2 (a)].
So if  is a continuous curve joining z and w, then �(z, w) ≤ l�() = l�(),
which gives the inequality � ≤ �∗.

3. Proof of main result
3.1. From surjective homomorphisms to bi-Lipschitz embeddings. In
the �rst step towards the proof of Theorem 1.1, we show that any surjective
homomorphism as in Theorem 1.1 induces a bi-Lipschitz embedding of (D, �D)
into (Bd, �H2

d
). Weneed the following characterization of themetric �ℋ in terms

of themultiplier algebra for complete Pick spaces. It applies in particular to the
Dirichlet space and to the Drury-Arveson space.

Lemma 3.1. Letℋ be a complete Pick space on X. Then
�ℋ(z, w) = sup{|'(z)| ∶ '(w) = 0, ‖'‖Mult(ℋ) ≤ 1}
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for all z, w ∈ X. Moreover, the supremum is attained.

Proof. The result is well known. For the convenience of the reader, we provide
a short argument. Let z, w ∈ X and let � ∈ ℂ. By the Pick property, there exists
' ∈ Mult(ℋ) with ‖'‖Mult(ℋ) ≤ 1, '(w) = 0 and '(z) = � if and only if the
Pick matrix

[K(z, z)(1 − |�|2) K(z, w)
K(w, z) K(w,w)]

is positive semi-de�nite. By Sylvester’s criterion, this happens if and only if
|�| ≤ 1 and the determinant of the matrix is non-negative, which after rear-
ranging is seen to be equivalent to

|�| ≤
(
1 −

|K(z, w)|2

K(z, z)K(w,w)

)1∕2
.

Since the right-hand side equals �ℋ(z, w), the result follows. �

IfE is a Banach space, we denote the closed unit ball ofE byBE . IfT ∶ E → F
is a surjective continuous linear operator between Banach spaces, let

q(T) = sup{r ≥ 0 ∶ T(BE) ⊃ rBF}
be the surjectivity modulus of T. By the open mapping theorem, q(T) > 0. If
T̃ ∶ E∕ ker(T)→ F denotes the induced operator, then q(T) = ‖T̃−1‖−1.

The following result generalizes [9, Theorem 6.2]. The Lipschitz constant
obtained below is an improvement of the Lipschitz constant obtained there by
a factor of 2.

Proposition 3.2. Letℋ andK be complete Pick spaces onX andY, respectively.
Let F ∶ Y → X be a mapping that induces a homomorphism

Φ ∶ Mult(ℋ)→ Mult(K), ' ↦ '◦F.
(a) The homomorphism Φ is continuous, and F is Lipschitz with

�ℋ(F(z), F(w)) ≤ ‖Φ‖�K(z, w) for all z, w ∈ Y.
(b) If Φ is surjective, then q(Φ) > 0 and F is bi-Lipschitz with

q(Φ)�K(z, w) ≤ �ℋ(F(z), F(w)) ≤ ‖Φ‖�K(z, w) for all z, w ∈ Y.

Proof. (a) Since multiplier algebras are commutative semi-simple Banach al-
gebras, the homomorphismΦ is continuous by a standard automatic continuity
result; see, for instance, [16, Corollary 2.1.10]. LetC > ‖Φ‖ and let z, w ∈ Y. By
Lemma 3.1, there exists ' ∈ Mult(ℋ) of norm at most 1 such that '(F(z)) = 0
and '(F(w)) = �ℋ(F(z), F(w)). Let  = C−1('◦F). Then  belongs to the
unit ball of Mult(K) and  (z) = 0 and  (w) = C−1�ℋ(F(z), F(w)). Another
application of Lemma 3.1 shows that

�K(z, w) ≥ C−1�ℋ(F(z), F(w)).
Since C > ‖Φ‖ was arbitrary, the result follows.

(b) Suppose that Φ is surjective. By the open mapping theorem, q(T) > 0.
Let z, w ∈ Y. By Lemma 3.1, there exists  ∈ Mult(K) of norm at most 1 with
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 (z) = 0 and  (w) = �K(z, w). Let 0 < " < q(T). By de�nition of q(Φ), there
exists ' ∈ Mult(ℋ) of norm at most 1 such that '◦F = " . Then '(F(z)) = 0
and '(F(w)) = "�K(z, w), so Lemma 3.1 shows that

�ℋ(F(z), F(w)) ≥ "�K(z, w).

Since " < q(T)was arbitrary, the �rst inequality follows. The second inequality
was already established in (a). �

The following consequence is immediate from part (b) of Proposition 3.2.

Corollary 3.3. Let d ∈ ℕ. If b ∶ D→ Bd induces a surjective homomorphism

Mult(H2
d)→ Mult(D), ' ↦ '◦b,

then b is a bi-Lipschitz map from (D, �D) into (Bd, �H2
d
). �

We will show that no such bi-Lipschitz map exists.

3.2. Lipschitzmaps into the ball. In the sequel, wewill simplywrite � = �D
for the metric on D induced by the Dirichlet space. We also continue to write
� = �H2

d
for the pseudo-hyperbolic metric on Bd.

Our next goal is to show that if f ∶ (D, �) → (Bd, �) is Lipschitz with
f(0) = 0, then ‖f(z)‖ can only approach 1 very slowly as |z| approaches 1;
that is, we seek upper bounds on ‖f(z)‖. For isometric maps f, this was done
by Rochberg [21] by noting that ‖f(z)‖ = �(0, f(z)) = �(0, z) in this case and
estimating 1 − �(0, z). In the bi-Lipschitz setting, the upper bound on ‖f(z)‖
that can be deduced from this argument takes the form ‖f(z)‖ ≤ C�(0, z) for
some constant C. This is not a very useful estimate if |z| is close to 1, because
we always have the trivial upper bound ‖f(z)‖ ≤ 1. Instead, wewill use lengths
of curves as de�ned in Subsection 2.2 to obtain a better upper bound on ‖f(z)‖.

If f, g ∶ [0, 1) → [0,∞) are two functions, we will write f ∼ g as r → 1 if f
and g do not vanish near 1 and limr→1

f(r)
g(r)

= 1.

Lemma 3.4. Let 0 ≤ r < 1 and let r ∶ [0, r]→ D, t ↦ t. Then

l�(r) ∼
(
log

( 1
1 − r

))1∕2
as r → 1.

Hence, there exists a constantM ∈ (0,∞) such that

l�(r) ≤ M
(
log

( 1
1 − r

))1∕2
for all r ∈ [0, 1).

Proof. Let g ∶ D→ [0,∞) be the continuous function appearing in part (b) of
Lemma 2.1. By that lemma, l�(r) = ∫ r0 g(t)

1∕2 dt, hence

dl�(r)
dr

= g(r)1∕2 ∼ 1
(
log

( 1
1−r2

))1∕2
(1 − r2)

∼ 1

2
(
log

( 1
1−r

))1∕2
(1 − r)
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as r → 1. On the other hand,
d
dr

(
log

( 1
1 − r

))1∕2
= 1

2
(
log

( 1
1−r

))1∕2
(1 − r)

.

The �rst statement now follows from L’Hôpital’s rule.
To deduce the second statement from the �rst one, it su�ces to show that

the desired estimate holds for �xed r0 < 1 and all r ∈ [0, r0]. But if r0 < 1, then
g is bounded on [0, r0]. So ifM > 0 is such that |g(t)|1∕2 ≤ M for all t ∈ [0, r0],
then for all r ∈ [0, r0], we have

l�(r) ≤ Mr ≤ Mr1∕2 ≤ M
(
log

( 1
1 − r

))1∕2
.

as desired. �

The following propositionnow shows that for anyLipschitzmapf ∶ (D, �)→
(Bd, �) with f(0) = 0, the quantity ‖f(z)‖ can only approach 1 very slowly as
|z| → 1.

Proposition 3.5. Letf ∶ (D, �)→ (Bd, �) be aLipschitzmappingwithf(0) = 0.
Then there exists a constant C ∈ (0,∞) such that

‖f(z)‖ ≤ 1 − exp
(
− C

(
log

( 1
1 − |z|

))1∕2)
for all z ∈ D.

In particular, for any � > 0, there exists r0 ∈ (0, 1) such that

‖f(z)‖ ≤ 1 − (1 − |z|)�

for all z ∈ D with |z| ≥ r0.

Proof. Since f is Lipschitz, there exists a constant L ∈ (0,∞) such that

�(f(z), f(w)) ≤ L�(z, w)

for all z, w ∈ D. It easily follows from the de�nition of the length of a curve
that

l�(f◦) ≤ Ll�()
for every curve  ∶ [a, b]→ D.

Now, let z ∈ D, let r = |z| and write z = �r for � ∈ ℂ with |�| = 1. Let
r ∶ [0, r] → D, t ↦ t. Then f◦(�r) is a curve in Bd from 0 to f(z), hence
Lemma 2.1 (a), see also Remark 2.2, and rotation invariance of the metric �
imply that

�(0, f(z)) = �∗(0, f(z)) ≤ l�(f◦(�r)) ≤ Ll�(�r) = Ll�(r).

Estimating the right-hand side with the help of Lemma 3.4 and recalling the
de�nition of �, we �nd that

log
( 1
1 − ‖f(z)‖

)
≤ 2�(0, f(z)) ≤ 2LM

(
log

( 1
1 − r

))1∕2
.

Rearranging this inequality gives the �rst statement with C = 2LM.
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As for the second statement, let � > 0 and choose r0 ∈ (0, 1) so that C ≤
�(log( 1

1−r0
))1∕2. If |z| ≥ r0, then the �rst estimate yields

‖f(z)‖ ≤ 1 − exp
(
− C

(
log

( 1
1 − |z|

))1∕2)
≤ 1 − exp

(
− � log

( 1
1 − |z|

))

= 1 − (1 − |z|)�,

which completes the proof. �

3.3. Separated sets. So far, we have only used the Lipschitz property of our
embeddings fromD intoBd. To make use of the fact that they are also bounded
below, we will consider separated sets in the two metric spaces. This is again
similar to Rochberg’s arguments in [21] in the isometric setting, but somemod-
i�cations are necessary.

Let (X, d) be a metric space and let " > 0. We say that a subset D ⊂ X is "-
separated if any two distinct points in D have distance at least ", i.e. d(x, y) ≥ "
for all x, y ∈ D with x ≠ y. Given a subset S ⊂ X and " > 0, we let

N(S, d, ") = sup{|D| ∶ D ⊂ S is "-separated}.
These notions are useful for studying mappings that are bounded below be-

cause of the following obvious lemma.

Lemma 3.6. Let (X, dX) and (Y, dY) be metric spaces and let f ∶ X → Y. Sup-
pose that there exists a constantm > 0 such that dY(f(x), f(y)) ≥ mdX(x, y) for
all x, y ∈ X. Then, for any S ⊂ X, we have

N(f(S), dY , m") ≥ N(S, dX , ").

Proof. If D ⊂ S is "-separated, then f(D) ⊂ f(S) ism"-separated. �

Let Cr denote the circle of radius r around 0 in the complex plane. Our next
goal is to establish a lower bound for N(Cr, �, "), that is, we wish to �nd large
subsets ofCr that are "-separated in the �-metric. The following lemma reduces
the task of checking whether certain subsets of Cr are "-separated to checking
distances between adjacent points.

Lemma 3.7. Let 0 < r < 1, let 0 ≤ �1 < �2 < … < �n ≤ � and let

D = {rei�1 ,… , rei�n }.
Then D is "-separated with respect to � if and only if �(rei�k , rei�k+1) ≥ " for all
1 ≤ k ≤ n − 1.

Proof. Necessity is clear. To prove su�ciency, by rotation invariance of the
metric �, it su�ces to show that

[0, �]→ [0,∞), t ↦ �(reit, r),
is increasing. From (4), we see that

1 − �(reit, r)2 =
| log(1 − r2eit)|2

log(1 − r2)2
,
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so it even su�ces to show that for each s ∈ (0, 1), the function

f ∶ [0, �]→ [0,∞), t ↦ | log(1 − seit)|2,

is decreasing.
Writingf(t) = log(1−seit) log(1−se−it), a straightforward calculation shows

that

f′(t) = 2s
|1 − seit|2

Im(log(1 − seit)(s − e−it)).

We �nish the proof by showing that for each t ∈ [0, �], the function

ℎ ∶ [0, 1)→ ℝ, s ↦ Im(log(1 − seit)(s − e−it))

is bounded above by 0. To this end, notice that ℎ(0) = 0, and by another small
computation,

ℎ′(s) = Im(log(1 − seit)) ≤ 0

for all t ∈ [0, �] and all s ∈ [0, 1), because 1 − seit belongs to the closed lower
half plane for these values of s and t. Hence, ℎ is decreasing in s, so ℎ(s) ≤ 0
for all s ∈ [0, 1), as asserted. �

The following lemma will allow us to place su�ciently many "-separated
points on Cr as r approaches 1.

Lemma 3.8. For 0 ≤ r < 1, let �(r) =
√
1 − r. Then

lim
r→1

�(rei�(r), r) =
√

3
4 .

Proof. Note that

1 − �(rei�(r), r)2 =
| log(1 − r2ei�(r))|2

log(1 − r2)2
,

so we have to show that

lim
r→1

| log(1 − r2ei�(r))|
− log(1 − r2)

= 1
2 . (6)

Since the imaginary part of log is bounded, we see that

lim
r→1

| log(1 − r2ei�(r))|
− log(1 − r2)

= lim
r→1

|Re log(1 − r2ei�(r))|
− log(1 − r)

(7)

= lim
r→1

log |1 − r2ei�(r)|2

2 log(1 − r)
.

The Taylor series expansion of cosine shows that

r ↦ |1 − r2ei�(r)|2 = 1 − 2 cos(
√
1 − r)r2 + r4
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extends to a function ℎ that is di�erentiable at r = 1 and satis�es ℎ(1) = 0 and
ℎ′(1) = −1. Thus, |1 − r2ei�(r)|2∕(1 − r) converges to 1 as r → 1, and so

lim
r→1

log |1 − r2ei�(r)|2

2 log(1 − r)
= lim

r→1

log |1−r2ei�(r)|2

1−r
+ log(1 − r)

2 log(1 − r)
= 1
2 .

In combination with (7), this proves (6). �

We are now able to establish the desired lower bound for N(Cr, �, ").

Lemma 3.9. Let Cr = {z ∈ ℂ ∶ |z| = r}. If " <
√
3∕4, then there exists r0 < 1

such that
N(Cr, �, ") ≥

1
√
1 − r

for all r0 < r < 1.

Proof. Let �(r) =
√
1 − r, let N(r) = ⌊ �

√
1−r

⌋ and let

D(r) = {r, rei�(r),… , reiN(r)�(r)}.

Observe that D(r) ⊂ Cr and |D(r)| ≥ �
√
1−r

.
By Lemma 3.8, there exists r0 < 1 such that

�(rei�(r), r) ≥ " for all r ∈ [r0, 1).
Rotational invariance of � and Lemma 3.7 now show that D(r) is "-separated
for r ≥ r0. Therefore,

N(Cr, �, ") ≥ |D(r)| ≥ 1
√
1 − r

. �

Finally, we require the following upper bound for the number of points in a
ball that are separated with respect to the pseudohyperbolic metric. The result
is due to Duren and Weir; see [11, Lemma 5].

Lemma 3.10. Let d ∈ ℕ, let 0 < r < 1 and let Br = {z ∈ ℂd ∶ ‖z‖ ≤ r}. Then

N(Br, �, ") ≤
(2
" + 1

)2d 1
(1 − r2)d

for all " > 0. �

3.4. Proof of main result. We are now in position to prove the main result.
In light of Corollary 3.3, the following result implies Theorem 1.1.

Theorem 3.11. For any �nite d there does not exist a bi-Lipschitz map from
(D, �D) into (Bd, �H2

d
).

Proof. Suppose towards a contradiction that there exists a bi-Lipschitz map
f ∶ D → Bd for some d < ∞. Since biholomorphic automorphisms of Bd
are isometries with respect to the pseudohyperbolic metric, we may assume
without loss of generality that f(0) = 0.
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As before, let Cr = {z ∈ ℂ ∶ |z| = r} and Bs = {z ∈ ℂd ∶ ‖z‖ ≤ s}. Applying
Proposition 3.5 with � = 1∕(2d+1)we �nd r0 < 1 such that f(Cr) is contained
in Bs(r) for all r0 < r < 1, where

s(r) = 1 − (1 − r)1∕(2d+1).
Lemma 3.9 shows that by increasing r0 if necessary, we may �nd " > 0 such
that

N(Cr, �, ") ≥
1

√
1 − r

for all r0 < r < 1.

Assuming that f is bounded below bym, Lemma 3.6 then implies that
1

√
1 − r

≤ N(Bs(r), �H2
d
, m") for all r0 < r < 1. (8)

On the other hand, Lemma 3.10 shows that

N(Bs(r), �H2
d
, m") ≤

( 2
m" + 1

)2d 1
(1 − s(r)2)d

≤ C 1
(1 − r)d∕(2d+1)

(9)

for all 0 < r < 1 and some constant C < ∞ that does not depend on r. Com-
bining (8) and (9), we arrive at a contradiction. Hence, there does not exist a
bi-Lipschitz map from (D, �) into (Bd, �) for d <∞. �

3.5. Weighted Dirichlet spaces. For a ∈ (0, 1), let Da be the reproducing
kernel Hilbert space on D with kernel

ka(z, w) =
1

(1 − zw)a
.

These spaces are weighted Dirichlet spaces. It is well known that they are also
complete Pick spaces, which follows from the fact that the power series coe�-
cients of 1 − 1∕ka are non-negative [19, p. 22]. It is natural to ask if Theorem
1.1 can be extended to these spaces.

Question 3.12. Let a ∈ (0, 1). Do there exist d ∈ ℕ and a map b ∶ D → Bd
that induces a surjective homomorphism

Mult(H2
d)→ Mult(Da), ' ↦ '◦b?

It was shown in [13, Corollary 11.9] that for any a ∈ (0, 1), there does not
exist a map b ∶ D→ Bd with d <∞ such that

ka(z, w) =
1

1 − ⟨b(z), b(w)⟩
.

The proof of Theorem 1.1 given here does not generalize toDa. In fact, The-
orem 3.11 is not true with Da in place of D, as the metric �Da

is equivalent to
the pseudo-hyperbolic metric � onD. Indeed, from Equation (3), it follows that

a1∕2� ≤ �Da
=

(
1 − (1 − �2)a

)1∕2
≤ �.

Thus, the identity mapping (D, �Da
) → (D, �) is bi-Lipschitz. Nonetheless, the

multiplier algebras ofH2 and ofDa do not coincide.
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It therefore appears that di�erent arguments are needed to answer Question
3.12.

4. Other notions of embedding
The following result shows that Theorem 1.1 also rules out the existence of

other types of embedding for the Dirichlet space. We also relate Theorem 1.1 to
the point of view taken for instance in [9] and [23]. To this end, let V ⊂ Bd and
de�neH2

d
||||V to be the reproducing kernel Hilbert space onVwhose reproducing

kernel is the restriction of the Drury–Arveson kernel to V × V. Equivalently,

H2
d
||||V = {f||||V ∶ f ∈ H2

d},

equipped with the quotient norm.

Proposition 4.1. Letℋ be a reproducing kernel Hilbert space on a setX separat-
ing the points ofX with reproducing kernel k. Let d ∈ ℕ∪{∞} and let b ∶ X → Bd
and � ∶ X → ℂ ⧵ {0} be mappings. Let V = b(X).

Among the following statements, the implications
(i)⇔ (i’)⇔ (i”)⇒ (ii)⇔ (ii’)⇒ (iii)⇔ (iii’)

hold.

(i) k(z, w) = �(z)�(w)
1−⟨b(z),b(w)⟩

for all z, w ∈ X;
(i’) the assignment

H2
d →ℋ, f ↦ � ⋅ (f◦b),

de�nes a co-isometry;
(i”) the assignment

H2
d
||||V →ℋ, f ↦ � ⋅ (f◦b),

de�nes a unitary;
(ii) the assignment

H2
d →ℋ, f ↦ � ⋅ (f◦b),

de�nes a surjection;
(ii’) the assignment

H2
d
||||V →ℋ, f ↦ � ⋅ (f◦b),

de�nes a bijection;
(iii) the assignment

Mult(H2
d)→ Mult(ℋ), ' ↦ '◦b,

de�nes a surjection;
(iii’) the assignment

Mult(H2
d
||||V)→ Mult(ℋ), ' ↦ '◦b,

de�nes a bijection.
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Proof. The proof consists of routine arguments with reproducing kernels. We
sketch the main ideas.

(i)⇒ (i’) Let K(z, w) = 1
1−⟨z,w⟩

be the reproducing kernel for H2
d. Condition

(i) implies that

⟨k(⋅, w), k(⋅, z)⟩ℋ = ⟨�(w)K(⋅, b(w)), �(z)K(⋅, b(z))⟩H2
d

(z, w ∈ X),

from which it follows that there exists an isometry V ∶ℋ → H2
d with

Vk(⋅, w) = �(w)K(⋅, b(w)) (w ∈ X). (10)

The adjoint V∗ ∶ H2
d →ℋ is the map in the statement of (i’).

(i’)⇒ (i) If T denotes the co-isometry in the statement of (i’), then V = T∗ is
an isometry satisfying (10), from which (i) follows.

(i’)⇔ (i”) The restriction map H2
d → H2

d
||||V is a co-isometry whose kernel is

I(V), the space of all functions in H2
d vanishing on V. So if the map in (i”) is

unitary, then the map in (i’) is a co-isometry. Conversely, if the map in (i’) is a
co-isometry, then its kernel is I(V), so the map in (i”) is unitary.

(i’)⇒ (ii) is trivial.
(ii)⇔ (ii’) follows in the same way as (i’)⇔ (ii’).
(ii’)⇒ (iii’) Let

T ∶ H2
d
||||V →ℋ, f ↦ � ⋅ (f◦b),

be the map in (ii’). By the closed graph theorem and the open mapping theo-
rem, T is bounded and has a bounded inverse. Moreover, sinceℋ separates the
points of X, surjectivity of T shows that b is injective, hence the inverse of T is
given by

T−1g =
(g
�

)
◦b−1.

Therefore, if ' ∈ Mult(H2
d
||||V), then

TM'T−1g = ('◦b) ⋅ g (g ∈ℋ),

so the operatorTM'T−1 onℋ is given bymultiplicationwith'◦b. In particular,
'◦b ∈ Mult(ℋ). Similarly, if  ∈ Mult(ℋ), then T−1M T is the operator of
multiplication by  ◦b−1 onH2

d
||||V , so  ◦b

−1 ∈ Mult(H2
d
||||V). Hence (iii’) holds.

(iii)⇔ (iii’) The complete Pick property ofH2
d shows that the restrictionmap

Mult(H2
d) → Mult(H2

d
||||V) is surjective, and its kernel consists of all multipliers

vanishing on V. The equivalence of (iii) and (iii’) readily follows from this fact.
�

In [23, Section 7.5], Salomon and Shalit asked if there existd ∈ ℕ andV ⊂ Bd
such that Mult(D) is isomorphic to Mult(H2

d
||||V). Using Theorem 1.1, we can

also show that this cannot happen.

Theorem 4.2. There do not exist d ∈ ℕ and a subset V ⊂ Bd such thatMult(D)
is algebraically isomorphic toMult(H2

d
||||V).
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Proof. Weuse arguments from the study of the isomorphism problem formul-
tiplier algebras of complete Pick spaces to show that any isomorphismmust be
given by composition with a map b ∶ D → Bd; see for instance [9, Theorem
2.4].

Suppose towards a contradiction that V ⊂ Bd for �nite d and that

Φ ∶ Mult(H2
d
||||V)→ Mult(D)

is an algebraic isomorphism. Let

Ψ ∶ Mult(H2
d)→ Mult(D), ' ↦ Φ('||||V).

The complete Pick property ofH2
d and surjectivity ofΦ imply thatΨ is a surjec-

tive unital homomorphism. We consider the adjoint Ψ∗ between the maximal
ideal spaces ℳ(Mult(D)) and ℳ(Mult(H2

d)). For each � ∈ D, the character
of point evaluation �� belongs toℳ(Mult(D)), and similarly forℳ(Mult(H2

d)).
Moreover, we have a map

� ∶ℳ(Mult(H2
d))→ Bd, � ↦ (�(z1),… , �(zd)),

with the property that �−1(w) = {�w} for eachw ∈ Bd; see for instance Lemma
8.1 and Proposition 8.6 in [13].

Let

b ∶ D→ Bd, � ↦ (�◦Ψ∗)(��) = (Ψ(z1)(�),… ,Ψ(zd)(�)).

SinceΨ takes values inMult(D), the map b is holomorphic. If b were constant,
then sinceΨ(zk) = Φ(zk

||||V), injectivity ofΦwould imply thatV is a singleton, a
contradiction. Hence, b is not constant and therefore takes values in the open
ball Bd by the maximum modulus principle. Since the �bers of � over Bd are
singletons, we see that Ψ∗(��) = �b(�) for all � ∈ D. Thus, for ' ∈ Mult(H2

d)
and � ∈ D, we �nd that

Ψ(')(�) = Ψ∗(��)(') = �b(�)(') = '(b(�)),

so
Ψ ∶ Mult(H2

d)→ Mult(D), ' ↦ '◦b,

is a surjective homomorphism. But according to Theorem 1.1, this is impossi-
ble. This contradiction �nishes the proof. �

5. An explicit embedding for the Dirichlet space
Recall from the introduction that

k(z, w) = 1
zw

log
( 1
1 − zw

)
=

∞∑

n=0
(n + 1)n(zw)n
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denotes the reproducing kernel of the Dirichlet space and that the real numbers
(cn)∞n=1 are de�ned by the power series identity

∞∑

n=1
cn(zw)n = 1 − 1

k(z, w)
.

An argument from the work of Kluyver [17] yields an explicit formula for cn.
This is Proposition 1.2, which we restate for the reader’s convenience.

Proposition 5.1. For n ≥ 1, we have

cn = ∫
1

0
t

Γ(n − t)
Γ(n + 1)Γ(1 − t)

dt ≥ 0.

Proof. We reproduce the computation from [17]. Let z ∈ D and notice that
d
dt

(1 − z)t

log(1 − z)
= (1 − z)t,

hence
∞∑

n=1
cnzn = 1 + z

log(1 − z)
= 1 − ∫

1

0
(1 − z)t dt.

We can expand the integrand into a binomial series

(1 − z)t =
∞∑

n=0

( t
n

)
(−1)nzn,

which converges uniformly in t ∈ [0, 1] for �xed z ∈ D because the binomial
coe�cients are bounded in modulus by 1. Therefore,

∞∑

n=1
cnzn =

∞∑

n=1
zn(−1)n+1 ∫

1

0

( t
n

)
dt,

so comparing coe�cients, we conclude that for all n ≥ 1,

cn = (−1)n+1 ∫
1

0

( t
n

)
dt = 1

n! ∫
1

0
t(1 − t)(2 − t) … (n − 1 − t)dt

= ∫
1

0
t

Γ(n − t)
Γ(n + 1)Γ(1 − t)

dt.

Clearly, the integrand is non-negative, so cn ≥ 0 for all n ≥ 1. �

The coe�cients Gn = (−1)n−1cn appear in the literature under the name
Gregory coe�cients; see [8] for historical remarks and many results regarding
these coe�cients. In particular, the asymptotic behavior of the Gregory coef-
�cients, and hence of (cn), is well understood; see Equation 52 in [8]. In the
study of the Dirichlet space, knowledge about the asymptotic behavior of (cn)
is sometimes useful; see for instance [24, p. 126]. Here, we sketch how the for-
mula in Proposition 5.1 can be used to determine the �rst-order behavior of
(cn), which also follows from the �ner analysis in [8].
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Corollary 5.2. The asymptotic relation

cn ∼
1

n log(n)2

holds.

Proof. To determine the asymptotic behavior of the integrand in Proposition
5.1 as n →∞, we use the following inequality of Wendel [25]:

( x
x + s

)1−s
≤
Γ(x + s)
xsΓ(x)

≤ 1 for all x ∈ ℝ, s ∈ [0, 1] (11)

In combination with the functional equation Γ(x + 1) = xΓ(x), this formula
shows that

lim
n→∞

Γ(n − t)
Γ(n + 1)

(n + 1)t+1 = 1

uniformly in t ∈ [0, 1], so by Proposition 5.1, we �nd that

cn ∼ ∫
1

0
t(n + 1)−t−1 1

Γ(1 − t)
dt. (12)

The second inequality in (11), applied with x = 1, shows that sΓ(s) ≤ 1 for
s ∈ [0, 1]. Together with the basic inequality Γ(s) ≥ 1 for s ∈ [0, 1], we �nd
that

∫
1

0
t(1 − t)(n + 1)−t−1 dt ≤ ∫

1

0
t(n + 1)−t−1 1

Γ(1 − t)
dt ≤ ∫

1

0
t(n + 1)−t−1 dt.

Both of these integrals can be computed explicitly, for instance using integra-
tion by parts, which shows that both have asymptotic behavior ∼ n−1 log(n)−2.
By (12), the sequence (cn) therefore has the same asymptotic behavior. �
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