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Geodesic surfaces in the complement of
knots with small crossing number

Khanh Le and Rebekah Palmer

Abstract. In this article, we investigate the problem of counting totally ge-
odesic surfaces in the complement of hyperbolic knots with at most 9 cross-
ings. Adapting previous counting techniques of boundary slope and inter-
section, we establish uniqueness of a totally geodesic surface for the knots
74 and 935. Extending an obstruction to the existence of totally geodesic sur-
faces due to Calegari, we show that there is no totally geodesic surface in the
complement of 47 knots.
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1. Introduction
The study of surfaces has been essential in studying the geometry and topol-

ogy of the 3-manifolds that contain them. In this paper, we will mainly be con-
cerned with complete properly immersed totally geodesic surfaces in hyper-
bolic 3-manifolds. These surfaces are natural geometric objects which enjoy
many applications to the study of the geometry, topology, and algebra of hy-
perbolic 3-manifolds. For example, Millson constructed families of arithmetic
hyperbolic n-manifolds for each n ≥ 3 with arbitrarily large �rst Betti number
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by showing the existence of a non-separating totally geodesic hypersurface in
these examples [17]. In another application, Adams used geodesic surfaces and
cut-and-paste techniques to produce examples of non-homeomorphic hyper-
bolic 3-manifoldswith the same volume [3, Corollary 4.4]. Most recently, Bader,
Fisher, Miller, and Stover gave a geometric characterization of arithmeticity us-
ing geodesic submanifolds: they showed that if a complete �nite-volume hy-
perbolic n-manifold of dimension at least 3 contains in�nitely many maximal
totally geodesic submanifolds then it must be arithmetic [4, Theorem 1.1]. A
similar result was also obtained for the case of closed hyperbolic 3-manifolds
by Margulis and Mohammadi [18, Theorem 1.1].

The converse of the geometric characterization of arithmeticity implies that
if a hyperbolic 3-manifold is non-arithmetic, then it contains �nitelymany (pos-
sibly zero) totally geodesic surfaces. We are interested in counting totally ge-
odesic surfaces in non-arithmetic hyperbolic 3-manifolds. Prior to the result
in [4], there are some known obstructions to the existence of totally geodesic
surfaces given by Calegari [5, Corollary 4.6] and by Maclachlan and Reid [14,
Theorem5.3.1 andCorollary 5.3.2]. The�rst examples of non-arithmetic hyper-
bolic 3-manifolds in which the set of totally geodesic surfaces is nonempty and
�nite were given in [7, Theorem 1.3] which are link complements in S3 (see [7,
Section 6] for a concrete description of these examples). However, the method
in [7] did not give the exact count of totally geodesic surfaces. Using homoge-
neous dynamics, Lindenstrauss and Mohammadi gave an upper bound, with
some unknown universal constants, to the number of totally geodesic surfaces
in a hyperbolic 3-manifold coming from the Gromov–Piatetski-Shapiro hybrid
construction [12, Theorem 1.4]

In [11], the authors gave the �rst explicit examples of in�nitely many non-
commensurable hyperbolic 3-manifolds each of which contains exactly k to-
tally geodesic surfaces for every positive integer k [11, Theorem 1.2]. In par-
ticular, the authors showed that the complement of an in�nite family of twist
knots contains a unique totally geodesic surface and considered �nite covers
of these twist knot complements to produce hyperbolic 3-manifolds with the
desired number of totally geodesic surfaces [11, Theorem 1.3]. To establish
uniqueness of the totally geodesic surface in a family of twist knot comple-
ments, the authors introduced counting techniques which take advantage of
the geometry and number theoretic properties of these knot complements. In
this work, we study totally geodesic surfaces in the complement of hyperbolic
knots with at most nine crossings. The goal of this paper is to extend the cur-
rent counting techniques of totally geodesic surfaces and known obstructions
to the existence of these surfaces in order to gain a quantitative understanding
of totally geodesic surfaces using a �nite collection of hyperbolic knots as a test-
ing ground. This quantitative understanding sheds light on the limitations of
the current techniques and points us to some interesting questions which are
discussed in Section 6.
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We�rst summarize what was known about totally geodesic surfaces in knots
with atmost nine crossings. Among the knotswith atmost nine crossings, there
are 79 hyperbolic knots [13]. Let

K = {Hyperbolic knots in S3 with at most nine crossings}.

The set K includes all prime knots of nine or fewer crossings other than the
unknot, 31, 51, 71, 819 and 91. The knot 41, also known as the �gure-8 knot,
produces the only arithmetic knot complement inS3 [19, Theorem2]. The com-
plement S3 ⧵ 41 contains an immersed thrice-punctured sphere which must be
totally geodesic [3, Theorem 3.1]. It follows that the complement of the �gure-
8 knot contains in�nitely many totally geodesic surfaces. The complements of
the remaining hyperbolic knots contain �nitely many totally geodesic surfaces
because they are all non-arithmetic. It was observed that the complement of
each of the following knots

{810, 815, 922, 932, 935, 942, 948}

does not contain any closed totally geodesic surfaces [19, Section 4.3]. Menasco
and Reid observed the complement of an alternating knot, a closed 3-braid or a
tunnel number one knot does not contain any closed embedded totally geodesic
surface [15, Theorem 1 and Corollary 4]. Adams and Schoenfeld proved that
the complements of two-bridge knots do not contain any embedded orientable
totally geodesic surface [2, Theorem 4.1]. Using the data in [13], we see the
complement of the knots in

K ⧵ {946, 947, 948, 949}

does not contain any closed embedded totally geodesic surface.
The complements of the knots 52, 61, 72, 81, and 92 each contain an immersed

totally geodesic thrice-punctured sphere. This surface is known to be unique
in the case of the knot 52, 72, and 92 [11, Corollary 1.4]. In this article, we
show that the complement of the knot 74 contains an immersed totally geodesic
twice-punctured torus. To the best of our knowledge, this surface has not been
found previously.

Theorem 1.1. The complement of the knot 74 contains a unique totally geodesic
surface. Moreover, this surface is a twice-punctured torus.

The complement of the knot 935 contains a totally geodesic Seifert surface
whichwas foundbyAdams and Schoenfeld. More generally, Adams and Schoen-
feld observed that the complements of the balanced pretzel knots each contain
a totally geodesic Seifert surface which is unique among Seifert surfaces (see [2,
Example 3.1] and [1, Corollary 3.4]). See Figure 6 for a diagram of the 3-tangle
balanced pretzel knot P(n, n, n), where n is the number of half twists in each
tangle, with its totally geodesic Seifert surface. The knot 935 is the knot with the
smallest crossing number in this family, also denoted as P(3, 3, 3). We herein
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study the in�nite family of 3-tangle balanced pretzel knots P(n, n, n) (see Fig-
ure 4 for the knot diagram). For the complement of the knots in this family, we
show that:

Theorem 1.2. Suppose n is an odd prime. Any totally geodesic surface Σ in the
complement of P(n, n, n)must:

∙ be the totally geodesic Seifert surface S, or
∙ intersect S transversely along a union of closed geodesics.

Furthermore, S is the unique totally geodesic surface in the complement ofP(3, 3, 3).

1.1. Proof outline of Theorem 1.1 and Theorem 1.2. The proofs of Theo-
rem 1.1 and Theorem 1.2 follow the same outline as that of [11, Theorem 1.3].
In particular, we take advantage of the facts that:

∙ the traces of the knot group, identi�ed as a discrete subgroup ofPSL2(ℂ),
are algebraic integers;

∙ the trace �elds of the knot group have odd degree and contain no real
sub�eld besides ℚ.

These conditions imply that the complements of these knots do not contain any
closed totally geodesic surfaces by a proposition of Reid ([20, Proposition 2]; re-
stated in this article as Proposition 2.1). We observe that the number theoretic
constraints above also imply that the traces of any Fuchsian subgroup of these
knot groups must be integers, which we will refer to as the trace condition (see
Section 2.2 and (2)). Taking advantage of the trace condition and the geometry
of the cusp neighborhood, we show that any totally geodesic surface in these
knot complements must either be the known totally geodesic surface or inter-
sect the torus neighborhood of the cusp in parallel with the known totally geo-
desic surface. The de�nition of parallel here is in reference to boundary slope;
see Lemma 3.3 and Lemma 4.8 for a more precise description. We also observe
a geometric constraint that totally geodesic surfaces must intersect each other
along a union of closed and cusp-to-cusp geodesics (see Lemma 2.2). By playing
the trace condition, boundary slope, and geometric constraints o� each other,
we prove that the only totally geodesic surface satisfying all three constraints
is the known totally geodesic surface, and therefore we establish uniqueness
of totally geodesic surface in these examples. The new idea compared to the
techniques in [11] is the use of closed geodesics in the �nal step to establish
uniqueness. Furthermore, we also demonstrate that the techniques in [11] can
also be adapted to the situation where the set of permissible boundary slopes of
totally geodesic surfaces is a singleton, as in the case of the pretzel knot 935.

In the process of proving Theorem 1.2, we obtain new information about
the trace �eld of the family of 3-tangle balanced pretzel knots P(2k + 1, 2k +
1, 2k + 1) for k ≥ 1, which is of independent interest. In particular, we prove
the following.

Corollary 1.3. The trace �eld of P(2k + 1, 2k + 1, 2k + 1) is ℚ(zk) where the
minimal polynomial of zk is of degree 2k + 1.
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To our best knowledge, the only other in�nite family of knots whose trace
�eld is precisely known is the family of twist knots [10, Theorem 1]. To put
Corollary 1.3 in a broader context, we observe that both families of knots can
be obtained by doing Dehn surgery on a hyperbolic link complement. The twist
knots are obtained by doing Dehn surgery on the Whitehead link. Meanwhile,
the balanced pretzel knots are obtained by doing Dehn surgery on a fully aug-
mented pretzel link (see [16] for the de�nition). In other words, Corollary 1.3
gives another example of an in�nite family of Dehn surgeries on a link whose
trace �eld degree has precise linear growth. Corollary 1.3 gives an illustrative
example of the conditional theorem in [8, Theorem 1.2].

1.2. Obstruction results. Nowwe turn our attention to the remaining 73 hy-
perbolic knots:

K ⧵ {41, 52, 72, 74, 92, 935}
Using SnapPy [6] and [13], we found 23 �bered knots that satisfy the obstruc-
tion to the existence of totally geodesic surface due toCalegari [5, Corollary 4.6].
We modify this obstruction for the non-�bered case to obtain the following.

Theorem 1.4. LetM be a hyperbolic knot complement such that the trace �eld
K ofM has no proper real sub�eld besideℚ and contains no quadratic �eld. Let
F be a Seifert surface in M with minimal genus g among Seifert surfaces. Sup-
pose that there exists � ∶ �1(M) → PSL2(ℝ) a Galois conjugate of the geometric
representation of �1(M) such that

e�([F]) < 2g − 1

where e� ∈ H2(M, )M;ℤ) is the relative Euler class of this representation. Then
M contains no totally geodesic surfaces.

We found an additional 24 hyperbolic knots to which Theorem 1.4 can be
applied and thus which have no totally geodesic surfaces in their complement.
Together, we have the following result.

Theorem 1.5. Among the 79 hyperbolic knots inK, the complements of the fol-
lowing 47 knots

{62, 73, 75, 76, 82, 84, 85, 86, 87, 810, 814, 815, 816, 820, 93,
94, 96, 97, 98, 99, 910, 911, 912, 913, 915, 916, 917, 918, 920, 921,
922, 923, 924, 925, 926, 929, 931, 932, 934, 936, 938, 939, 942, 943, 945, 948, 949}

(1)

contain no totally geodesic surfaces.

1.3. Summary. We summarize known results about totally geodesic surfaces
in the complement of knots inK as follows:

∙ the complement of the knot 41 contains in�nitelymany totally geodesic
surfaces [19, Corollary 1].

∙ the complement of the knots 52, 72, 74, 92 and 935 contains a unique
totally geodesic surface.
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∙ the complement of the knots in the set

{62, 73, 75, 76, 82, 84, 85, 86, 87, 810, 814, 815, 816, 820, 93,
94, 96, 97, 98, 99, 910, 911, 912, 913, 915, 916, 917, 918, 920, 921,
922, 923, 924, 925, 926, 929, 931, 932, 934, 936, 938, 939, 942, 943, 945, 948, 949}

contains no totally geodesic surfaces.
∙ the complement of the knots in the set

K ⧵ {946, 947, 948, 949}

does not contain any closed embedded totally geodesic surface [15, The-
orem 1 and Corollary 4].

This is by nomeans a comprehensive description of totally geodesic surfaces in
K. We suspect that the knot 941 contains an immersed totally geodesic surface
with cusps in its complement. We also think that there are no totally geodesic
surfaces in the remaining knot complements. See Section 6 for further discus-
sion.

1.4. Outline of the paper. In Section 2, we recall some results that are used
in the proof of Theorem 1.1 and Theorem 1.2. We will also recall Calegari’s ob-
struction to the existence of totally geodesic surfaces and give a prove of The-
orem 1.4. In Section 3, we give a proof of Theorem 1.1. In Section 4, we give
a description of the geometric representation and the trace �eld of the family
of 3-tangle pretzel knots in Theorem 4.1 and Corollary 1.3. Using these results,
we prove Theorem 1.2. In Section 5, we outline our computational approach
in proving Theorem 1.5. In Section 6, we discuss some interesting questions
arising from this paper.

2. Preliminaries
We begin with presenting some previously known statements about the be-

havior of totally geodesic surfaces in hyperbolic 3-manifolds.

2.1. Geometric and arithmetic constraints on totally geodesic surfaces.
The following proposition of Reid [20, Proposition 2] gives an arithmetic con-
straint on the existence of closed totally geodesic surfaces. In particular, it rules
out the existence of closed totally geodesic surfaces.

Proposition 2.1. Let Γ be a non-cocompact Kleinian group of �nite covolume
and satisfying the following two conditions:

∙ ℚ(tr Γ) is of odd degree overℚ and contains no proper real sub�eld other
thanℚ.

∙ The traces of Γ are algebraic integers.
Then Γ contains no cocompact Fuchsian groups and at most one commensura-
bility class (up to conjugacy in PSL2(ℂ)) of non-cocompact Fuchsian subgroup of
�nite covolume.
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For a �nite covolume Kleinian group Γ, we say that p ∈ )∞ℍ3 is a cusp point
if p is a �xed point of a parabolic isometry in Γ. We say a geodesic in a cusped
�nite-volume hyperbolic 3-manifold ℍ3∕Γ is a cusp-to-cusp geodesic if it is the
image of a geodesic in ℍ3 connecting two cusp points under the action of Γ on
ℍ3. The following lemma of Fisher, Lafont, Miller, and Stover [7, Lemma 3.1]
describes the intersection of totally geodesic hypersurface and immersed totally
geodesic submanifolds in�nite-volumehyperbolicn-manifold. We restate their
lemma for n = 3.
Lemma 2.2. Let M be a complete �nite volume hyperbolic 3-manifold with at
least 1 cusp. Suppose that Σ1 and Σ2 are two distinct properly immersed totally
geodesic surfaces inM such that Σ1 ∩ Σ2 is nonempty. Then Σ1 ∩ Σ2 is the union
of closed geodesics and cusp-to-cusp geodesics.
2.2. Boundary slope and the trace condition. A primary conceptual tool
in proving Theorem 1.1 and Theorem 1.2 is using the boundary slope of a to-
tally geodesic surface in concert with Lemma 2.2. There are two approaches to
boundary slopes — one in the manifold itself and one in the universal cover.

Let M be the complement of a hyperbolic knot J in S3 and T be the torus
boundary of a small tubular neighborhood of J in S3. When J is not the un-
knot, the fundamental group of T injects into the fundamental group ofM. We
�x a basis for �1(T) ≅ ℤ2 by choosing a,l ∈ �1(M) such that a is a meridian
with corresponding homological longitude l of the knot J. In a hyperbolic knot
complementM, the neighborhood of each cusp of a cusped totally geodesic sur-
faceΣmust intersect the torus neighborhoodT of the knot. BecauseΣ has �nite
area, each intersection is a closed curve on the embedded torus neighborhood
T; thus, each curve represents the element aplq ∈ �1(M) up to conjugation.
The ratio p∕q ∈ ℚ ∪ {∞} is the boundary slope of the corresponding cusp of Σ.

This topological description can be expressed equivalently in the universal
cover. Let us identify the universal cover ℍ3 of M with the upper half-space
model and the visual boundary )∞ℍ3 with ℂ ∪ {∞}. The action of �1(M) on
ℍ3 ∪ )∞ℍ3 is given by a discrete faithful representation. Up to conjugation, we
assume that under the discrete faithful representation � ∶ �1(M) → PSL2(ℂ),
the images �(a) and �(l) are parabolic isometries �xing∞ as a cusp point. Let
Σ be a properly immersed cusped totally geodesic surface in M. Since M has
one cusp and Σ is properly immersed, the neighborhood of each cusp of Σmust
be contained in the cusp neighborhood of M. Given any cusp of Σ, we can
consider a lift Σ̃ of Σ to ℍ3 by putting the cusp point of Σ at∞. The hyperplane
Σ̃ intersects a horoball based at∞ along some horocycle. The stabilizer of this
horocycle is generated by an isometry of the form �(aplq). See Figure 1 for a
visualization of a totally geodesic surface with a boundary slope 1∕0 and the
view from∞ of its lifts to the universal cover.

Under some mild condition on the traces of �(�1(M)), the complete set of
boundary slopes of all totally geodesic surfaces inM are computed in Lemma
3.3 and Lemma 4.8 (in the style of [11, Lemma 3.5]). The following is a critical
preliminary calculation in our analysis. Up to a further conjugation, we assume
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(a) Cusp in knot
complement with knot

neighborhood

∂H3

ρ(a)

ρ(ℓ)

(b) View from∞ in
universal cover

Figure 1. Totally geodesic surface (blue) with boundary slope 1∕0

that

�(a) = (1 1
0 1) and �(l) = (−1 −�

0 −1) .

For convenience, let us momentarily drop � from our notation and identify
elements of �1(M) with its image in PSL2(ℂ) under �. We suppose that the
trace �eld ℚ(tr�1(M)) contains no proper real sub�eld besides ℚ and the ele-
ments of tr�1(M) are all algebraic integers. Let Σ be a totally geodesic surface
inM. We note that the set tr�1(Σ)must contain only real algebraic integers in
ℚ(tr�1(M)). The condition that ℚ(tr�1(M)) does not contain any proper real
sub�eld other than ℚ implies that tr�1(Σ) ⊆ ℤ. Suppose further that Σ has
cusps with boundary slopes p∕q andm∕n. Then there exist hyperplane lifts Σ̃1
and Σ̃2 whose visual boundaries contain∞ and that are stabilized by aplq and
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amln, respectively. There exists

 = (� �
� �) ∈ �1(M)

such that (Σ̃2) = Σ̃1. The conjugate amln−1 is in Stab(Σ̃1) because amln ∈
Stab(Σ̃2). Since aplq ∈ Stab(Σ̃1) as well, the trace of their product

tr(amln−1aplq) = (−1)n+q+1[−2 + (m + n�)(p + q�)�2]

must be in ℤ, which is true if and only if

�2(nq�2 + (mq + np)� +mp) ∈ ℤ (2)

We shall refer to (2) as the trace condition. WhenM has at least one cusp, the
entries of �1(M) can be taken to be in the trace �eld. By rewriting (2) in terms
of a ℚ-basis of the trace �eld, we obtain a set of equations that the boundary
slopes of Σmust satisfy. Solving this set of equations allows us to compute the
complete set of boundary slopes of totally geodesic surfaces inM.

2.3. Trace �eld and orientability of totally geodesic surfaces.

Lemma 2.3. If an orientable hyperbolic 3-manifoldM = ℍ3∕Γ contains a non-
orientable totally geodesic surface, then the trace �eld of Γ contains either a real
sub�eld properly containingℚ or contains an imaginary quadratic �eld.

Proof. If an orientable hyperbolic 3-manifoldM contains a non-orientable to-
tally geodesic surface, then there must exist  ∈ Γ such that the image of 
under the discrete faithful representation is conjugate into

( i 0
0 −i)PSL2(ℝ).

The trace �eld of the 3-manifold must contain purely imaginary elements, say
� ∈ iℝ. If �2 ∈ ℚ, then ℚ(�) is an imaginary quadratic sub�eld of the trace
�eld of Γ. Otherwise, the trace �eld of Γ contains a real sub�eld ℚ(�2) that
properly contains ℚ. �

Remark 2.4. If an orientable hyperbolic 3-manifoldM contains a non-orientable
totally geodesic surface, then there must exist  ∈ �1(M) such that the image of
 under the discrete faithful representation is conjugate to the product of an ele-
ment of PSL2(ℝ) and the order 2 rotation diagonal matrix. Then the trace �eld of
the 3-manifold must contain purely imaginary elements. This is impossible when
the trace �eld of odd degree. Since almost all knot complements we will address
in this article will have odd trace �eld, we will safely presume the exclusion of
non-orientable surfaces. We will individually address relevant knot complements
whose trace �eld has even degree.
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2.4. Calegari’s obstruction of totally geodesic surfaces using Euler class.
Finally, we will recall a method introduced by Calegari in [5] to obstruct the ex-
istence of totally geodesic surfaces in certain �bered knot complement in ratio-
nal homology sphere [5, Corollary 4.6]. We will start by recalling the de�nition
of the Euler class associated to a PSL2(ℝ)-representation of �1(M) and the def-
inition of Thurston norm.

2.4.1. The Euler class and Thurston norm. LetM be the complement of a
knot in a rational homology 3-sphere and � ∶ �1(M)→ PSL2(ℝ) be a represen-
tation such that �(�1()M)) is parabolic. Since PSL2(ℝ) acts on ℝℙ

1, we have
the associated circle bundle ofM de�ned by

E� = M̃ ×ℝℙ1∕(x, p) ∼ ( ⋅ x, �()(p)). (3)

The obstruction of �nding a section of E� is measured by the Euler class e� ∈
H2(M;ℤ). When M is the complement of a knot in a rational homology 3-
sphere, H2(M;ℤ) = 0. Therefore, the Euler class invariant vanishes for M.
Nevertheless, we can still de�ne a relative Euler class when �(�1()M)) is para-
bolic. Since �1()M) is abelian, the image �(�1()M)) has a unique �xed point.
This �xed point de�nes a canonical section of E�|)M over )M. The obstruction
of extending this section overM is measured by the relative Euler class, which
we also denote as e� ∈ H2(M, )M;ℤ).

We can describe the relative Euler class e� in terms of the homomorphism
� as follows. Since M is the complement of a knot in a rational homology 3-
sphere,H2(M, )M;ℤ) is generated by [F]where F is a Seifert surface ofM. The
class e� is completely determined by e�([F]). The groupH2(M;ℤ) vanishes, so
we get a lift �̃ ∶ �1(M)→ P̃SL2(ℝ) of �. This lift determines an image �̃()F) in
P̃SL2(ℝ). The following lemma appeared in [9, Section 2.5].

Lemma 2.5. The element �̃()F) is independent of the choices of lifts of � and the
choices of Seifert surface representing the generator ofH2(M, )M;ℤ).

Proof. Since F is a Seifert surface, the boundary )F is identi�ed with a well-
de�ned element of�1()M)which is the generator of ker(�1()M)→ H1(M;ℤ)).
Lifts of � are parametrized by H1(M;ℤ). In particular given a lift �̃ of � and a
element � ∈ H1(M;ℤ), we obtain a di�erent lift �̃� ∶ �(M)→ P̃SL2(ℝ) by

�̃�() = �̃()c�()

where c is a generator of the center of P̃SL2(ℝ). The element )F is in the com-
mutator subgroup of �1(M), so )F ∈ ker(�) for all � ∈ H1(M;ℤ). Therefore,
the image of )F is independent of the choice of lift of �. �

The canonical section of E�|)M determines a section of �1()M)

s ∶ �1()M)→ P̃SL2(ℝ) (4)

as follows. Let us identifyℝℙ1 ≅ ℝ∕�ℤ. The image �(�1()M)) is parabolic and
�xes a unique point p ∈ ℝℙ1 which has a unique lift p̃ in the interval [0, �).
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The canonical section s ∶ �1()M) → P̃SL2ℝ is obtained by lifting �(�1()M))
to elements �xing p̃. Since s(l) and �̃(l) have the same image in PSL2(ℝ), it
follows that �̃(l) = s(l)cn for some n ∈ ℤ. The integer n is e�([F]).

Another norm that we have on H2(M, )M;ℝ) is the Thurston norm. For an
irreducible and atoroidal manifold M with boundary, Thurston introduced a
norm on H2(M, )M;ℝ) in [22]. Given a homology class [S] in H2(M, )M;ℤ),
the Thurston norm of [S] is de�ned to be

||[S]|| = inf {−�(F) ∣ F represents [S]}

where F contains no sphere components. The function || ⋅ || is extended to
each ray containing an integral point by linearity. Finally, || ⋅ || is extended
continuously toH2(M, )M;ℝ) by convexity.

2.4.2. Obstructing totally geodesic surfaces using Euler class. Using the
Euler class and Thurston norm on H2(M, )M;ℤ), Calegari produced an ob-
struction to the existence of totally geodesic surfaces in �bered knot comple-
ments in a rational homology sphere [5, Corollary 4.6]. When M is a �bered
knot complement, Calegari showed that for every Galois conjugate of the hy-
perbolic representation into PSL2(ℝ),

e�([F]) < ‖[F]‖,

where F is the �ber surface and ‖ ⋅ ‖ is the Thurston norm on H2(M, )M;ℤ)
[5, Remark 3.3]. Under some assumption on the trace �eld of the knot K, the
inequality above rules out the existence of totally geodesic surfaces. In practice,
we just need the inequality to hold at one real place.

Inspired by this idea, we modify Calegari’s condition to produce an obstruc-
tion to the existence of totally geodesic surfaces in non-�bered knot comple-
ments given in Theorem 1.4. Before proving Theorem 1.4, we need the follow-
ing:

Theorem 2.6 ([5, Theorem 4.4]). LetM be a cusped hyperbolic 3-manifold, and
suppose S ⊂ M is a totally geodesic surface with rational traces (possibly im-
mersed). If S is not (Gromov or Thurston) normminimizing in its homology class,
the trace �eldK has no real places. In particular, ifK has a real place thenM does
not contain any null-homologous totally geodesic surface with rational traces.

Proof of Theorem 1.4. For a contradiction suppose that S is a totally geodesic
surface inM. Since the trace �eld K contains no proper real sub�eld besidesℚ
and contains no quadratic sub�eld, S is orientable and has rational traces. Since
� is aGalois conjugate of the geometric representation, �(S) remains a Fuchsian
subgroup of �nite coarea in PSL2(ℝ). Consequently, |e�([S])| = −�(S).

Let F ⊂ M be a Seifert surface of minimal genus. SinceM is a knot comple-
ment, H2(M, )M;ℤ) is generated by [F] and [S] = n[F] for some n ∈ ℤ. Note
that sinceK has a real place, n ≠ 0 by Theorem 2.6. Since F is a minimal genus
Seifert surface, it is Thurston norm minimizing, and therefore −|n|�(F) ≤
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−�(S). By assumption |e�([F])| < 2g − 1, we then have

−�(S) = |e�([S])| = |n| ⋅ |e�([F])| < |n| ⋅ (2g − 1) = −|n|�(F) ≤ −�(S),

which is the desired contradiction. �

Remark 2.7. As we shall see in Section 5, the inequality in Theorem 1.4 holds for
more than half of the hyperbolic knots with fewer than nine crossings.

3. The knot 74
Throughout this section, we let J be the knot 74 in Figure 2,M the comple-

ment of J in S3, and Γ the fundamental group ofM.

Figure 2. The knot 74

3.1. Trace �eld and totally geodesic surface. The knot J is a two-bridge
knot that corresponds to the fraction 15∕11. Following [14, Section 4.5], the
knot group Γ has the following presentation.

Γ = ⟨x, y ∣ xw = wy⟩, (5)

wherew = yx−1yxy−1xy−1x−1yx−1yxy−1x. The homological longitude of J is
given by l = wvx−4 where v is the word w spelled backwards.

The manifoldM admits a hyperbolic structure with the discrete and faithful
representation � ∶ Γ→ PSL2(ℂ) given by

�(x) = (1 1
0 1) and �(y) = (1 0

z 1) (6)

where z is a complex root of the polynomial Λ = z3 − 4z2 + 4z + 1. Note that
the group relation in (5) holds if and only if z satis�es a polynomial of degree 7.
This polynomial factors into two factors of degree 3 and 4. A quick check using
SnapPy [6] tells us that the hyperbolic structure corresponds to the complex
root of the cubic factor.

Since the representation � is faithful, we can identify Γwith its image under
�. In this identi�cation, we can calculate l to be

l = (−1 2(2z2 − 6z + 5)
0 −1 ) .

If we set � = −2(2z2 − 6z + 5), then � + 2 = −4(z − 1)(z + 2).
We observe that the trace �eld of Γ is ℚ(z) which is a cubic extension over

ℚ. Since z is an algebraic integer, (6) implies that Γ has integral traces. By
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Proposition 2.1, Γ does not contain cocompact Fuchsian groups and only con-
tains non-cocompact Fuchsian subgroup commensurable to PSL2(ℤ). In fact,
we prove thatM contains a totally geodesic twice-punctured torus.

Proposition 3.1. The manifold M contains a totally geodesic twice-punctured
torus. The fundamental group of this twice-punctured torus is generated by

∆ =
⟨
(−1 4(z − 1)(z − 2)
0 −1 ) , ( 5 3(z − 1)(z − 2)

z2 − z − 1 −1 ) ,

( 7 11(z − 1)(z − 2)
z2 − z − 1 −3 )

⟩ (7)

which come from the words

a = (−1 4(z − 1)(z − 2)
0 −1 ) = x2l

b = ( 5 3(z − 1)(z − 2)
z2 − z − 1 −1 ) = wy−1xy−1xy−1

c = ( 7 11(z − 1)(z − 2)
z2 − z − 1 −3 ) = x−1wxy−1xw−1x2w−1x

The boundary slopes of the two cusps are ±2.

Proof. We �rst observe that ∆ ⊂ Γ since the generators can be expressed as
words in Γ. Furthermore, ∆ is conjugate to the subgroup

∆′ =
⟨
(−1 −4
0 −1) , (

5 3
−2 −1) , (

3 11
−2 −7)

⟩

of PSL2(ℤ) via

′ = ((z
2 − 3z + 2)−1∕2 0

0 (z2 − 3z + 2)1∕2)

It follows that ∆ stabilizes some hyperplane H in ℍ3. Since ℍ2∕∆′ is a �nite
area twice-punctured torus, the stabilizer of H in Γmust act with �nite coarea
onH. Therefore,M contains a totally geodesic surface S.

We now show that this surface is the twice-punctured torus. The trace �eld
of Γ has odd degree over ℚ, so Γ does not contain any element with purely
imaginary trace. ThusH covers an orientable totally geodesic surface inM (see
Remark 2.4). Since the Euler characteristic of the twice-punctured torus is −2,
the hyperplane H must cover either a once- or a twice-punctured torus in M.
Consider the element

d = ( −1 0
4(z2 − z − 1) −1) = a−1cb−1c−1b ∈ ∆ (8)

Since wdw−1 = x−2l and a = x2l, we have that a and d are not conjugate
in �(Γ). This implies that a and d are not conjugate in ∆. Therefore, S has at
least two cusps. It follows that the surface S has to be the twice-punctured torus
itself.
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Since a = x2l and d = w−1x−2lw, the boundary slopes of the two cusps of
S are ±2. �

Remark 3.2. Since ∆ is a conjugate of ∆′ by ′, elements in ∆ have the form

( � �(z − 1)(z − 2)
�(z2 − z − 1) � )

where �, �, �, and � ∈ ℤ.

3.2. Boundary slope restrictions. Since the trace �eld ofΓ contains no proper
sub�eld other thanℚ and Γ has integral traces, we apply the trace condition to
obtain restrictions for the boundary slopes of totally geodesic surfaces inM.

We �rst make a few preliminary observations and set some notation. Keep-
ing the notation in Proposition 3.1, we denote byH the vertical hyperplane inℍ3

stabilized by∆ and by S the totally geodesic twice-punctured torus inM covered
by H. Since x2l ∈ ∆, the boundary slope at in�nity of H is 2. The action of ∆
on )∞H has two orbits of cusp points. The boundary slopes at 0 and∞ ofH are
−2 and 2, respectively, so the two orbits of cusp points are the orbits of 0 and∞
under ∆. The group w∆w−1 stabilizes w(H). Since x−2l = wdw−1 ∈ w∆w−1,
the image w(H) is a vertical hyperplane with boundary slope −2 at in�nity.

Lemma 3.3. The complete set of boundary slopes for a cusped totally geodesic
surface inM is {±2}.

Proof. Let Σ be a totally geodesic surface admitting a non-zero boundary slope
p∕q. There is a vertical lift Σ̃ of Σ to ℍ3 that contains ∞ as a cusp point with
boundary slope p∕q. Suppose that p∕q ≠ 2. This lifts intersects H along a
vertical cusp-to-cusp geodesic (�,∞). Since � is a cusp point of H, there exists
 ∈ Γ such that (∞) = �. In particular, we either have � is in the orbit of 0 or
∞ for the action of ∆ onH. We consider two cases.

Case 1: Suppose that � ∈ ∆ ⋅ {∞}. We can choose  ∈ ∆ and may assume
that

 = ( � �(z − 1)(z − 2)
�(z2 − z − 1) � )

where �, �, � and � are integers (see Remark 3.2). Since � ≠ ∞, we
may assume that � ≠ 0. Since � is a cusp point of Σ̃, the elements
xplq, xmln−1 are contained in StabΓ(Σ̃). Applying the trace condi-
tion, we must have

tr(xplqxmln−1) ∈ ℤ

Writing the above expression as an element ofℤ[z], we see that the trace
condition holds if and only if the coe�cients of z and z2 are zero; that
is, the trace condition is equivalent to

(7mp − 6np − 6mq − 4nq)�2 = 0 = (−3mp − 2np − 2mq + 20nq)�2

Since � ≠ 0, the only solutions to the above system of equations are
m = n = 0 or p = q = 0 or m − 2n = p − 2q = 0. Since (m, n) ≠
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(0, 0) ≠ (p, q), we must have m∕n = p∕q = 2. This contradicts the
assumption that p∕q ≠ 2.

Case 2: Suppose that � ∈ ∆ ⋅ {0}. We can choose  = ̃w−1 for some ̃ ∈ ∆
such that ̃(0) = �. Therefore,

 = ( ∗ ∗
�(z2 − 2z) ∗)

Applying the trace condition, we have

�2(mp + 6np + 6mq + 4nq) = −4�2(np +mq) = 0

Since � ≠ 0 and (m, n) ≠ (0, 0) ≠ (p, q), we must havem∕n = −p∕q =
2 and m∕n = −p∕q = −2. Since p∕q ≠ 2, we must have m∕n =
−p∕q = 2.

Now we suppose that the boundary slope at in�nity of Σ̃ is 2. Recall that
w(H) is a vertical hyperplane with boundary slope −2 at in�nity. By Lemma
2.2, the two hyperplanes Σ̃ and w(H) intersect along a cusp-to-cusp geodesic
(�,∞). As before, we have two cases.

Case 1: Suppose that � ∈ w∆ ⋅ {∞}. Then there exists ̃ ∈ ∆ such that
� = w̃(∞). Putting  = w̃, we have

 = ( ∗ ∗
�(z2 − 2z) ∗) .

Since (∞) = �, we have xmln−1 ∈ StabΓ(w(H)) for some (m, n) ≠
(0, 0). Applying the trace condition, we have

tr(x2lxmln−1) ∈ ℤ

This is equivalent to

�2(m + 2n) = 0

Since � ≠ 0 because � ≠∞, we concludem∕n = −2.
Case 2: Suppose that � ∈ w∆ ⋅ {0}. Then there exists ̃ ∈ ∆ such that
� = w̃(0). Putting  = w̃w−1, we have (∞) = � and furthermore

 = ( ∗ ∗
�(z2 − 2z − 1) ∗)

Applying the trace condition, we have

�2n = �2(m + 18n) = 0

Similar to before, � ≠ 0 because � ≠ ∞, so we conclude m = n = 0,
which contradicts the assumption that (m, n) ≠ (0, 0).

In all cases, we must have both boundary slopes ±2. Therefore, the complete
set of boundary slopes of totally geodesic surfaces inM is {±2}. �
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3.3. Uniqueness of the totally geodesic surface. The method for proving
uniqueness is to show that there is no vertical hyperplane of boundary slope
2 between H and x(H) that is a lift of a totally geodesic surface. In particular,
we will argue that any vertical hyperplane of boundary slope 2 betweenH and
x(H) does not intersect hemispherical lifts of the twice-punctured torus S along
closed nor cusp-to-cusp geodesics, which contradicts Lemma 2.2.

i ℝ

ℝ

0

1 τ+2

τ+3

H

x(H)

C1

C2

Σ
˜

Figure 3. Possible lift of totally geodesic surface with bound-
ary slope 2 at∞

Proof of Theorem 1.1. Let Σ be a totally geodesic surface inM distinct from
the twice-punctured torus S. Let Σ̃ be a vertical hyperplane lift with boundary
slope 2 at ∞; such a lift must exist because of Lemma 3.3. Without loss of
generality, we may assume that )∞Σ̃ ∩ )∞ℍ2

ℝ ∈ (0, 1) by translation by x.
We now describe some hemispherical lifts of S to ℍ3. A visual reference

is given in Figure 3. Consider two lifts of S de�ned as C1 = y(H) and C2 =
xy−1(H). Since y is a parabolic element �xing 0 ∈ )∞H, the boundaries )∞C1
and )∞y−1(H) are circles tangent to )∞H at 0. Applying the isometry x, we see
that )∞C2 is a circle tangent to x(H) at 1. Finally, we show thatC1∩C2 contains
two points. Since

y−1xy−1 (� + 2
4 ) = ∞, y−1xy−1(∞) = −� + 2

4 , y−1xy−1(0) = −18� −
3
4 ,

y−1xy−1(H) is a vertical hyperplane with boundary slope −2 at∞. Therefore,
y−1xy−1(H) intersectsH at two points. Applying the isometry y, we see that C1
and C2 must also intersect at two points.

Since C1 and C2 have a nonempty intersection, the vertical hyperplane Σ̃ is
not tangent to both C1 and C2 and hence must intersect either C1 or C2 along a
geodesic. Let �̃ be a geodesic in the intersections Σ̃ ∩C1 and Σ̃ ∩C2. By Lemma
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2.2, �̃ is a lift of either a closed geodesic or a cusp-to-cusp geodesic. Since the
stabilizer ofH is conjugate to ∆′ by

′ = ((z
2 − 3z + 2)−1∕2 0

0 (z2 − 3z + 2)1∕2)

the endpoints �i of �̃ are the image of quadratic irrationals (resp. rationals) �i
under

 ((z
2 − 3z + 2)1∕2 0

0 (z2 − 3z + 2)−1∕2)

when � is the lift of a closed (resp. cusp-to-cusp) geodesic for  ∈ {y, xy−1}.
Since �i ∈ )∞Σ̃ and Σ̃ is a vertical hyperplane with boundary slope 2 at∞, we
must have

�1 − �2 ∈ ℝ(� + 2).

We recall that � + 2 = −4(z − 1)(z − 2). Moreover, we note that, for both the
cases of the closed and the cusp-to-cusp geodesics, we have �1�2, �1 + �2 ∈ ℚ.
Now we consider the cases of  = y and  = xy−1.

Case 1: Suppose that  = y. Then

�1 − �2
� + 2 = 1

−4(z − 1)(z − 2)
⋅ (y �1(z − 1)(z − 2) − y(�2(z − 1)(z − 2))

=
�1 − �2

−4 (1 + �1z(z − 1)(z − 2)) (1 + �2z(z − 1)(z − 2))
∈ ℝ

Because �1, �2 ∈ ℝ, it is su�cient to verify that the denominator is real;
that is, we must have

(1 + �1z(z − 1)(z − 2))(1 + �2z(z − 1)(z − 2))

= (�1 + �2 − 2�1�2)z2 + (3�1�2 − 2(�1 + �2))z
+ (1 − �1 − �2 + �1�2) ∈ ℝ ∩ℚ(z) = ℚ

Because ℚ(z) is cubic, �1 and �2 satisfy the system of the following
equations

{ �1 + �2 − 2�1�2 = 0
−2(�1 + �2) + 3�1�2 = 0

and the only solution (real or complex) to such a system of equations is
�1 = �2 = 0, which contradicts that �1 and �2 are distinct endpoints.

Case 2: Suppose that  = xy−1. Then

�1 − �2
� + 2 =

(
xy−1(�1(z − 1)(z − 2)) − xy−1(�2 ⋅ (z − 1)(z − 2))

)

−4(z − 1)(z − 2)

=
�1 − �2

−4 (−1 + �1z(z − 1)(z − 2)) (−1 + �2z(z − 1)(z − 2))
∈ ℝ
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Because �1, �2 ∈ ℝ, it is su�cient to verify that the denominator is real.
Recalling that �1�2, �1 + �2 ∈ ℚ, we must have

(−1 + �1z(z − 1)(z − 2)) (−1 + �2z(z − 1)(z − 2))
= (−�1 − �2 − 2�1�2)z2 + (3�1�2 + 2(�1 + �2))z

+ (1 + �1 + �2 + �1�2) ∈ ℝ ∩ℚ(z) = ℚ

Because ℚ(z) is cubic, �1 and �2 satisfy the system of the following
equations

{−(�1 + �2) − 2�1�2 = 0
2(�1 + �2) + 3�1�2 = 0

and, as in Case 1, the only solution (real or complex) to such a system
of equations is �1 = �2 = 0, which again contradicts that �1 and �2 are
distinct endpoints.

Since no such pair of distinct �i exists, Σ̃ cannot be the lift of a totally geodesic
surface or else Lemma 2.2 would be contradicted. Therefore, S is the unique
totally geodesic surface inM. �

Remark 3.4. Note that the degenerate solution �1 = �2 corresponds to either the
tangency between )∞C1 and )∞H or the tangency between )∞C2 and )∞x(H). In
other words, the degenerate solution occurs precisely when Σ = S.

4. Balanced pretzel knots
In this section, we will give the proof of Theorem 1.2. Throughout this sec-

tion, we let J = P(2k + 1, 2k + 1, 2k + 1) be the 3-tangle balanced pretzel knot
with 2k + 1 half twists in each tangle,M the complement of J in S3, and Γ the
fundamental group ofM.

4.1. Discrete faithful representation and its trace �eld. By [23, Proposi-
tion 2.1], the knot group Γ has the presentation

Γ = ⟨s1, s2, s3 ∣ vs1 = s2v, ws2 = s3w⟩ (9)
where

v = (s−13 s2)ks−13 (s1s−13 )k and w = (s−11 s3)ks−11 (s2s−11 )k. (10)
For k ≥ 1, M admits a complete hyperbolic structure of �nite volume. The

discrete faithful representation � ∶ Γ → SL2(ℂ) sends all conjugates of the
meridians of the knot to parabolic isometries.

Theorem 4.1. The discrete faithful representation � ∶ Γ → SL2(ℂ) can be con-
jugated to be of the form

�(s1) = (1 1
0 1) , �(s2) = (

1 0
−z2k 1) and �(s3) = (

1 + zk 1
−z2k 1 − zk

) (11)

where zk satis�es a polynomial Λk(z) ∈ ℤ[z]. The polynomial Λk(z) is irre-
ducible and de�ned recursively by

Λk(z) = (z2 + 2)Λk−1(z) − Λk−2(z) (12)
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with the initial conditions Λ0(z) = z − 1 and Λ1(z) = z3 − z2 + 3z − 1.

We show that Corollary 1.3 is a consequence of Theorem 4.1.

Proof of Corollary 1.3. By [14, Lemma 3.5.3], the trace �eld of Γ is generated
over ℚ by

tr(�(si)) = 2, tr(�(s1s2)) = tr(�(s2s3)) = 2 − z2k, tr(�(s1s2s3)) = 2 − 3z2k − z3k.

Therefore, ℚ(tr Γ) = ℚ(z2k, z
3
k) = ℚ(zk). By Theorem 4.1, zk satis�es the irre-

ducible polynomial Λk which implies that the degree ofℚ(tr Γ) is the degree of
Λk. By an inductive argument using the recursive relation in (12) along with
its initial conditions, we see that the degree ofΛk is 2k+1which completes the
proof of this corollary. �

Before proving the theorem, we make some preliminary observations. Let
� ∶ Γ → PSL2(ℂ) be the discrete and faithful representation of Γ coming from
the hyperbolic structure on M. Since si is a meridian generator of Γ, we can
conjugate �(s1) and �(s2) to be the upper and lower triangular matrices stated
in the theorem for some zk ∈ ℂ. The image of s3 under � takes the form of a
generic conjugate of a parabolic isometry which is given by

�(s3) = (a b
c d) (1 1

0 1) ( d −b
−c a ) = (1 − ac a2

−c2 1 + ac)

where a, b, c, d ∈ ℂ such that ad − bc = 1.
Note that M admits an order three rotational symmetry that cyclically per-

mutes the twist regions. By Mostow rigidity, this rotational symmetry is ho-
motopic to an order three isometry r ∶ M → M. Observe that r permutes the
homotopy class of loops s1s−12 , s2s−13 and s3s−11 since they are loops surrounding
the twist regions (see Figure 6). It follows that the elements s1s−12 , s2s−13 and
s3s−11 are conjugate in the orbifold fundamental group ofM∕⟨r⟩. Thus, we have
tr(s1s−12 ) = tr(s2s−13 ) = tr(s3s−11 ) or equivalently

2 + z2 = 2 + a2z2 = 2 + c2.

Since z ≠ 0, these equations imply that a2 = 1 and c2 = z2. Without loss
of generality, we can choose c = z and a = −1. This shows that �(Γ) can be
conjugated to be of the form as stated in (11).

Let F3 be the free group on three generators S1, S2, and S3. We consider the
surjective homomorphism � ∶ F3 → Γ sending Si to si and the homomorphism
P ∶ F3 → SL2(ℤ[z]) de�ned by

P(S1) = (1 1
0 1) , P(S2) = ( 1 0

−z2 1) , and P(S3) = (1 + z 1
−z2 1 − z) .
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Lemma 4.2. We have the following identities:

P(S−13 S2)k = ( �k �k
z3�k �k

) , P(S1S−13 )k = ( �k −z�k
−z2�k �k

) ,

P(S−11 S3)k = (�k − 2z�k −z�k
z2�k �k + 2z�k

) , P(S2S−11 )k = (�k + z�k �k
z2�k �k − z�k

) .

The polynomials �k, �k and �k are de�ned recursively by:

P(S−13 S2)k = (z2 + 2)P(S−13 S2)k−1 − P(S−13 S2)k−2 (13)

where �0 = �0 = 1, �0 = 0, �1 = z2 − z + 1, �1 = −1, �1 = z + 1. Furthermore,
we have

�k = �k − 2�kz + �kz2.

Proof. Applying Cayley–Hamilton, we obtain (13). The initial conditions are
obtained by directly compute P(S−13 S2)k when k = 0 and k = 1. Similarly, we
see that P(S1S−13 )k, P(S−11 S3)k, and P(S2S−11 )k all satisfy the same recurrence as
in (13). The formulas for P(S1S−13 )k, P(S−11 S3)k, and P(S2S−11 )k can be veri�ed
by observing that they hold for k = 0 and k = 1 and are preserved by the
recurrence.

It remains to check the �nal identity relating �k, �k, and �k. Since the iden-
tity relating �k, �k, and �k is ℤ[z]-linear in �k, �k, and �k and �k, �k, and �k
satisfy the same recursion, it su�ces to check that the identity holds for k = 0
and k = 1. �

Let V andW be the lift of v and w using the respective word in (10). Let us
write

P(V) = (
v11k v12k
v21k v22k

) and P(W) = (
w11
k w12

k
w21
k w22

k
)

where vijk , w
ij
k ∈ ℤ[z]. A direct calculation using the identities in Lemma 4.2

gives us

v11k = (−�kz + �k)(�kz2 + (�k − �k)z + �k), v21k = −z2v12k , (14)

(w11
k − w22

k )z + w21
k = 0, w12

k z + w22
k = (−�kz + �k)(�kz2 + (�k − �k)z + �k)

We have the following lemma.

Lemma 4.3. Let � be the discrete and faithful representation of Γ coming from
the hyperbolic structure given by (11). Let zk ∈ ℂ and ev ∶ SL2(ℤ[z]) → SL2(ℂ)
be the evaluation map at z = zk. Then ev ◦P = �◦� if and only if zk is a root of

Λk(z) ∶= �kz2 + (�k − �k)z + �k.

Furthermore, Λk can also be de�ned recursively by

Λk(z) = (z2 + 2)Λk−1(z) − Λk−2(z)

with the initial conditions Λ0(z) = z − 1 and Λ1(z) = z3 − z2 + 3z − 1.
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Proof. The map ev ◦P factors through Γ if and only if zk satis�es

P(VS1) = P(S2V), and P(WS2) = P(S3W).

The �rst equation is equivalent to v11k = 0 and v21k = −z2v12k while the second
equation is equivalent to (w11

k −w
22
k )z+w

21
k = 0 andw12

k z+w
22
k = 0. The calcu-

lation prior to the lemma shows that zk satisfying these equations is equivalent
to zk satisfying

(−�kz + �k)(�kz2 + (�k − �k)z + �k) = (−�kz + �k)Λk(z).

To prove this lemma, we must rule out the case that zk satis�es −�kz + �k.
For a contradiction, suppose that zk satis�es −�kz + �k. Note that

tr(P((S1S−13 )kS1)) = −�kz2 + �k + �k = 2(−�kz + �k).

If zk satis�es −�kz + �k = 0, then �(Γ) contains a �nite order element. This
contradicts the fact that � is faithful and Γ is torsion-free. As a consequence,
ev ◦P = �◦� if and only if zk satis�es Λk(z) = 0. The claim about the recur-
rence forΛk follows from the fact that�k and �k satisfy the same recurrence and
that the formula for Λk in terms of �k and �k is ℤ[z]-linear. Finally, the initial
condition for Λk is obtained by a direct calculation for k = 0 and k = 1. �

Now we will turn our attention to the irreducibility of Λk(z). Using the re-
cursion for Λk(z), we get a closed formula of Λk(z):

Λk(z) = −
k∑

j=0

(k + j
2j

)
z2j +

k∑

j=0
(
( k + j
2j + 1

)
+

(k + j + 1
2j + 1

)
) z2j+1 (15)

where any binomial term with larger lower entry evaluates to zero by conven-
tion. The idea for the proof of irreducibility of Λk(z) is similar to that of irre-
ducibility of the Riley polynomial for twist knots in [10]. One explanation for
the similarity is that both families of twist knots and balanced pretzel knots
are obtained from doing 1∕n Dehn �lling on the Whitehead link and the aug-
mented pretzel link, respectively (see [16]). Both of these links are arithmetic
with trace �eld ℚ(i) [16, Theorem 1.2]. Following [10, Section 3], we consider
the substitution z = x − x−1.

Let Ψk(x) = x2k+1Λk(x − x−1). Using the recursive formula for Λk(z), we
get

Ψk(x) = x4k+2 − 1 +
2k∑

j=0
(−1)j+1x2j+1 (16)

Proposition 4.4. The polynomial Ψk(x) has two real roots and k distinct roots
in the interior of each quadrant. If x0 > 0 is the positive real root of Ψk(x) and
x1,… , xk are the roots of Ψk(x) in the interior of the �rst quadrant, then |xi| > 1
for all 0 ≤ i ≤ k.

Proof. We consider the auxiliary polynomial

Φk(x) = (x2 + 1)Ψk(x) = x4k+4 − x4k+3 + x4k+2 − x2 − x − 1. (17)
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We will �rst study the roots of Φk. Note that x satis�es Φk if and only if x
satis�es

x4k+2 − x2 + x + 1
x2 − x + 1

= 0.

We claim thatΦk(x) has exactly one positive real root x0 > 0. For convenience,
we write

f(x) = x2 + x + 1
x2 − x + 1

and g(x) = x4k+2 − f(x).

Since f(x) > 1 and x4k+2 ≤ 1 for all 0 < x < 1, any positive root of Φk must be
strictly larger than 1. The derivative of g(x) is

g′(x) = (4k + 2)x4k+1 +
2(x2 − 1)

(x2 − x + 1)2
.

Therefore, g′(x) is positive for all x ≥ 1 and g(x) is strictly increasing on [1,∞).
Since g(1) = −2 and g(x) tends to +∞ as x tends to∞, there exists a unique
x0 > 1 such that g(x0) = 0. It follows that Φk(x) has exactly one real positive
root x0 > 1. Therefore, Φk and hence Ψk has exactly two real roots {x0,−x−10 }.

We next claim that Φk has exactly k roots in the interior of the second quad-
rant. We prove this using the argument principle. In particular for any 0 ≤ n ≤
k − 1, let n be the sector bounded by

∙ the rays rn and rn+1 where

rn = {tei�n ∣ 0 ≤ t ≤ 1} and �n =
�
2 +

2n + 1
4k + 4

� = 2k + 2n + 3
4k + 4

�

∙ and the arc
cn = {eit ∣ �n ≤ t ≤ �n+1}

We will show that 1
2�i

∫n d log(g(x)) = 1 for all 0 ≤ n ≤ k − 1 where log has a
branch cut along [0,∞) ⊂ ℝ. To compute this integral, we count the winding
number of g(n) around 0.

We �rst claim that the image of rn for 0 ≤ n ≤ k under g(x) lies in the
lower-half plane. The imaginary part of g(tei�) is

Im(g(tei�)) = t4k+2 sin((4k + 2)�) +
2t(t2 − 1) sin �

|t2ei2� − tei� + 1|2
.

Since (2k+2n+1)� < (4k+2)�n < (2k+2n+2)�, we have sin((4k+2)�n) < 0.
Furthermore, we have �∕2 < �n < � for any 0 ≤ n ≤ k. It follows that

Im(g(tei�n)) < 0

for 0 < t ≤ 1 and 0 ≤ n ≤ k. When t = 0, g(0) = −1. Therefore the image of rn
for 0 ≤ n ≤ k under g(x) starts at −1 and remains in the lower-half plane for
0 < t < 1. In particular, g(rn) and g(rn+1) do not cross the branch cut [0,∞) of
log.

Next, we will traverse the circular arc of n. We have

Im(g(eit)) = sin((4k + 2)t).
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Observe that the interval [(4k+2)�n, (4k+2)�n+1] contains exactly two integer
multiple of �:

(2k + 2n + 2)� and (2k + 2n + 3)�.
Therefore, g(cn) intersects the real axis exactly twice. Furthermore, the inter-
section must be transverse since the derivative of g(cn) in the y-direction is not
zero at the intersections. The real part of g(eit) is

Re(g(eit)) = cos((4k + 2)t) − 2 cos t + 1
2 cos t − 1

which takes a positive and a negative value when (4k + 2)t is equal to

(2k + 2n + 2)� and (2k + 2n + 3)�,

respectively. We have showed that the curve g(n) intersects the positive real
axis transversely at exactly one point. Therefore, g(rn ∪ cn ∪ rn+1) winds about
the origin exactly once. This implies that the interior of the second quadrant
contains exactly k roots of g(x)which are also exactly k roots ofΦk in this quad-
rant.

SinceΦk(−x−1) = −x−4k−4Φk(x), the roots ofΦk come in sets of four distinct
roots, namely

{x, x,−x−1,−x
−1
},

except when one of the roots is real or ±i. Since Φk has k distinct roots in the
interior of the second quadrant, they account for 4k distinct roots of Φk. Fur-
thermore, Φk has ±i as roots and exactly two real roots. All roots of Φk are
simple because the degree of Φk is 4k + 4. Since Φk(x) = (x2 + 1)Ψk(x), the
roots of Ψk(x) are all roots of Φk except ±i.

Let x1,… , xk be k distinct roots in the interior of the �rst quadrant. To com-
plete the proof, we need to show that |xi| > 1. When |x| = 1 is a root of Φk,
|f(x)| = 1 implies that x = ±i. Suppose that |x| < 1 is a root of Φk. Without
loss of generality, we can assume that x = rei� where 0 < � < �∕2. However,
we have

|f(x)|2 =
r4 + r2 + 1 + 2r2 cos(2�) + cos �(2r + 2r3)
r4 + r2 + 1 + 2r2 cos(2�) − cos �(2r + 2r3)

> 1

since cos � > 0 and r > 0. This is the desired contradiction. �

Lemma 4.5. Either Ψ(r) is irreducible or it factors into exactly two irreducible
factors of equal degree; that is, Ψk(r) = p(r)q(r) where q(r) = rdegΨk∕2p(−r−1).

Proof. Suppose that Ψk(x) factors into irreducible factors p1(x) …ps(x). We
have

Ψk(x) = x4k+2Ψk(−x−1) = ±(xd1p1(−x−1)) … (xdsps(−x−1))

where di is the degree of pi(x). The factoring is unique up to reordering, so for
every 1 ≤ j ≤ s, there exists 1 ≤ i ≤ s such that

pj(x) = xdipi(−x−1)
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Observe that if r0 is a root of Ψk(x), then so is −r−10 . By Proposition 4.4, Ψk(x)
has no repeated roots. We either have that r0 and −r−10 are roots of a unique
irreducible factor ofΨk(x) or r0 and−r−10 are roots of distinct irreducible factors
that come in pairs pj(x) = xdipi(−x−1). Following [10], suppose that f(x) =
g(x)ℎ(x). We call a factor g(x) complete if g(x) = 0 implies that g(−x−1) = 0.
Therefore, Ψk(x) factors into complete factors or pairs of complete factors.

We claim that there is no complete factor in any factorization ofΨk(r) except
for Ψk(r). Following Proposition 4.4, we let x1,… , xk be roots of Ψk(x) in the
interior of the �rst quadrant, x0 > 0 and −x−10 be real roots of Ψk(x). The sum
of the roots of Ψk is

x0−x−10 +
k∑

j=1
(xj +xj −x−1j −x

−1
j ) = x0(1−x−20 )+

k∑

j=1
2ℜe(xi)(1− |xi|−2) = 1

Since |xi| > 1 and ℜe(xi) > 0 for all 0 ≤ i ≤ k, each summand is a positive
number. Therefore, no proper subset of these summands can add to an integer.
It follows that no factor of Ψk(x) over ℤ can be complete.

Therefore, Ψk(x) is either irreducible or factors into pairs of incomplete fac-
tors. If there is more than one pair of incomplete factors, then wemay combine
one pair of incomplete factors to obtain a complete one. Thus, we can only have
one pair of incomplete factors when factoring Ψk(x). �

A consequence of this lemma is that:

Corollary 4.6. The polynomial Λk(z) is irreducible.

Proof. Note that any factoring of Λk(z) induces a factoring of Ψk(x) into com-
plete factors. However, such factoring of Ψk is impossible by Lemma 4.5. �

Proof of Theorem 4.1. ByLemma4.3, the assignment in (11) satis�es the group
relations and gives a discrete faithful representation if and only if zk is a root of
Λk(z). Lemma4.3 also gives the recursive formula that de�nesΛk(z). Corollary
4.6 gives the irreducibility of Λk(z) for all k ≥ 1. �

4.2. Boundary slope restriction. We will study totally geodesic surfaces in
the complement of balanced pretzel knots following the outline used in Section
3. Throughout the rest of this section, we will identify Γ with its image under
the discrete faithful representation given in (11). We �rst observe that:

Corollary 4.7. The complement of P(2k+1, 2k+1, 2k+1) does not contain any
closed totally geodesic surface when 2k + 1 is prime.

Proof. Corollary 1.3 implies that the degree of the trace �eld of Γ is an odd
prime. Therefore, the trace �eld of Γ also contains no proper real sub�eld be-
sidesℚ. Theorem 4.1 gives that Γ has integral traces. As a corollary of Proposi-
tion 2.1,M does not contain any closed totally geodesic surface when 2k + 1 is
a prime. �
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We now give a topological and group theoretic description of a totally geo-
desic Seifert surface in the M and describe the meridian and longitude. The
shaded surface S in Figure 4 is a Seifert surface of genus 1. It was shown by
Adams and Schoenfeld that S is totally geodesic [2, Example 3.1] in M. By a
direct computation using the knot diagram, �1(S) is conjugate to a subgroup
∆ ≤ Γ generated by

x = (s1s−12 )k+1(s3s−12 )k (18)

y = (s2s−13 )k+1(s1s−13 )k (19)

It is also convenient to note that

∆ = (z
−1∕2 0
0 z1∕2)∆

′ (z
1∕2 0
0 z−1∕2)

where ∆′ ≤ PSL(2,ℤ) is de�ned as

∆′ =
⟨
(2 1
1 1) , (

0 −1
1 3 )

⟩

The longitude of the balanced pretzel knot is the boundary of the Seifert surface
S and is given by

l = y−1xyx−1 = (−1 −�
0 −1)

where � = −6∕z since l is conjugate to

(−1 6
0 −1)

in∆′. Let us denote byH� the totally geodesic hyperplane inℍ3 stabilized by∆.
We note that l, xyx−1y−1 ∈ ∆ are parabolic isometries �xing∞ and 0, respec-
tively. Therefore, H� is a vertical hyperplane containing the geodesic (0,∞).
The boundary at in�nity of H� is the straight line going through 0 and �. The
hyperplaneH� has boundary slope 0 because it is stabilized by l.

2k + 1 half-twists

Figure 4. The balanced pretzel knot P(2k + 1, 2k + 1, 2k + 1)
with its Seifert surface of genus 1



388 KHANH LE AND REBEKAH PALMER

Similar to the case of 74, we use the trace condition to obtain restrictions on
the set of all possible boundary slopes of totally geodesic surfaces inM.

Lemma 4.8. The complete set of boundary slopes for a cusped totally geodesic
surface in the P(2k + 1, 2k + 1, 2k + 1) balanced pretzel knot complement is {0},
where 2k + 1 is an odd prime.

Proof. The lemma holds for the Seifert surface S since the boundary of S is
the homological longitude. By Corollary 4.7, any totally geodesic surface inM
must have at least one cusp. Let Σ be a totally geodesic surface admitting a non-
zero boundary slope p∕q. There is a vertical lift Σ̃ of Σ toℍ3 that contains∞ as
a cusp point with boundary slope p∕q. This lift intersects H� along a vertical
cusp-to-cusp geodesic (�,∞). It follows that there are nontrivial elements sp1l

q

and sm1 l
n−1 in StabΓ(Σ̃)where  ∈ Γ has the property that −1(�) = ∞. Since

S has only one cusp and � is a cusp point ofH�, we may choose  ∈ ∆. Since ∆
is a conjugate of ∆′ by the matrix

(z
−1∕2 0
0 z1∕2)

we may assume that  has the form

 = ( ∗ ∗
�z ∗)

where � ∈ ℤ. The cusp points � and∞ are distinct, so  cannot �x∞. Conse-
quently, � ≠ 0.

By Corollary 1.3, the trace �eld of Γ has prime degree 2k + 1 over ℚ and
therefore contains no proper real sub�eld besidesℚ. Since Γ has integral traces,
the traces of �1(Σ) must be contained in ℤ. Applying the trace condition, we
have

tr(sp1l
qsm1 l

n−1) ∈ ℤ

�2(−nq + (np +mq)z −mpz2) ∈ ℤ

since z� = −6. We now compare the coe�cients of the powers of z, all of which
must be equal to 0 except in the case of the constant term. Since (p, q) ≠ (0, 0) ≠
(m, n), we can manually check that p = m = 0 is the only solution. �

As a consequence of Lemma 4.8, Lemma 2.2 and Corollary 4.7, if 2k + 1 is a
prime and Σ is a totally geodesic surface ofM that is not isotopic to S, then any
vertical lift Σ̃ of Σ to ℍ3 must be parallel to vertical lifts of S to ℍ3. Therefore,
Σ and S can only be disjoint or intersect each other along a union of closed
geodesics. We �rst prove that Σ, if exists, must indeed intersect S along a union
of closed geodesics. To this end, we study the geometric con�guration formed
by a �nite collection of lifts of S toℍ3. We consider the following elements of Γ
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for 0 ≤ j ≤ 2k:

gj = {
(s2s−11 )(j−1)∕2s2 j odd
(s2s−11 )j∕2 j even

, ℎj = {
(s1s−13 )(j+1)∕2 j odd
(s1s−13 )j∕2s1 j even

.

Let us denote by
Cj ∶= gj(H�), Dj ∶= ℎj(H�)

the lifts of S toℍ3. We �rst observe that the collections Cj andDj are preserved
by an order two symmetry ofM.

Lemma 4.9. Let

� = ( i i 1−z
z

0 −i
)

Then � is an order two rotational matrix about the geodesic between z − 1
2z and

∞ which induces an isometry onM such that

�Cj = Dj.

Proof. By matrix multiplication, �2 = −I2 ≡PSL2(ℂ) I2 which gives us an order
2 rotation, and its �xed point set is { z−1

2z
,∞}. To see that � induces a nontrivial

isometry ofM, it is su�cient to show that� normalizesΓ and� ∉ Γ. We already
know that � ∉ Γ because Γ is torsion-free, so we now verify that � normalizes
Γ by checking each generator:

�s1�−1 = (1 −1
0 1 ) = s1 ∈ Γ

�s2�−1 = (z
2 − z + 1 −(z − 1)2
z2 z2 + z + 1) = s1s−13 s−11 ∈ Γ

�s3�−1 = (z
2 + 1 −z2
z2 −(z2 − 1)) = s1s−12 s−11 ∈ Γ

Using the above calculation, we observe that �gj� = ℎjs−11 . Since �(H�) =
s1(H�), we have

�gj(H�) = �ℎjs−11 �(H�) = ℎj(H�).

This completes the proof of the lemma. �

We give a description of the con�guration of these lifts as follows.

Proposition 4.10. Suppose that 2k+1 is a prime number. The collection Cj and
Dj for 0 ≤ j ≤ 2k satisfy the following:

(1) The collection )∞Cj and )∞Dj are all circles for all 0 < j ≤ 2k.
(2) The circles )∞Cj and )∞Cj+1 are tangent for all 0 ≤ j ≤ 2k−1. Similarly,

)∞Dj and )∞Dj+1 are tangent for all 0 ≤ k ≤ 2k−1. Finally, )∞C2k and
)∞D2k are tangent.
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(3) The tangent point between the circles in )∞Cj are

)∞Cj ∩ )∞Cj+1 = {
{gj(∞)} if j is odd
{gj(0)} if j is even

where 0 ≤ j ≤ 2k and C2k+1 ∶= D2k.

Proof. By Lemma 4.9, �(Cj) = Dj. Since � �xes∞, vertical (resp. hemispheri-
cal) hyperplanes remain vertical (resp. hemispherical) under �. It thus su�ces
to prove 1 for Cj. For contradiction, suppose that gj(H�) = sm1 (H�) for some
m ∈ ℤ; equivalently s−m1 gj ∈ ∆ for some m ∈ ℤ. It is evident from (18) that
∆ ⊂ [Γ,Γ] since the generators si are all conjugate to each other. This implies
thatm = 0when j is even andm = 1when j is odd. After possibly conjugating
by s1, we have tr((s2s−11 )r) ∈ ℤ for 1 ≤ r ≤ k. By Lemma 4.2,

tr((s2s−11 )r) = �r + �r = 2�r − 2�rz + �rz2.

Using the recursion in (13) and the initial conditions for �r and �r, we see that
the leading terms of �r and �r are z2r and −z2r−2, respectively. The leading
term of tr((s2s−11 )r) is z2r for 1 < r ≤ k. Since z has degree 2k + 1 over ℚ, the
trace tr((s2s−11 )r) is not an integer, which contradicts the fact that s−m1 gj ∈ ∆.
Therefore, )∞Cj and )∞Dj are all circles for 0 < j ≤ 2k.

To prove 2, we �rst observe that the parabolic isometry s2 �xes 0 ∈ )∞(H�) =
)∞C0. Since s2 ∉ ∆, it follows that )∞C1 = )∞s2(H�) is tangent to )∞C0 at 0.
For arbitrary j, Cj and Cj+1 are translate of either C0 and C1 when j is even or
C0 and s−11 (H�) when j is odd. Since )∞C0 and )∞s−11 H� are tangent at∞, the
circles )∞Cj and )∞Cj+1 are always tangent. Since �Cj = Dj and � preserves
tangency of circles in )∞ℍ3, we see that )∞Dj and )∞Dj+1 are also tangent.
For the tangency between )∞C2k and )∞D2k, it su�ces to show that )∞C2k ∩
)∞D2k ≠ ∅. The claim then follows because C2k and D2k are both lifts of an
embedded surface S. From Lemma 4.3, we have

Λk = �kz2 + (�k − �k)z + �k = 0

which, combined with Lemma 4.2, implies that

g2k(0) =
�k

�k − z�k
= z − 1

2z .

In other words, )∞(C2k) contains the �xed point of �. Since �(C2k) = D2k, the
intersection )∞(C2k) ∩ )∞(D2k) contains

z−1
2z

. �

Remark 4.11. Proposition 4.10 implies that the collection of circles )∞Cj and
)∞Dj form a chain of sequentially tangent circles lying in the bounded region in
ℂ ⊂ )∞ℍ3 de�ned by )∞H� and )∞s1(H�). Experimentally, we observe that these
circles must be either tangent or disjoint from each other for all 1 ≤ k ≤ 10 (see
Figure 5 for the case k = 1). Proposition 4.10 does not quite give a proof of this
picture. However, we do not need this fact anywhere in our results.
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Hτ

s1(Hτ)

C1

C2

C4

C3

i ℝ

ℝ

0

1

τ+1

τ

Figure 5. The boundary at in�nity of lifts of S toℍ3 in the pret-
zel knot P(3, 3, 3)

Proposition 4.12. Let 2k+1 be a prime number. If Σ is a totally geodesic surface
inM that is di�erent from S, then the intersection Σ ∩ S is a nonempty union of
closed geodesics.

Proof. By Corollary 4.7 and Lemma 4.8, the surface Σ has at least one cusp,
and the cusps of Σ all have boundary slope 0. In particular, the lifts of Σ to ℍ3

at a given cusp point are parallel to those of S at that cusp point. Consequently,
Σ ∩ S cannot contain any cusp-to-cusp geodesic. It remains to show that Σ ∩ S
is not empty.

Let Σ̃ be a vertical lift of Σ. Up to the action of s1, we may assume that Σ̃
lies between H� and s1(H�). In fact, by the previous discussion, Σ̃ is parallel
to H� and s1(H�). By Remark 4.11, )∞(Σ̃) has a nonempty intersection with
)∞Cj or )∞Dj for some j. We want to show that )∞(Σ̃) intersects one of the
circles )∞Cj and )∞Dj along two points. If )∞Σ̃ ∩ )∞Dj ≠ ∅ for some j then
)∞�(Σ̃) ∩ )∞Cj ≠ ∅ where �(Σ̃) is a lift of a (possibly) di�erent totally geodesic
surface inM. Since the number of intersection points in the visual boundary is
preserved by �, we may assume that )∞Σ̃ ∩ )∞Cj ≠ ∅ for some 1 ≤ j ≤ 2k.

For a contradiction, suppose that |)∞Σ̃ ∩ )∞Cj| = 1 for some 1 ≤ j ≤ 2k.
By Remark 4.11, the intersection point )∞Σ̃ ∩ )∞Cj must be the tangent point
between the circles in )∞ℍ3 described in Proposition 4.10; that is,

)∞Σ̃ ∩ )∞Cj = {
gj(∞) if j is odd
gj(0) if j is even

Let j be odd. Since Σ̃ has boundary slope 0 with respect to the coordinates
{1, �}, the line between the center of Cj and the tangent point gj(∞)must have
boundary slope 1∕0; that is, we require

cen(Cj) − gj(∞) = it �
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for some t ∈ ℝ. By direct calculation with gj = (a b
c d),

cen(Cj) − gj(∞) = a�d̄ − bc̄�̄
c�d̄ − dc̄�̄

− a
c

=
c(a�d̄ − bc̄�̄) − a(c�d̄ − dc̄�̄)

c(c�d̄ − dc̄�̄)

= c̄�̄
c ⋅

1
c�d̄ − dc̄�̄

= 1
c2�

⋅ cc̄��̄
c�d̄ − dc̄�̄

The second fraction is purely imaginary, so it su�ces to checkwhen 1
c2�

= t � for

some t ∈ ℝ. Since 1
c2�2

∈ ℚ(z) ⧵ {0}, this would imply that t2 ∈ ℚ(z) ⧵ {0}. The
number �eldℚ(z) has odd degree overℚ and so cannot have an even extension.
Thus t ∈ ℚ(z) ∩ℝ = ℚ; equivalently c� ∈ ℚ. By Lemma 4.2,

c = z2�(j−1)∕2 − z�(j−1)∕2 + z3�(j−1)∕2
c� = z(z�(j−1)∕2 − �(j−1)∕2 + z2�(j−1)∕2)�

= −6(z�(j−1)∕2 − �(j−1)∕2 + z2�(j−1)∕2)

But 0 < deg(z�(j−1)∕2 − �(j−1)∕2 + z2�(j−1)∕2) = j < 2k, so �� cannot be real.
An analogous calculation and contradiction can be done for j even. There-

fore for some j, the set )∞Σ̃∩)∞Cj contains two distinct points. In other words,
Σ and S intersect each other along a nonempty union of closed geodesics. �

4.3. Uniqueness of the totally geodesic surface in P(3, 3, 3). For this sec-
tion, let J be the knot 935, which is the balanced pretzel knot P(3, 3, 3). Let
M = S3 ⧵ J and Γ = �1(M) with the discrete, faithful representation � ∶
�1(M)→ PSL2(ℂ) as given in Theorem 4.1.

s1 s2 s3

Figure 6. Pretzel knot P(3, 3, 3) with Seifert surface of genus
1
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Proof of Theorem 1.2. Proposition 4.12 gives the �rst half of Theorem1.2. We
now move onto the proof of uniqueness of the totally geodesic surface S inM.
This is done by considering possible the intersection between a candidate sur-
face Σ with the totally geodesic Seifert surface S.

LetΣ ⊂ M be a totally geodesic surface that is di�erent from S. The trace �eld
of J isℚ(z)where z hasminimal polynomial z3−z2+3z−1. By Proposition 2.1,
the surfaceΣ cannot be compact, and tr(�(�1(Σ))) ⊂ ℤwhere � is the geometric
representation of Γ → SL2(ℂ). By Lemma 4.8, every vertical hyperplane lift of
Σmust have boundary slope 0 in coordinates {1, �}. It is su�cient to show that
no such lift Σ̃ exists.

Up to a translation by a power of s1 and a rotation by the element � in Lemma
4.9, it su�ces to show that there is no such lift whose boundary intersects the
Euclidean interval (0, z−1

2z
). By combining Lemma 2.2 and Proposition 4.12,

any such Σ̃must intersect some gj(H�) along the lift of a closed geodesic whose
endpoints in ℂ̂ = )∞ℍ3 are some �1 and �2. Recall from the proof of Corollary
4.7 that

∆ = (z
−1∕2 0
0 z1∕2)∆

′ (z
1∕2 0
0 z−1∕2)

where ∆′ ≤ PSL2(ℤ). It follows that �1 and �2 are images of �xed points of
hyperbolic elements in ∆′ under

′ = (z
−1∕2 0
0 z1∕2)

Since �xed points of hyperbolic elements in ∆′ are quadratic irrationals, there
must be some distinct quadratic irrationals �1, �2 ∈ ℝ such that �1 = gj′(�1)
and �2 = gj′(�2). Because �1, �2 ∈ )∞Σ̃, the 0 boundary slope requires that
�2−�1
�

∈ ℝ; equivalently, z(�2 − �1) ∈ ℝ. These two requirements together
means that we must satisfy

z (gj
(�2
z

)
− gj

(�2
z

)
) ∈ ℝ (20)

for quadratic irrationals �1, �2. Recall the minimal polynomial Λ1(z) = z3 −
z2 + 3z − 1 for z.

Case j odd: If j is odd, then

z (gj (
�2
z ) − gj (

�2
z )) = z (

aj�1 + bjz
z(aj + z(bj − aj)�1)

−
aj�2 + bjz

z(aj + z(bj − aj)�2)
)

=
�2 − �1

(aj + z(bj − aj)�1)(aj + z(bj − aj)�2)
.

The numerator is already real, so we need to check whether or not the
denominator is real for j = 1:

(a1 + z(b1 − a1)�1)(a1 + z(b1 − a1)�2) = �1�2z2 − (�1 + �2)z + 1.
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Because z has a cubic minimal polynomial, we must have �1�2 = �1 +
�2 = 0. There is no real solution for such �1 and �2. Thus the geodesic
is not closed, so the vertical hyperplane g1(H�) cannot be the lift of a
totally geodesic surface.

Case j even: If j is even, then

z (gj (
�2
z ) − gj (

�2
z )) = z (

aj�1 + bjz
z(aj − bjz2 + bjz�1)

−
aj�2 + bjz

z(aj − bjz2 + bjz�2)
)

=
�2 − �1

(aj − bjz2 + bjz�1)(aj − bjz2 + bjz�2)
.

As in the case above, the numerator is already real, so we need to check
whether or not the denominator is real for j = 2.

(a2 − b2z2 + b2z�1)(a2 − b2z2 + b2z�2)

= z4 − (�1 + �2) + z2(�1�2) + 1

= z2 + 2z(�1 + �2) + 2 − (�1 + �2) +
(
z + 1 − (�1 + �2)

)
Λ1(z).

This expression is quadratic moduloΛ1(z). Because z is cubic, this can-
not be real. Thus the geodesic is not closed, so the vertical hyperplane
g2(H�) cannot be the lift of a totally geodesic surface.

Therefore, there is no totally geodesic surface in the P(3, 3, 3) knot complement
other than the aforementioned Seifert surface. �

The above proof techniques can be applied to P(2k + 1, 2k + 1, 2k + 1) for
higher 2k+1 odd prime, but the use ofΛk(z) becomes increasingly cumbersome
as k and j grow. We have, however, veri�ed that the theorem and its proof hold
for P(5, 5, 5), P(7, 7, 7), and P(11, 11, 11).

5. Seifert surfaces and the Euler class obstruction
5.1. Calculating the Euler class. Let M be a hyperbolic knot complement.
Suppose that the trace �eld of M admits a real place. Then there exists � ∶
�1(M)→ PSL2(ℝ) which is a Galois conjugate of the geometric representation
of �1(M). Associated to the aforementioned representation, there exists a rela-
tive Euler class e� ∈ H2(M, )M;ℤ)which de�nes a normonH2(M, )M;ℤ). Let
F be a Seifert surface ofM and [F] be the homology class of F inH2(M, )M;ℤ).
SinceH2(M, )M;ℤ) ≅ ℤ, the norm e� onH2(M, )M;ℤ) is determined by e�([F]).
On the one hand, as discussed in Section 2.4.1, the representation � lifts to a rep-
resentation �̃ ∶ �1(M)→ P̃SL2(ℝ). On the other hand, the canonical section of
E�|)M determines a canonical section s of �|�1()M) de�ned in (4). The elements
s(l) and �̃(l) di�er by a central element cn where c is a generator of the center
of P̃SL2(ℝ). Then e�([F]) = ±n.

We have a group isomorphism  ∶ PSL2(ℝ)→ PSU(1, 1) given by

(a b
c d) ↦

1
2 (a + d + (b − c)i a − d − (b + c)i

a − d − (b − c)i a + d − (b − c)i)
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The group PSU(1, 1) has the following descriptions. As a quotient of a matrix
group, PSU(1, 1) is

{(
� �
� �

)
|||||||||
|�|2 − |�|2 = 1} ∕{ ±I}.

Setting  = �∕� and! = arg(�) mod �, we get a seconddescription ofPSU(1, 1)
as an open solid torus

{(, !) ∈ ℂ ×ℝ ∣ ||| < 1, 0 ≤ ! ≤ �} ∕(, 0) ∼ (, �)
with the group multiplication

(1, !1) ⋅ (2, !2) = (
1 + 2 exp(−2i !1)
1 + 21 exp(−2i !1)

, !1 + !2

+ 1
2i
log (

1 + 21 exp(−2i !1)
1 + 12 exp(2i !1)

) mod �)
(21)

where  denotes the usual complex conjugate of  and log z is de�ned with the
branch cut along (−∞, 0].

From the latter description of PSU(1, 1), we can see that the universal cover-
ing group P̃SL2(ℝ) = P̃SU(1, 1) can be described as an in�nite open cylinder

{(, !) ∈ ℂ ×ℝ ∣ ||| < 1,−∞ < ! <∞}
with the group multiplication given by (21) where the second coordinate is no
longer computedmodulo �. The center of P̃SL2(ℝ) is the subgroup generate by
c = (0, �) which is given explicitly by

{(0, k�) ∣ k ∈ ℤ}
Up to conjugation, let us assume that �(�1()M)) is contained in the parabolic
subgroup of PSL2(ℝ) �xing∞ ∈ )∞ℍ2. Let l be the longitude of the knot. If
the image �(l) itself is a matrix

(−1 −�
0 −1) ,

then under the canonical section

s(l) = ( i �
2 + i �

, arctan
(�
2

)
) .

On the other hand, the representation �̃ can be obtained by lifting the image
under � of the generators of the knot group Γ to P̃SL2(ℝ). Therefore, given l
as a word in the generators of Γ, we can compute �̃(l) which is well-de�ned
by Lemma 2.5. Comparing �̃(l) and s(l), we get e�([F]). We demonstrate this
computation with an example below.

Example 5.1. LetM be the complement of the knot 73 in the Rolfsen table. The
knot 73 is a two-bridge knot that corresponds to the fraction 13∕9. The knot group
Γ has the presentation

⟨a, b ∣ aw = wb⟩,
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where w = ba−1bab−1aba−1bab−1a. The longitude that commutes with a is
l = wva−8 where v is w spelled backwards. The discrete faithful representation
of Γ is given by

a ↦ (1 1
0 1) , b ↦ (1 0

z 1)

where z is a complex root ofΛ(z) = z6−5z5+9z4−4z3−6z2+5z+1. The trace
�eld of Γ isℚ(z)which has two real places and no proper sub�eld except forℚ. Let
us order the real places ofℚ(z) by the order of the real roots of Λ inℝ. Let �1 and
�2 be the corresponding Galois conjugates of the discrete faithful representation.
The lifts �̃i can be chosen to be

�̃i(a) = (15 +
2
5 i, arctan (12)) , �̃i(b) = ( zi

2 − zi
,−arctan

(z
2

)
) .

Comparing �̃i(l) and s(l), we get
�̃1(l) = s(l)c3, �̃2(l) = s(l)c.

Therefore, e�1([F]) = 3 and e�2([F]) = 1. Since the genus of the knot 73 is 2 [13],
the Thurston norm of [F] is ‖[F]‖ = 3. The knot 73 satis�es the hypothesis of
Theorem 1.4 and thus has no totally geodesic surfaces.

5.2. Applications. To prove Theorem 1.5, we checked that the knots in (1)
satisfy the conditions in Theorem 1.4. Wemade some preliminary observations
to narrow the list of knots to which Theorem 1.4 can be applied. Using SnapPy
[6], we found 54 knots, among the 79 hyperbolic knots with at most 9 crossings,
whose trace �eld has at least one real place. These 54 knots are:
{52, 62, 72, 73, 74, 75, 76, 82, 84, 85, 86, 87, 810, 814, 815, 816, 818, 820,
92, 93, 94, 95, 96, 97, 98, 99, 910, 911, 912, 913, 915, 916, 917, 918, 920, 921,
922, 923, 924, 925, 926, 929, 931, 932, 934, 935, 936, 938, 939, 942, 943, 945, 948, 949}

(22)
There is exactly one knot listed above whose trace �eld contains a sub�eld

other than ℚ. The trace �eld of the knot 818 is ℚ(�) where

� = 1
2 (1 − i

√
−5 + 4

√
2)

has minimal polynomial x4−2x3−x2+2x−1. The �eldℚ(�) containsℚ(
√
2)

as a sub�eld and therefore does not satisfy the condition in Theorem 1.4.
Knots with genus one cannot satisfy the inequality

e�([F]) < ‖[F]‖

on H2(M, )M;ℤ). Without loss of generality, let F be the genus one Seifert
surface ofM. By the Milnor-Wood inequality, we have

|e�([F])| ≤ 1.

Therefore, |e�([F])| = 1 = ‖[F]‖. Using the data from [13], we can identify
genus one knots in (22). As a consequence, Theorem 1.4 does not apply to the
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knots {52, 72, 74, 92, 95, 935} in (22). The complements of the knots 52, 72, 74, 92
and 935 are known to contain a unique totally geodesic surface.

Finally, [5, Corollary 4.6] applies to �bered knot complements. In particular,
the conditions in Theorem1.4 hold at all real places of the trace �eld of the knot.
Therefore, we can rule out these knots as well. The list of knots for which we
need to check the inequality between the Euler class and the Thurston norm is
now narrowed down to the following 24 knots:

{73, 75, 84, 86, 814, 815, 93, 94, 96, 97, 98, 99,
910, 912, 913, 915, 916, 918, 921, 923, 925, 938, 939, 949}

(23)

We computed e�([F]) where � is a Galois conjugate of the discrete faithful rep-
resentation to PSL2(ℝ) and F is a Seifert surface in the knot complement using
the procedure outlined in Section 5.1.

We make some comments about the procedure of the computation for the
bene�t of interested readers. When the knot is a two-bridge knot, the discrete
faithful representation of the knot group has a nice formula, as demonstrated in
Example 5.1. The image of this representation already has entries in the trace
�eld which is convenient for the purpose of computing �. For knots that are
not two-bridge, to obtain �, we computed a discrete faithful representation us-
ing SnapPy [6]. Note that the image of this representation can lie in a degree
two extension of the trace �eld [14]. This happens for the knot 916. After a
further conjugation, we obtained a discrete faithful representation of the knot
group with entries in the trace �eld from which � can be computed. We lift �
to obtain �̃ by picking pre-images of the generators of Im(�) so that the group
relations are satis�ed. Finally to obtain e�(F), we used numerical approxima-
tions in order to reduce the computing time. Since the only possible values of
e�(F) are ℤ, a discrete set of ℝ, the results are reliable.

The result is reported in Table 1. In this table, the trace �eld is viewed as a
simple extension of ℚ by � whose minimal polynomial m� is recorded in the
corresponding column. The values of e�(F) at di�erent real places of the trace
�eld is given as a tuple which is ordered according to the ordering of the real
roots ofm� in ℝ.

Proof of Theorem 1.5. Among the knots in (1), the following 23 knots

{62, 76, 82, 85, 87, 810, 816, 820,
911, 917, 920, 922, 924, 926, 929, 931,
932, 934, 936, 942, 943, 945, 948}

are �bered knots [13]. The complement of these knots does not contain any
totally geodesic surface by [5, Corollary 4.6]. The remaining 24 knots satisfy
the condition of Theorem 1.4 (see Table 1) and therefore do not contain any
totally geodesic surfaces. �
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Knot Genus p∕q Trace Field e�(F)
73 2 13∕9 x6 − 5x5 + 9x4 − 4x3 − 6x2 + 5x + 1 (3,1)
75 2 17∕7 x8 + 3x7 + 7x6 + 10x5 + 11x4 + 10x3 + 6x2 + 4x + 1 (3,1)
84 2 19∕5 x9+9x8+32x7+55x6+45x5+19x4+16x3+10x2−3x+1 (1)
86 2 23∕13 x11 − 3x10 + 10x9 − 19x8 + 32x7 − 40x6 + 40x5 − 29x4 +

15x3 − x2 − 2x + 1
(−1)

814 2 31∕19 x15 − 7x14 + 26x13 − 63x12 + 110x11 − 146x10 + 156x9 −
143x8 + 118x7 − 86x6 + 52x5 − 26x4 + 12x3 − 4x2 + 1

(−1)

815 2 N/A x7 − x5 − 2x4 + 2x3 + x2 − 2 (−1)
93 3 19∕13 x9 −7x8 +20x7 −25x6 + x5 +31x4 −24x3 −6x2 +9x+1 (5, 3, 1)
94 2 21∕5 x10+11x9+49x8+112x7+140x6+107x5+79x4+56x3+

15x2 + 7x + 1
(3, 1)

96 3 27∕5 x12 +16x11 +108x10 +399x9 +876x8 +1161x7 +891x6 +
317x5 − 43x4 − 71x3 − 13x2 + 6x + 1

(5,1)

97 2 29∕13 x14+3x13+13x12+28x11+62x10+97x9+137x8+152x7+
142x6 + 106x5 + 62x4 + 32x3 + 12x2 + 5x + 1

(3,1)

98 2 31∕11 x15+9x14+38x13+93x12+134x11+86x10−56x9−167x8−
130x7 − 6x6 + 60x5 + 38x4 + 4x3 − 4x2 + 1

(1)

99 3 31∕9 x15 +13x14 +74x13 +237x12 +450x11 +462x10 +104x9 −
295x8−254x7+74x6+168x5+18x4−52x3−12x2+8x+1

(5, 3, 1)

910 2 33∕23 x6 − 6x5 + 13x4 − 9x3 − 6x2 + 8x + 1 (3, 1)
912 2 35∕13 x17 + 9x16 + 40x15 + 111x14 + 209x13 + 271x12 + 232x11 +

106x10 − 9x9 − 37x8 + 4x7 + 38x6 + 30x5 + 2x4 − 8x3 −
4x2 + x + 1

(1)

913 2 37∕27 x18 − 17x17 + 129x16 − 572x15 + 1628x14 − 3073x13 +
3843x12 −3136x11 +1769x10 −1011x9 +683x8 −236x7 −
22x5 − 18x4 + 24x3 + 5x2 + 7x + 1

(3, 1)

915 2 39∕23 x19 − 7x18 + 30x17 − 91x16 + 216x15 − 420x14 + 688x13 −
973x12 +1201x11 −1311x10 +1270x9 −1093x8 +836x7 −
560x6 + 328x5 − 162x4 + 65x3 − 19x2 + 2x + 1

(1)

916 3 N/A x8 − x7 − 4x6 + 3x5 + 5x4 − x3 − x2 − 3x − 1 (1,−5)
918 2 41∕17 x20 + 7x19 + 31x18 + 98x17 + 245x16 + 504x15 + 876x14 +

1312x13+1708x12+1951x11+1959x10+1730x9+1343x8+
908x7 + 536x6 + 272x5 + 119x4 + 47x3 + 15x2 + 6x + 1

(3, 1)

921 2 43∕25 x21−7x20+32x19−105x18+275x17−595x16+1092x15−
1728x14+2376x13−2856x12+3000x11−2745x10+2173x9−
1465x8+828x7−380x6+139x5−45x4+16x3−9x2+3x+1

(1)

923 2 45∕19 x5 + x4 + 4x3 + 2x2 + 4x + 1 (1)
925 2 N/A x25 − 12x24 + 159x23 − 1141x22 + 7777x21 − 31289x20 +

117521x19 − 195155x18 + 629488x17 + 450445x16 +
778646x15+29361902x14+94077682x13+233504902x12+
985758882x11 + 3611707834x10 + 8911946417x9 +
15351955982x8 + 19428268443x7 + 18502158935x6 +
13417536797x5 + 7302123139x4 + 2904674429x3 +
750346185x2 + 99946478x − 13136479

(−1)

938 2 N/A x11 − x10 + 3x9 − 6x8 + 7x7 − 10x6 + 11x5 − 9x4 + 9x3 −
3x2 + 3x − 1

(−1)

939 2 N/A x11 − 5x10 + 16x9 − 33x8 + 53x7 − 62x6 + 58x5 − 38x4 +
19x3 − 5x2 + x − 1

(−1)

949 2 N/A x3 − x − 1 (−1)

Table 1. Euler number of Galois conjugate of knots with less
than 9 crossings
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6. Further questions
A common restriction in the existing techniques for studying totally geodesic

surfaces is to require that the trace �eld arising the Fuchsian subgroups is ratio-
nal (see Proposition 2.1 andTheorem1.4). To appease this restriction, a sensible
step is:

Question 6.1. Find an obstruction to the existence of totally geodesic surfaces in
the Kleinian group whose trace �eld contains proper sub�elds other thanℚ.

There are concrete examples of an in�nite family of hyperbolic knots whose
complement contains a totally geodesic surface with trace �eld properly con-
tainingℚ. For example, consider the balanced pretzel knotswithm-tangles and
n = 2k + 1 half twists in each tangle. As shown in [2, Example 3.1], the totally
geodesic Seifert surface in these examples is an m-fold cover of the (m,m,∞)
triangle group. So the trace �eld of these Fuchsian subgroups is ℚ(cos(�∕m))
by [21, Proposition 2]. Taking m to be a odd integer greater than 3, we get in-
�nitely many hyperbolic knots whose complement contains a totally geodesic
surface with trace �eld properly containing ℚ. It is natural to ask

Question 6.2. Is the totally geodesic Seifert surface the only totally geodesic sur-
faces in the complement of them-tangle balanced pretzel knot?

Wenote that the techniques in our paper only apply to the casem = 3, that is,
for the knots P(n, n, n). Moreover even in this case, we can only prove unique-
ness of the totally geodesic Seifert surface for P(3, 3, 3) and verify the proof for
P(5, 5, 5), P(7, 7, 7) and P(11, 11, 11).

Finally, we would like to remark that the results in this paper still do not give
a comprehensive description of totally geodesic surfaces in complements of all
knots inK. Using SnapPy [6], we found some evidence of a totally geodesic sur-
face in the knot 941. In particular, the cusp neighborhood of 941 (see Figure 7)
shows six straight lines of horoballs with boundary slopes 1∕0 and one straight
line of horoballs with boundary slopes−6with respect to the pink fundamental
domain of the cusp.

Figure 7. The cusp neighborhood of 941

These straight lines of horoballs correspond to lifts of a cusped totally geo-
desic surface in the complement of 941. We expect that these hyperplanes cover
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a single immersed totally geodesic surfaces with seven cusps, six of which have
boundary slope 1∕0 and one of which has boundary slope −6.
Question 6.3. What is the topology of this surface? Is this a unique totally geo-
desic surface in the 941 complement?
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