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On the Galois-Gauss sums of weakly
rami�ed characters

Yu Kuang

Abstract. Bley, Burns and Hahn used relative algebraic K-theory methods
to formulate a precise conjectural link between the (second Adams-operator
twisted)Galois-Gauss sumsofweakly rami�edArtin characters and the square
root of the inverse di�erent of �nite, odd degree, Galois extensions of number
�elds. We provide concrete new evidence for this conjecture in the setting of
extensions of odd prime-power degree by using a re�ned version of a well-
known result of Ullom.
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1. Introduction
The subject of ‘classical’ Galois module theory was developed by Fröhlich,

M. Taylor and others during the 1970’s and 1980’s (see [Fro83]).
At the heart of this theory was the amazingly close interplay between arith-

metic properties of the Galois-Gauss sums that are associated to tamely ram-
i�ed Artin characters and the structure of Hermitian-Galois modules that are
attached to rings of algebraic integers in tamely rami�ed extensions of number
�elds.

Much subsequent work has been dedicated to attempts to prove a natural
extension of this theory in the setting of Artin characters that are not tamely
rami�ed.

Nevertheless, even today, the arithmetic properties of the Galois-Gauss sums
of such characters are still, in general, very poorly understood.
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However, for one special class of wildly rami�ed characters, some important
progress has been made.

To discuss this, we �x an odd degree Galois extension of number �elds L∕K,
with G ∶= Gal(L∕K), and we write DL∕K for the di�erent of L∕K. Then, by
Hilbert’s classical formula for the valuation of DL∕K , there exists a unique G-
stable fractional ideal AL∕K of L such that

(AL∕K)2 = (DL∕K)−1.

Further, if L∕K is ‘weakly rami�ed’ in the sense of [Ere91] (i.e. the second
rami�cation subgroup in G of every place of K is trivial, which, in particular,
permits L∕K to be wildly rami�ed), then Erez has shown that AL∕K is a pro-
jective G-module and has suggested that the Hermitian-Galois structure asso-
ciated to this module should provide an appropriate analogue of the ring of
integers for such extensions.

This aspect of the theory of AL∕K was developed in a series of articles of
Erez and others and culminated in the article [ET92] of Erez and Taylor which
showed that for tamely rami�ed extensions L∕K of odd degree, the Hermitian-
Galois structures that are attached to AL∕K are completely determined by the
‘twisted’Galois-Gauss sums that are obtained by combining the classicalGalois-
Gauss sum with the action on characters of a second Adams operator.

It is, of course, natural to hope that such results could be extended to the
setting of extensions that are weakly and wildly (rather than tamely) rami�ed.

This has, however, proved to be a very di�cult, and rather technical, problem
and the most impressive results to date are contained in a series of articles of
Vinatier (see, for example, [Vin03] and [Vin05]), of Pickett andVinatier [PV13],
of Pickett and Thomas [PT16] in which weakly (wildly) rami�ed extensions
satisfying a variety of restrictive hypotheses are considered.

Next we note that, taking inspiration from a very di�erent direction (relating
to leading term conjectures), Bley, Burns and Hahn [BBH20] (and see also the
related PhD thesis [Hah16] of Hahn) havemore recently introduced techniques
of relative algebraic K-theory to this area of research in order to formulate a
precise conjectural link between twisted Galois-Gauss sums of weakly rami�ed
Artin characters and the square root of the inverse di�erent.

In this way, they have, in particular, been able to explain how much of the
theory developed by Erez, by Erez and Taylor and by Vinatier could be re�ned
in a natural way.

To be more precise we write Cl(ℤ[G]) for the reduced projective class group
of ℤ[G] and K0(ℤ[G],ℚc[G]) for the relative algebraic K0-group of the ring in-
clusion ℤ[G] ⊂ ℚc[G].

Then in [BBH20], the authors describe a canonical pre-image aL∕K of the
stable-isomorphism class [AL∕K] of the (projective) module AL∕K in Cl(ℤ[G])
under the (surjective) connecting homomorphism of relative K-theory )G ∶
K0(ℤ[G],ℚc[G])→ Cl(ℤ[G]).
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We recall that the kernel of the homomorphism )G is very large: for example,
if G is trivial, then Cl(ℤ[G]) vanishes, whilst the kernel of )G is isomorphic to
the multiplicative groupℚc×∕{±1}. For this reason, the study of aL∕K is, at least
in principle, likely to be much more di�cult than that of [AL∕K].

Nevertheless, by using techniques of classical Galois module theory, Bley,
Burns and Hahn were able to prove (in [BBH20, Th. 5.2]) that aL∕K belongs
to the torsion subgroup K0(ℤ[G],ℚ[G])tor of the subgroup K0(ℤ[G],ℚ[G]) of
K0(ℤ[G],ℚc[G]), that the elements aL∕K have good functorial properties un-
der change of extension L∕K and that aL∕K simultaneously controls both the
Hermitian-Galois structures and metrized structures that arise naturally from
the (self-dual) module AL∕K .

To study the element aL∕K further, the authors also de�ne a canonical vari-
ant of the classical ‘unrami�ed characteristic’ that has played a key role in the
results of Fröhlich, Taylor et al. The elementary de�nition of this ‘idelic twisted
unrami�ed characteristic’ cL∕K of L∕K makes it clear that it also belongs to
K0(ℤ[G],ℚ[G])tor and enjoys the same functoriality properties under change
of extension as does aL∕K .

When taken together with extensive numerical computations, these facts
motivated Bley, Burns and Hahn to formulate the following conjecture.

Conjecture 1.1 ([BBH20, Conjecture 10.7]). If L∕K is any weakly rami�ed Ga-
lois extension of number �elds of odd degree, then one has aL∕K = cL∕K .

This concrete conjecture provides the motivation for much of the work that
we undertake in this article, and is itself interesting for several reasons.

Firstly, we recall (from the introduction to [BBH20]) that the approach un-
derlying the formulation of Conjecture 1.1 provides the �rst link between the
theory of AL∕K and the very general framework of Tamagawa number conjec-
tures that originates with Bloch and Kato in [BK90] and was subsequently re-
�ned to the relevant ‘equivariant’ setting by Burns and Flach in [BF01] (this
link, though important, will however play no role in the results that we present
in this article).

More concretely, we note that, since the element cL∕K is both very elemen-
tary in nature and easy to compute explicitly, the above conjecture suggests that
the link between the twisted Galois-Gauss sums of weakly rami�ed Artin char-
acters of G and the invariants of AL∕K that are incorporated into the de�nition
of aL∕K should (or, at least, could!) be much �ner than has previously been
observed in the work of Erez, of Erez and Taylor or of Vinatier.

We recall that the strongest theoretical evidence in support of Conjecture 1.1
that is currently available is the following result (taken from [BBH20, Cor. 8.4]).

Proposition 1.2 (Bley, Burns and Hahn). Let L∕K be a weakly rami�ed �nite
Galois extension of number �elds of odd degree. Then the following claims are
valid.

(i) The element aL∕K − cL∕K belongs to K0(ℤ[G],ℚ[G])tor.
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(ii) Conjecture 1.1 is valid provided that every place v ofK that is wildly ram-
i�ed in L has the following three properties:
(a) the decomposition subgroup inG of any place of L above v is abelian;
(b) the inertia subgroup in G of any place of L above v is cyclic;
(c) the completion of K at v is absolutely unrami�ed.

The proof of claim (i) above is reduced (by straightforward functoriality ar-
guments, and a general result of Burns [Bur04] concerning K0(ℤ[G],ℚ[G])tor)
to consideration of tamely rami�ed extensions.

The proof of claim (ii), however, depends heavily on detailed technical com-
putations in certain families of wildly rami�ed extensions that are made by
Pickett and Vinatier in [PV13]. For this reason, obtaining a full veri�cation
of Conjecture 1.1 for classes of extensions that go beyond those in Proposition
1.2(ii) seems to be a very di�cult problem.

The main purpose of this paper is to provide further supporting evidence for
Conjecture 1.1 by proving the following result.

Theorem 1.3. Fix an odd prime p and a weakly rami�ed Galois extension of
number �elds L∕K of p-power degree, and set G ∶= Gal(L∕K). Suppose p is
unrami�ed inK and write n(L∕K) for themaximal order of a decomposition sub-
group in G of a wildly rami�ed place. Then, in K0(ℤ[G],ℚ[G]), one has

n(L∕K)
p ⋅ aL∕K =

n(L∕K)
p ⋅ cL∕K = 0.

This result is of interest since there are many weakly rami�ed Galois exten-
sions L∕K of odd prime-power degree in which the decomposition subgroup of
each wildly rami�ed place is non-abelian (we recall, for example, the explicit
extensions constructed by Vinatier in [Vin02]).

Theorem 1.3 will be proved by combining (both parts of) Proposition 1.2
with a re�ned version, proved in Theorem 3.1, of a well-known result of Ul-
lom [Ull74] concerning the structure of the kernel subgroup of Cl(ℤ[G]) in the
case that G has prime-power order. The latter result itself complements recent
work of Bley and Wilson [BW09] concerning the explicit computation of rela-
tive algebraic K-groups and so is, we hope, of some independent interest.

We next recall that, if L∕K is tamely rami�ed (and of odd degree), then in
[Ere91, Th. 3] Erez used the techniques of classical Galois module theory to
prove that [AL∕K] vanishes and hence, by Jacobinski’s Cancellation Theorem
(which is valid since G has odd order, see [CR87, Th. (51.3) and Th. (51.24)]),
that AL∕K is a free ℤ[G]-module.

Motivated by this result, and several other factors (including extensive nu-
merical computations), Vinatier was then led to make the following conjecture
(cf. [Vin03, Conj.] and [CV16, §1.2]).

Conjecture 1.4 (Vinatier). If L∕K is a weakly rami�ed Galois extension of num-
ber �elds of odd degree, thenAL∕K is a freeℤ[G]-module (or equivalently, the class
[AL∕K] vanishes).
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As evidence for this conjecture, Vinatier has proved explicit upper bounds
on the order of the class [AL∕K] in the case thatK = ℚ and G is of prime-power
order (for details see the articles [Vin03] and [Vin05]).

If one projects the result of Theorem 1.3 into Cl(ℤ[G]), then one obtains a
bound on the order of [AL∕K] that is weaker than the corresponding bound
established by Vinatier. The reason for this is that a key step in the approach
of Vinatier cannot, as far as we can see, be repeated in the setting of relative
algebraic K-groups (see Remark 5.2).

Nevertheless, we are able to show that the approach developed by Vinatier
in [Vin03] can be used to obtain concrete new information about the relative
element aL∕K of Bley, Burns and Hahn.

This result is proved as Theorem 5.1 and, whilst it does not (as far as we can
currently see) provide more evidence in support of Conjecture 1.1 than is given
by Theorem 1.3, it does certainly provide further evidence for the belief that
the link betweenAL∕K and Galois-Gauss sums should be closer than has so far
been observed.

Acknowledgements I would like to thank David Burns for suggesting the
problemandmany inspiring discussions. I amvery grateful to StéphaneVinatier
for helpful, and encouraging, correspondence. Finally, I am very grateful to the
anonymous referee for their careful review and valuable feedback, particularly,
for having pointed out an error in an earlier version of the proof of Theorem
3.1 and for motivating me to obtain a sharper bound in the class group that is
consistent with Vinatier’s result.

2. Preliminaries
2.1. Notations. For a unital ring A, we write A× for the multiplicative group
of invertible elements of A and �(A) for the centre of A.

Fix a �nite group Γ, and a Dedekind domain R of characteristic zero, with
�eld of fractions F, and E is an extension �eld of F. We let OE denote the in-
tegral closure of R in E. For any R[Γ]-module M, we write ME ∶= E ⊗R M,
andMv ∶= Rv ⊗RM, with Rv the completion of R at v, where v is a (non-zero)
prime ideal of R.

AssumeE∕F is a �nite Galois extension of �elds. We letGal(E∕F) denote the
Galois group of E∕F, and we write the action of Gal(E∕F) on E by x ↦ g(x)
for x ∈ E and g ∈ Gal(E∕F). We �x a separable closure Fc of F, and write ΩF
for the absolute Galois group Gal(Fc∕F) of F. For convenience, we take ℚc to
be the algebraic closure of ℚ in ℂ.

For a �nite group Γ, we write Γ̂ for the set ofℚc-valued irreducible characters
of Γ and RΓ for the additive group generated by Γ̂. In particular, for each � in Γ̂,
we obtain a primitive idempotent of the centre �(ℚc[Γ]) ofℚc[Γ] by setting e� =
�(1)
|Γ|

∑
g∈Γ �(g

−1)g and so each element of �(ℚc[Γ]) (respectively �(ℚc[Γ])×) can
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be written uniquely in the form

x =
∑

�∈Γ̂

e� ⋅ x�, with x� ∈ ℚc, respectively x� ∈ ℚc×, for all �. (1)

2.2. AlgebraicK-theory. In this section, we recall the de�nitions of relevant
algebraicK-groups and the long exact sequences. Detailed descriptions of these
de�nitions and results are given by Swan in [Swa68, Chap. 13 and 15] and also
by Curtis and Reiner in [CR87, Chap. 5 and 6].

We will let P(E[Γ]) denote the category of �nitely generated projective E[Γ]-
modules and AutE[Γ](M) for the group of E[Γ]-module automorphisms ofM.

2.2.1. Whitehead groups. WewriteK1(E[Γ]) for theWhitehead group of the
ring E[Γ]. In particular, we recall that each element of K1(E[Γ]) can be rep-
resented by a pair [P, f] where P ∈ P(E[Γ]) and f ∈ AutE[Γ](P). (We refer
the reader to [CR87, §38B] for a detailed discussion of this group in terms of
generators and relations.)

Suppose E is either a number �eld or a p-adic �eld (for some prime p).
Then, for some �nite index set I, there is a Wedderburn decomposition E[Γ] =∏

i∈IMni (Ai) and each matrix ringMni (Ai) is a simple central algebra over the
centre �(Ai) of Ai. In this case, one can compute in K1(E[Γ]) by using the ‘re-
duced norm’ map discussed by Curtis and Reiner in [CR87, 45A]

NrdE[Γ] ∶ K1(E[Γ]) =
⨁

i∈I
K1(Mni (Ai))

≅
⨁

i∈I
K1(Ai)

(NrdAi )i,,,,,,,→
⨁

i
�(Ai)× = �(E[Γ])×, (2)

inwhich the isomorphism follows from theMorita equivalence (applied to each
ringMni (Ai)).

2.2.2. The relative K-group. We write K0(R[Γ], E[Γ]) for the relative alge-
braic K-group associated to R ⊂ E and recall that each element of this group is
represented by a triple [P, �, Q] where P, Q ∈ P(R[Γ]) and � ∈ IsE[Γ](PE , QE),
the set of E[Γ]-module isomorphisms from PE to QE . (For an explicit descrip-
tion of this group in terms of the generators and relations, see [Swa68, pp. 215].)

Then there is a canonical decomposition

K0(R[Γ], F[Γ])
∼
,→

⨁

v
K0(Rv[Γ], Fv[Γ]), (3)

where v runs over all non-Archimedean places of F. This isomorphism is in-
duced by the diagonal localisation homomorphism (�Γ,v)v (see, for example,
discussion below [CR87, (49.12)]), where for each non-zero prime ideal v of R,
we write

�Γ,v ∶ K0(R[Γ], F[Γ])→ K0(Rv[Γ], Fv[Γ]) (4)
for the homomorphism that sends the class of [P, �, Q] to the class of [Pv, Fv⊗F
�,Qv].
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2.2.3. The long exact sequence of relative K-theory. Finally, let Cl(R[Γ])
denote the reduced projective class group ofR[Γ] (as discussed in [CR87, §49A])
and recall from [Swa68, Th. 15.5] that there exists a commutative diagram

K1(R[Γ]) ,,,,,,→ K1(E[Γ])
)1R,E,Γ
,,,,,,→ K0(R[Γ], E[Γ])

)0R,E,Γ
,,,,,,→ Cl(R[Γ])

‖‖‖‖‖
�1↑⏐⏐⏐⏐⏐⏐⏐

�2↑⏐⏐⏐⏐⏐⏐⏐
‖‖‖‖‖

K1(R[Γ]) ,,,,,,→ K1(F[Γ])
)1R,F,Γ
,,,,,,→ K0(R[Γ], F[Γ])

)0R,F,Γ
,,,,,,→ Cl(R[Γ]),

(5)

in which the rows are the respective long exact sequences of relative K-theory.
In the diagram, we have used the following notations (with the morphisms

in the second row being completely analogous to those in the �rst): �1 and �2
are the natural scalar extension morphisms (these maps are injective and will
usually be regarded as inclusions); the homomorphism )1R,E,Γ sends each pair
[E[Γ]n, �], with � in AutE[Γ](E[Γ]n), to the class of [R[Γ]n, f�, R[Γ]n], where f�

is given by (R[Γ]n)E
≅
,→ E[Γ]n

�
,→ E[Γ]n

≅
,→ (R[Γ]n)E ; for each pair P and Q in

P(R[Γ]) and each isomorphism of E[Γ]-modules � ∶ PE ≅ QE , the homomor-
phism )0R,E,Γ sends the class of [P, �, Q] to the di�erence [P] − [Q].

2.2.4. The reduced norm map. In this article, we shall always consider the
cases that Γ is a �nite Galois group of odd order and E is either a number �eld
or a p-adic �eld (for some prime p). Therefore, by the Hasse-Schilling-Maass
Norm Theorem (cf. [CR81, Th. (7.48)]) and [CR81, Th. (7.45)], the reduced
normmap NrdE[Γ] de�ned in (2) is bijective and hence, we obtain a homomor-
phism by setting

�R,E,Γ ∶= )1R,E,Γ◦(NrdE[Γ])
−1 ∶ �(E[Γ])× → K0(R[Γ], E[Γ]).

Now for each subgroup ∆ ⊆ Γ, we write iΓ,∗∆,E for the homomorphism of rel-
ative K-groups induced by the induction functor iΓ∆ of P(R[∆]) → P(R[Γ]) (via
applying R[Γ]⊗R[∆])

iΓ,∗∆,E ∶ K0(R[∆], E[∆]) → K0(R[Γ], E[Γ]), (6)

[P, �, Q] ↦ [iΓ∆P, i
Γ
∆�, i

Γ
∆Q].

We also let resΓ∆ ∶ RΓ → R∆ denote the restriction homomorphism and de�ne a
map ĩΓ∆ ∶ �(E

c[∆])× → �(Ec[Γ])× by setting, for each x ∈ �(Ec[∆])× and � ∈ Γ̂
(in terms of (1)),

ĩΓ∆(x)� =
∏

'∈∆̂

x
<resΓ∆�,'>∆
' . (7)

And we recall from [BB03, pp. 581] that

iΓ,∗∆,E◦�R,E,∆ = �R,E,Γ◦ĩΓ∆. (8)
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2.3. Equivariant Galois-Gauss sums. Suppose E∕F is a �nite Galois exten-
sion of l-adic �elds and set Γ ∶= Gal(E∕F). In terms of (1), we de�ne the
following ‘equivariant’ elements in �(ℚc[Γ])× as in [BBH20, §4A].

De�nition 2.1.
(i) The ‘equivariant Galois-Gauss sum’ of E∕F is the element

�E∕F ∈ �(ℚc[Γ])×

de�ned by setting

�E∕F ∶=
∑

�∈Γ̂

e� ⋅ �(F, �).

where �(F, �) is the (local) Galois Gauss sumdiscussed in [Fro83, Chap.
III, §2, Th. 18 and Rem. 1].

(ii) For each � ∈ Γ̂, the ‘unrami�ed characteristic’ of � is de�ned by setting
(as in [Fro83, Chap. IV, §1, (1.1)])

y(F, �) = {
1, if � is rami�ed;
(−1)�(1)�(�), if � is unrami�ed,

where � is the Frobenius element in Γ∕Γ0 lifted to Γ and Γ0 is the inertia
subgroup of Γ.

(iii) The ‘equivariant unrami�ed characteristic’ of E∕F is the element of
�(ℚ[Γ])× obtained by setting

yE∕F ∶=
∑

�∈Γ̂

e� ⋅ y(F, �).

(iv) The ‘modi�ed equivariant Galois-Gauss sum’ of E∕F is the element

�′E∕F ∶= �E∕F ⋅ y−1E∕F ∈ �(ℚc[Γ])×.

(v) We set �F ∶= �(ℚl, ind
ℚl
F 1F) and de�ne the ‘induced discriminant’ of

E∕F to be the element �ΓF of �(ℚc[Γ])× with

(�ΓF)� = ��(1)F

for all � ∈ Γ̂.

Last, for each natural number k and each � ∈ RΓ, we write  k for the k-th
Adams operator on RΓ (cf. [CR81, Prop. (12.8)]). Then for each pair of integers
m and n, and each natural number k, we de�ne an endomorphismm+ n ⋅ k,∗
of �(ℚc[Γ])× (in terms of (1)) such that for each element x of �(ℚc[Γ])×, the
element (m+n ⋅ k,∗)(x) is uniquely speci�ed by ((m+n ⋅ k,∗)(x))� ∶= (x�)m ⋅
(x k(�))

n for each irreducible character � in Γ̂.
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3. The torsion subgroup of K0(ℤ[�],ℚ[�])
Fix a �nite group Γ and let R denote either ℤ or ℤl for a prime l, and Q

denote the corresponding �elds ℚ or ℚl. In this section we study the torsion
subgroup

DT(R[Γ]) ∶= K0(R[Γ], Q[Γ])tor
of K0(R[Γ], Q[Γ]).

We recall that these groups have already been studied in the article [BW09] of
Bley and Wilson that contains both general results and numerical algorithms.

To start, we �rst note that the isomorphism (3) restricts to give a canonical
direct sum decomposition

DT(ℤ[Γ]) ≅
⨁

l
DT(ℤl[Γ]) (9)

over all primes l.
Next, for each prime l, we �x a maximal order ℳl in ℚl[Γ] that contains

ℤl[Γ] and we note that ℳl is hereditary (by [CR81, Th. (26.12)]). Then the
results of [BW09, Th. 2.2(iv) and 2.4(i)] imply that

DT(ℤl[Γ]) ≅
Nrdℚl[Γ](ℳ

×
l )

Nrdℚl[Γ](ℤl[Γ]×)
. (10)

In the sequel, unless there is danger of confusion, we shall abbreviate Nrdℚl[Γ]
to Nrd. This isomorphism then combines with the direct sum decomposition
(9) to give an isomorphism

DT(ℤ[Γ]) ≅
∏

l

Nrd(ℳ×
l )

Nrd(ℤl[Γ]×)
=

∏

l∈Σ(Γ)

Nrd(ℳ×
l )

Nrd(ℤl[Γ]×)
. (11)

where Σ(Γ) denotes the �nite set of primes that divide the order of Γ (or equiv-
alently, at which ℳl ≠ ℤl[Γ]). This isomorphism implies that DT(ℤ[Γ]) is
�nite (see [BW09, Cor. 2.5]).

In the next result we prove �ner results for DT(ℤ[Γ]) in the case that Γ has
prime power order. Claim (i) of this result is a version for relative K-groups of
a well-known bound on the exponent of the kernel group D(ℤ[Γ]) that is due
to Ullom [Ull74] (see also [CR87, Th. (50.19)]).

Theorem 3.1. Let p be an odd prime and Γ be a non-trivial group of order pn for
a natural number n. Then, the following claims are valid.

(i) The exponent of DT(ℤ[Γ]) is divisible by p − 1 and divides (1 − 1∕p)|Γ|.
(ii) WriteΞ(Γ) for the set of normal subgroups ofΓ that are given by the kernels

of the irreducible characters of Γ. Then, the exponent of the kernel of the
diagonal projection map

DT(ℤ[Γ])→
⨁

∆∈Ξ(Γ)
DT(ℤ[Γ∕∆])

divides |Γ|∕p.
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(iii) Claims (i) and (ii) remain valid if one replaces ℤ by ℤp.

Proof. Fix a normal subgroup ∆ of Γ and set e∆ ∶= |∆|−1
∑

g∈∆ g. For each
prime l we writeℳl,Γ∕∆ ∶= e∆ℳl. Then, since the orderℳl is maximal, the
central idempotent e∆ belongs toℳl, and soℳl decomposes as a direct sum
(1 − e∆)ℳl ⊕ℳl,Γ∕∆. This decomposition implies that ℳl,Γ∕∆ is a maximal
order in ℚl[Γ∕∆], and also that the natural map ℳ×

l → ℳ×
l,Γ∕∆ is surjective.

By the isomorphism (11), we can therefore deduce that the natural projection
map

DT(ℤ[Γ])→ DT(ℤ[Γ∕∆]) (12)
is surjective.

We now assume that |Γ| = pn. In this case, the set Σ(Γ) is equal to {p} and
so (11) implies that the natural map DT(ℤ[Γ]) → DT(ℤp[Γ]) is bijective. In
particular, if we can prove claims (i) and (ii), then claim (iii) is clearly also true.

To do this, we �rst choose ∆ to have index p (this can be done since, in this
case, any subgroup ofΓ of indexp is normal), thenDT(ℤ[Γ∕∆]) is cyclic of order
p − 1 (see, for example, [BW09, Cor. 8.2]), and so the surjection (12) implies
that the exponent of DT(ℤ[Γ]) is divisible by p − 1, as stated in claim (i).

Next, to prove that the exponent of DT(ℤ[Γ]) = DT(ℤp[Γ]) divides (p −
1)pn−1, we recall that, by Schilling’s Theorem (cf. [CR87, Th. (74.17)]), for
a suitable natural number t, the Wedderburn decomposition of ℚp[Γ] has the
form

ℚp[Γ] ≅ ℚp ×
i=t∏

i=1
Mni (Fi), (13)

where each ni is a natural number and eachFi is a p-adic cyclotomic �eld of the
form ℚp(!i) for a suitable non-trivial p-power root of unity !i. In the sequel
we set F0 ∶= ℚp, and for each i, we write Oi for the valuation ring of Fi and pi
for the maximal ideal of Oi.

In this way, by [BW09, Th. 2.2(iv)] we have that

Nrd
(
ℳ×

p
)
=

i=t∏

i=0
O×
i ,

where the right hand side is the unit group of the integral closure of ℤp in the
centre

∏i=t
i=0 Fi ofℚp[Γ]. Therefore, each element x ofNrd

(
ℳ×

p
)
can be written

in the form
x =

(
u0, u1,⋯ , ut

)
, (14)

with ui ∈ O×
i for each 0 ≤ i ≤ t. Moreover, since each extension Fi∕ℚp is

totally rami�ed, the natural map ℤp∕(p) → Oi∕pi is bijective, and so one has
up−1i ≡ 1 (modpi).

It follows that xp−1 is equal to a tuple
(
v0, v1,⋯ , vt

)
in which each element

vi belongs toO×
i and is such that vi ≡ 1 modulo pi. In view of the isomorphism

(10), in order to prove claim (i), it is therefore enough to show that the pn−1-st
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power of any such tuple belongs toNrd(ℤp[Γ]×). This is exactly what is proved
by the argument of Ullom that is discussed on pp. 257-259 of [CR87] (in which
our tuple corresponds to the element�), and so this concludes the proof of claim
(i).

To prove claim (ii), we note that the components in theWedderburn decom-
position (13) are in bijective correspondence with a set of representatives for
the orbits of the natural action of Gal(ℚc

p∕ℚp) on the set Γ̂p of irreducible ℚc
p-

valued characters of Γ. More precisely, we �x a subset { j ∶ 0 ≤ j ≤ t} of Γ̂p
such that  0 is the trivial character and set F0 ∶= ℚp, O0 = ℤp and n0 = 1 for
j = 0. For each character  j, we let Tj,∗ denote the ℚp-linear map ℚp[Γ] →
Mnj (Fj) that is induced by a choice of a representation Tj ∶ Γ → GLnj (Fj) of
 j. In this way, for each j, the projection map

ℚp[Γ]→ Mnj (Fj)

that is induced by (13) coincides with Tj,∗. We �x an embedding ℚc → ℚc
p

and we shall identify Γ̂ with Γ̂p via the choice of the embedding. Then, since
Γ is nilpotent of odd order, the results of Roquette in [Roq58] (or see the more
general results of Cli�, Ritter andWeiss in [CRW92]) imply that one can choose
a Tj (of  j) such that it takes values in GLnj (Oj) and this is what we shall do.

Set ∆j ∶= ker( j) ∈ Ξ(Γ) and Γj ∶= Γ∕∆j, we note that Tj,∗ factors through
the projection map �j ∶ ℚp[Γ] → ℚp[Γj]. We also note that T0,∗ is the natural
augmentation map "Γ ∶ ℚp[Γ]→ ℚp.

Now, we �x an element y inℳ×
p . Then, for each j, the element uj that occurs

in the decomposition (14) of x = Nrd(y) belongs to O×
j and can be computed

as det(Tj,∗(y)).
To prove claim (ii), we claim that it is enough to show that if the image x of x

in DT(ℤp[Γ]) belongs to the kernel of the projection map �i,∗ ∶ DT(ℤp[Γ]) →
DT(ℤp[Γi]) for any given i with 1 ≤ i ≤ t, then one has

det(Ti,∗(y)) ≡ (T0,∗(y)) i(1) (mod pi). (15)

To see that the above result implies claim (ii), we assume that these congruences
are valid for each 1 ≤ i ≤ t. Set vi ∶= u− i(1)0 ui, we note that such element
satis�es vi ≡ 1 modulo pi for all i. In particular, since u0 belongs to ℤ×

p ⊆
ℤp[Γ]×, these congruences and the argument of claim (i) combine to imply that
the element

xpn−1 = (u0, u1,⋯ut)p
n−1

= (u0, u
 1(1)
0 ,⋯ , u t(1)0 )pn−1 × (1, v1,⋯ , vt)p

n−1

=Nrd(u0)p
n−1 × (1, v1,⋯ , vt)p

n−1

belongs to ℤp[Γ]×, and hence that xp
n−1

= 0, as required.
To prove the stated congruence (15), we assume that x belongs to the kernel

of �i,∗. Then, the isomorphism (10) implies that there exists an element zi =
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∑
∈Γi

ci, ∈ ℤp[Γi]× such that

�i,∗(Nrdℚp[Γ](y)) = Nrdℚp[Γi](zi) (16)

and hence,
det(Ti,∗(y)) = det(Ti,∗(zi)) = det

(∑

∈Γi

ci, ⋅ Ti()
)
. (17)

Now, we note that (by the choice of Ti as above) each matrix Ti() belongs to
GLni (Oi). Upon settingmi ∶= |Γi|, the matrix Ti()mi = Ti(mi ) is equal to the
ni × ni identity matrix Ini . Hence, sincemi belongs to pi, the binomial theorem
implies that there are congruences moduloMni (pi) of the form

(∑

∈Γi

ci, ⋅ Ti()
)mi ≡

∑

∈Γi

cmi
i, ⋅ Ini

≡
(∑

∈Γi

cmi
i,

)
⋅ Ini

≡
(∑

∈Γi

ci,
)mi ⋅ Ini

≡ (T0,∗(y))mi ⋅ Ini (mod Mni (pi)),
where the last congruence is true since T0,∗ is the natural augmentation map
and so, in terms of the expression (16), we have thatT0,∗(y) is equal to

∑
∈Γi

ci,.
Since ni =  i(1), these congruences and the equality (17) combine to imply

that

det(Ti,∗(y))mi =det
((∑

∈Γi

ci, ⋅ Ti()
)mi)

≡ det
(
(T0,∗(y))mi ⋅ Ini

)
(mod pi)

≡
(
(T0,∗(y)) i(1)

)mi (mod pi).

Finally, since det(Ti,∗(x)) and (T0,∗(x)) i(1) both belong to O×
i (and the order

of
(
Oi∕pi

)×
is prime to mi), the above congruence then implies the required

congruence (15). This completes the proof of the claim. �

Remark 3.2.
(i) The result of Theorem 3.1(ii) is of interest only if Ξ(Γ) does not contain

the trivial subgroup of Γ. This condition is equivalent to requiring that
Γ has no faithful irreducible characters and such groups are completely
classi�ed by Gaschutz in [Gas54].

(ii) If Γ is abelian, then the set Ξ(Γ) is equal to the set of subgroups ∆ of Γ
with the property that the quotient group Γ∕∆ is cyclic.

4. Results for extensions of odd prime-power degree
In this section, we try to provide some new evidence for Conjecture 1.1 in

the case of extensions of odd prime-power degree.
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4.1. The canonical relative elements of Bley, Burns and Hahn. Firstly,
we recall the key de�nition of the canonical relative elements of Bley, Burns
and Hahn from [BBH20].

4.1.1. The local element. In this section, we �x a �nite odd degree Galois
extension E∕F of local �elds of residue characteristic l and set Γ ∶= Gal(E∕F).
We follow Bley, Burns and Hahn [BBH20, §7A] in de�ning the local relative
elements.

We write Σ(E) for the set of ℚl-linear �eld embeddings E → ℚc
l. We then

de�ne a (free) ℤl[Γ]-module by setting

HE ∶=
∏

Σ(E)
ℤl,

upon which Γ acts via its usual pre-composition action on Σ(E), and we con-
sider the isomorphism of ℚc

l[Γ]-modules

�E ∶ ℚc
l ⊗ℚl E →

∏

Σ(E)
ℚc
l = ℚc

l ⊗ℤl HE

that sends x ⊗ l, for every x ∈ ℚc
l and l in E to (�(l)x)�∈Σ(E).

Suppose E∕F is weakly rami�ed. Then, by the result [Ere91, Th. 1] of Erez,
AE∕F is a full projective ℤl[Γ]-sublattice of E and so, following [BBH20, §7A],
we obtain a well-de�ned element of K0(ℤl[Γ],ℚc

l[Γ]) by setting

∆(AE∕F) ∶= [AE∕F , �E , HE].

For the next de�nition, we use the following notation: for each prime l and
embedding of �elds jcl ∶ ℚ

c → ℚc
l, we also write j

c
l for the induced homomor-

phism of rings ℚc[G] → ℚc
l[G] and consider the homomorphism of abelian

groups

jcl,∗ ∶ K0(ℤ[Γ],ℚ
c[Γ]) → K0(ℤl[Γ],ℚc

l[Γ]), (18)

[P, �, Q] ↦ [Pl,ℚc
l ⊗ℚc ,jcl

�,Ql].

De�nition 4.1. We set

T(2)E∕F ∶= �ΓF ⋅ ( 2,∗ − 1)(�′E∕F) ∈ �(ℚc[Γ])×,

where the elements �ΓF and �′E∕F are as in §2.3.
We then de�ne an element of K0(ℤl[Γ],ℚc

l[Γ]) by setting

aE∕F ∶= ∆(AE∕F) − �ℤl,ℚc
l,Γ
(jcl(T

(2)
E∕F)) −UE∕F ,

where UE∕F is the canonical ‘unrami�ed’ element of K0(ℤl[Γ],ℚc
l[Γ]) that is

de�ned by Breuning in [Bre04b].

In particular, we note (by [BBH20, Prop. 7.1]) that aE∕F is independent of
the choice of embedding jcl and belongs to K0(ℤl[Γ],ℚl[Γ]).
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4.1.2. The global element. Let L∕K be a weakly rami�ed �nite Galois ex-
tension of number �elds of odd degree with Galois group G ∶= Gal(L∕K). In
[BBH20, §2A3 and §5], Bley, Burns and Hahn de�ne a global canonical relative
elements of K0(ℤ[G],ℚc[G])

aL∕K ∶= ∆(AL∕K) − �ℤ,ℚc ,G(T
(2)
L∕K),

where∆(AL∕K) andT
(2)
L∕K are the global analogues of the elements de�ned above.

Fix a place w of L above a place v of K, we write Gw for the decomposition
subgroup of w in G, and for each � ∈ RG , we let �w denote the restriction of
� to Gw (therefore regard �w as characters of Gal(Lw∕Kv) via identifying Gw =
Gal(Lw∕Kv)). In this article, we will often use the decomposition property of
the relative element (taken from Theorem 7.6 of loc.cit.) that

aL∕K =
∑

l

∑

v|l
iG,∗Gw ,ℚl

(aLw∕Kv ), (19)

where the �rst sum runs over all rational primesl and the second over all places
v of K of residue characteristic l.

Remark 4.2. Since (by [BBH20, Prop. 5.5]) aL∕K belongs to K0(ℤ[G],ℚ[G]),
the sumon the right hand side of the formula in (19) can only have�nitelymany
non-zero l-primary components. In fact, Bley, Burns and Hahn [BBH20, Th.
8.1] have shown that aLw∕Kv vanishes if the extension Lw∕Kv is tamely rami�ed
(which is true for all v that do not divide the order of G).

Next we recall a variant of the classical ‘unrami�ed characteristic’ that is in-
troduced in loc. cit.

De�nition 4.3.
(i) Let E∕F be a �nite odd Galois extension of l-adic �elds and set Γ ∶=

Gal(E∕F). Then, the ‘twisted unrami�ed characteristic’ of E∕F is the
element of K0(ℤl[Γ],ℚl[Γ]) that is obtained by setting

cE∕F ∶= �ℤl,ℚl,Γ((1 −  2,∗)(yE∕F)),

where yE∕F is the equivariant unrami�ed characteristic de�ned in §2.3.
In particular, we recall from [BBH20, Rem. 7.5] that cE∕F = 0 if E∕F is
tamely rami�ed.

(ii) Let L∕K be a �nite odd Galois extension of number �elds and set G ∶=
Gal(L∕K). Then, the ‘idelic twisted unrami�ed characteristic’ of L∕K is
de�ned to be the element

cL∕K =
∑

l

∑

v|l
iG,∗Gw ,ℚl

(cLw∕Kv ) ∈ K0(ℤ[G],ℚ[G]).

Remark 4.4. Conjecture 1.1 is compatible with the change of extension func-
tors. To see this, we recall from [BBH20, Th. 6.1 and Rem. 8.9] that, for any
subgroup J of G, the following equalities are valid.
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(i) �G,∗J (aL∕K) = aL∕LJ and �
G,∗
J (cL∕K) = cL∕LJ , where �

G,∗
J denotes the re-

striction map K0(ℤ[G],ℚ[G])→ K0(ℤ[J],ℚ[J]).
(ii) If J is normal to G, with Q ∶= G∕J, then qG,∗Q (aL∕K) = aLJ∕K and

qG,∗Q (cL∕K) = cLJ∕K , where qGQ denotes the coin�ationmapK0(ℤ[G],ℚ[G])→
K0(ℤ[Q],ℚ[Q]).

4.2. Proof of Theorem 1.3. The motivation for this section is the fact that
there aremanyweakly rami�ed extensions L∕K ofp-power degree inwhich the
decomposition subgroup of every p-adic place is non-abelian, so Proposition
1.2(ii) does not apply directly. (For example, in [Vin02, Th. 1.4], Vinatier has
constructed an in�nite family of weakly rami�ed Galois extensions of K = ℚ
of degree 27 in which the decomposition subgroup of each 3-adic place of L is
non-abelian.)

However, by combining Proposition 1.2 with the result of Theorem 3.1, we
are able to obtain an upper bound on the order of the element aL∕K and can
thereby provide evidence in support of Conjecture 1.1 for a more general class
of extensions.

Taking account of the decomposition of aL∕K given in (19), the result of Bley,
Burns and Hahn recalled in Remark 4.2 and the de�nition of cL∕K as an explicit
sum of local terms (see De�nition 4.3(ii)), it is enough for us to show that the
stated equalities hold for each (p-adic) place v of K that rami�es wildly in L.

Proposition 4.5. Fix an odd primep. Suppose thatL∕K is aweakly rami�edGa-
lois extension of number �elds of p-power degree and that p is unrami�ed inK. If
v is anyp-adic place ofK that is wildly rami�ed inL, wewriteGw ∶= Gal(Lw∕Kv)
for some place w of L above v and nw ∶= |Gw|. Then, in K0(ℤp[Gw],ℚp[Gw]),
one has nw

p ⋅ aLw∕Kv =
nw
p ⋅ cLw∕Kv = 0. (20)

In the sequel, we �x an embedding jcp ∶ ℚc → ℚc
p. For a �nite group Γ, we

shall use jcp to identify Γ̂ with Γ̂p, the set of ℚc
p-valued irreducible characters

of Γ (via the isomorphism � ↦ �j where �j(g) ∶= jcp(�(g)) for all � ∈ Γ̂ and
g ∈ Γ). We also write jcp for the induced embedding �(ℚc[Γ])× → �(ℚc

p[Γ])×.
Let Ot

p denote the valuation ring of the maximal tamely rami�ed extension of
ℚp, we consider the associated homomorphism of relative K-groups,

jtp,∗ ∶ K0(ℤp[Γ],ℚc
p[Γ]) → K0(Ot

p[Γ],ℚc
p[Γ]), (21)

[P, �, Q] ↦ [Ot
p ⊗ℤp

P, �,Ot
p ⊗ℤp

Q].

To prove the equalities in (20), we need to show some preliminary results.
For the next three results, we �x aweakly rami�edGalois extension of p-adic

�eldsE∕F of arbitrary odd degree, setΓ ∶= Gal(E∕F) andwrite∆ for the inertia
subgroup of Γ. We also write Γ1 (resp. Γ2) for the 1-st (resp. 2-nd) rami�cation
subgroup (in the lower numbering) of Γ. The following result is a consequence
of the hypothesis that E∕F is weakly rami�ed (i.e. Γ2 is trivial).
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Lemma 4.6.
(i) The group Γ1 is abelian and of exponent dividing p.
(ii) The inertia subgroup ∆ is abelian if and only if it is either a p-group (and

hence, equal to Γ1) or cyclic and of order prime-to-p.

Proof. At the outset, we note that the group Γ2 is a normal subgroup of Γ1,
and the quotient group Γ1∕Γ2 is abelian and of exponent dividing p (by [Ser79,
Chap. IV, §2, Cor. 3 to Prop. 7]). Then, claim (i) follows directly from the
hypothesis that E∕F is weakly rami�ed.

Turning to claim (ii). If ∆ has order prime-to-p, then it is cyclic (since, in
this case, E∕F is tamely rami�ed). If ∆ is a p-group, then it is equal to Γ1 and
hence abelian (by claim (i)).

Now, to show the converse, we assume ∆ is abelian and set e0 ∶= |∆∕Γ1|. It
is enough for us to consider the case that e0 > 1. In this case, upon applying the
result of [Ser79, Chap. IV, §2, Cor. 2 to Prop. 9] to the abelian extension E∕E∆,
one can deduce that Γ1 = Γ2 is trivial. It follows that E∕F is tamely rami�ed,
and hence that ∆ is cyclic. This completes the proof of claim (ii). �

The second of the required equalities (20) follows directly from the next re-
sult.

Lemma 4.7. IfE∕F is as above, then inK0(ℤp[Γ],ℚp[Γ]), one has |Γ∕∆|⋅cE∕F =
0.

Proof. Fix an element � of Γ that projects to give the Frobenius automorphism
in Γ∕∆.

By [BBH20, Rem. 7.5], the element cE∕F is equal to the image under �ℤp ,ℚp ,Γ
of the element

(1 −  2,∗)(yE∕F) = (1 − e∆) + �−1e∆ ∈ �(ℚp[Γ])×. (22)

Then, the claimed result is true since,
(
(1 − e∆) + �−1e∆

)|Γ∕∆|
= (1 − e∆) + (�−1e∆)|Γ∕∆| = (1 − e∆) + e∆ = 1.

�

In the next result, we write B for the maximal unrami�ed extension of F in
E (so that ∆ = Gal(E∕B)). We also recall from [Fro83, Chap. I, §4 and Chap.
III, §3, (3.1)] that the resolvent element and the (local) norm resolvent is de�ned
by setting, for each element a in E generating a normal basis of E∕F, and each
character � of representation T� ∶ Γ→ GLn(ℚc

p),

(a|�) ∶= det(
∑

g∈Γ
g(a)T�(g−1)), NF∕ℚl(a|�) =

∏

!
(a|�!−1)!,

where for the second product ! runs through a transversal of ΩF in Ωℚp
.

Proposition 4.8. In K0(ℤp[Γ],ℚp[Γ]), one has |Γ∕∆| ⋅ aE∕F = iΓ,∗∆,ℚp
(aE∕B).
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Proof. By Taylor’s Fixed Point Theorem (cf. [Mar84, Chap. 8, §1]), one knows
that the restriction to K0(ℤp[Γ],ℚp[Γ]) of the homomorphism jtp,∗ (de�ned in
(21)) is injective, so it is enough to prove that the images in K0(Ot

p[Γ],ℚc
p[Γ])

of the respective elements |Γ∕∆| ⋅ aE∕F and iΓ,∗∆,ℚp
(aE∕B) coincide.

For L ∈ {B, F}, with ΓL ∶= Gal(E∕L), we set �ΓL ,p ∶= �ℤp ,ℚc
p ,ΓL and

a′E∕L ∶= ∆(AE∕L) − �ΓL ,p(j
c
p(T

(2)
E∕L)) ∈ K0(ℤp[ΓL],ℚc

p[ΓL]).

Then, the result [Bre04a, Prop. 4.4] of Breuning that UE∕L ∈ ker(jtp,∗) implies
that the images in K0(Ot

p[ΓL],ℚc
p[ΓL]) of the elements aE∕L and a′E∕L coincide.

It is therefore enough for us to prove that the images inK0(Ot
p[Γ],ℚc

p[Γ]) of the
elements |Γ∕∆| ⋅ a′E∕F and iΓ,∗∆,ℚp

(a′E∕B) coincide.
To do this, we �x a ℤp-basis {a�}Σ(L) of OL and set

�L ∶= det(�(a�))�,�∈Σ(L) ∈ ℚc
p (23)

and uL ∶= �L∕jcp(�L). We also �x an element aL of E such thatAE∕L = OL[ΓL] ⋅
aL. Then, by the explicit formula [Bre04a, Lem. 4.16] of Breuning, one has

a′E∕L = �ΓL ,p
⎛
⎜
⎝
(jcp(T

(2)
E∕L))

−1
∑

�∈Γ̂L

(��(1)L ⋅NL∕ℚp
(aL|�))e�

⎞
⎟
⎠

= �ΓL ,p
⎛
⎜
⎝

∑

�∈Γ̂L

((�L∕jcp(�L))�(1) ⋅
NL∕ℚp

(aL|�)

jcp(�(L,  2(�) − �)y(L, � −  2(�)))
) e�

⎞
⎟
⎠

= �ΓL ,p
(
xL

)
+ �ΓL ,p

⎛
⎜
⎝

∑

�∈Γ̂L

NL∕ℚp
(aL|�)

jcp(�(L,  2(�) − �) ⋅ y(L, � −  2(�)))
e�

⎞
⎟
⎠
,

with xL ∶=
∑

�∈Γ̂L
u�(1)L e� = Nrdℚc

p[ΓL](uL).
In the sequel, we omit the occurrence of jcp in each of our notations. Since

uL is a unit of Ot
p (by [Bre04a, Lem. 4.29]), the image in K0(Ot

p[ΓL],ℚc
p[ΓL]) of

�ΓL ,p(xL) vanishes.
In addition, one has y(B, � −  2(�)) = 1 for every � ∈ ∆̂ since the exten-

sion E∕B is totally rami�ed (and so there is no non-trivial unrami�ed char-
acter). One can also compute (directly from De�nition 2.1(ii)) that y(F, � −
 2(�))|Γ∕∆| = 1 for every � ∈ Γ̂.
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In view of (8), one can write

iΓ,∗∆,ℚp
◦�∆,p

⎛
⎜
⎝

∑

�∈∆̂

NB∕ℚp
(aB|�)

jcp(�(B,  2(�) − �))
e�

⎞
⎟
⎠
= �Γ,p◦ĩΓ∆

⎛
⎜
⎝

∑

�∈∆̂

NB∕ℚp
(aB|�)

jcp(�(B,  2(�) − �))
e�

⎞
⎟
⎠

= �Γ,p
⎛
⎜
⎝

∑

�∈Γ̂

NB∕ℚp
(aB|resΓ∆�)

�(B, resΓ∆( 2(�) − �))
e�

⎞
⎟
⎠
,

(24)

where the second equality follows from the de�nition of the induction map (7)
and the fact that �(B,  2(resΓ∆�) − resΓ∆�) = �(B, resΓ∆( 2(�) − �)) (cf. [Ere91,
Prop.-Def. 3.5]).

In order to show that the images inK0(Ot
p[Γ],ℚc

p[Γ]) of the elements |Γ∕∆| ⋅
a′E∕F and iΓ,∗∆,ℚp

(a′E∕B) coincide, it is therefore enough for us to show that the
elements

∑

�∈Γ̂

(NF∕ℚp
(aF|�))[B∶F]

�(F,  2(�) − �)[B∶F]
e� and

∑

�∈Γ̂

NB∕ℚp
(aB|resΓ∆�)

�(B, resΓ∆( 2(�) − �))
e� (25)

of �(ℚc
p[Γ])× di�er by an element of Nrdℚc

p[Γ](ℤp[Γ]×).
To prove this, we note that, by the argument of [Fro83, Th. 25 and the fol-

lowing Remark] (which is valid even for extensions that are wildly rami�ed, as
observed by Erez in [Ere91, §6]), for each � in Γ̂, one has

�(F,  2(�) − �)[B∶F] = �(B, resΓ∆( 2(�) − �)),

since  2(�)−� has degree zero, and for a suitable choice of generating element
aB, one also has

(NF∕ℚp
(aF|�))[B∶F] =NB∕ℚp

(aB|resΓ∆�) ⋅ Det�(�),

where the element � of ℤp[Γ]× is independent of �. This completes the proof
of the claimed result. �

We are now ready to prove Proposition 4.5.
For v and w as in (20), we now write Iw for the inertia subgroup of Gw and

Bw for the �xed �eld of Iw in Lw.
Then, in view of the last result (for E∕F = Lw∕Kv) and the obvious equality

|Gw|∕p = |Iw|∕p × |Gw∕Iw|, to prove the �rst equality in (20), it is therefore
enough for us to show that the element aLw∕Bw of K0(ℤp[Iw],ℚp[Iw]) is annihi-
lated by |Iw|∕p.

To do this, we write L0 for the �xed �eld of Iw in L and w0 for the place of
L0 obtained by restricting w. Then, since p is unrami�ed in K, the extension
L0,w0∕ℚp is unrami�ed and so L0 cannot contain a non-trivial p-th root of unity.
By the result [Neu79, Cor. 2, p. 156] of Neukirch, we can therefore �x a �nite
Galois extension L′ of L0 with both of the following properties:
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(i) L′ has a unique place w′ above w0 and the completion L′w′∕L0,w0 is iso-
morphic to Lw∕Bw;

(ii) if v′ is any place of L0 which divides |Iw|, and v′ ≠ w0, then v′ is totally
split in L′∕L0.

These conditions imply that the extension L′∕L0 is weakly rami�ed and that
the groupG′ ∶= Gal(L′∕L0) identi�eswithGal(L′w′∕L0,w0) ≅ Gal(Lw∕Bw) = Iw.
In particular, since w0 is the only place of L0 that rami�es wildly in L′, in this
case the decomposition result in (19) combines with the vanishing of aL′∕L0 for
tamely rami�ed extensions of l-adic �elds (see Remark 4.2 with L∕K = L′∕L0)
to imply that

aL′∕L0 = aL′
w′
∕L0,w0

= aLw∕Bw .

It is therefore su�cient for us to show that aL′∕L0 is annihilated by |G′|∕p. To
do this we note that Proposition 1.2(i) implies that aL′∕L0 belongs toDT(ℤ[G

′]).
In addition, Lemma 4.6(ii) implies that the group G′(≅ Iw) is abelian and so

the set Ξ(G′) in Theorem 3.1(ii) is equal to the set of normal subgroupsH of G′
with the property that G′∕H is cyclic (see Remark 3.2(ii)).

Now, we �x H in Ξ(G′) and set L̃′ ∶= (L′)H and G̃ ∶= G′∕H ≅ Gal(L̃′∕L0).
Then, Remark 4.4(ii) implies that qG

′,∗
G̃ (aL′∕L0) = aL̃′∕L0 . In addition, since G̃ is

cyclic of p-power order and L0,w0 is an unrami�ed extension ofℚp, Proposition
1.2(ii) implies that aL̃′∕L0 = cL̃′∕L0 . Finally, we note that, since w0 is totally
rami�ed in L̃′, the expression (22) implies that cL̃′∕L0 vanishes.

This argument shows that aL′∕L0 belongs to the kernel of the diagonal map
that occurs in Theorem 3.1(ii) (with Γ = G′) and so the latter result implies that
aL′∕L0 is annihilated by |G′|∕p, as required.

This �nishes the proof of Proposition 4.5 and hence, Theorem 1.3.

Remark 4.9. Alternatively, one can complete the argument of Proposition 4.5
by proving an analogous result to [BBH20, Th. 6.1] of the functoriality proper-
ties of the local element de�ned in §4.1.1. In this way, for any H ∈ Ξ(Iw) with
L′w ∶= (Lw)H , one has q

Iw
Iw∕H

(aLw∕Bw ) = aL′w∕Bw . Moreover, by [BBH20, Th. 8.1]
one has aL′w∕Bw = cL′w∕Bw = 0. Hence the result that aL′w∕Bw is annihilated by
|Iw|∕p now follows from Theorem 3.1(ii) and (iii).

5. The results of Vinatier
If L∕K is any extension as in Theorem 1.3, the result of Theorem 1.3 can

be combined with the result [BBH20, Th. 5.2(iv)] of Bley, Burns and Hahn to
deduce that

n(L∕K)
p ⋅ [AL∕K] = 0

in Cl(ℤ[G]).
In the special case that K = ℚ, Vinatier [Vin03] has given a much better

upper bound on the order of [AL∕ℚ], with additional improvements in the case
p = 3 obtained in [Vin05]. The essential part in proving this bound is that, by
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working in Cl(ℤ[G]), Vinatier is able to prove a ‘global’ analogue of the induc-
tion formula in (25) in which the exponent |Γ∕∆| is replaced by p. (We note
that the second expression of (25) is an induction in the sense of (24).)

In the next result, we describe a consequence of Vinatier’s approach for the
relative element ∆(AL∕ℚ).

We note that while (as far as we can see) this result does not directly pro-
vide evidence in support of Conjecture 1.1, it does provide further evidence for
the general belief that the elements ∆(AL∕K) should be closely controlled by
analytic invariants.

Theorem 5.1. Fix an odd prime p and a wildly and weakly rami�ed Galois ex-
tension L of ℚ of p-power degree and set G ∶= Gal(L∕ℚ). We �x a p-adic place
w of L and write e(w) for its absolute rami�cation degree and H for its decom-
position subgroup in G and identify the latter subgroup with Gal(Lw∕ℚp). Let i∗w
denote the induction map K0(ℤ[H],ℚc[H]) → K0(ℤ[G],ℚc[G]) and �w for the
composite homomorphism )1ℤ,ℚc ,H◦(Nrdℚc[H])−1. Then the element

aL∕ℚ + i∗w
(
�w(( 2,∗ − 1)(�′Lw∕ℚp

))
)

of K0(ℤ[G],ℚc[G]) is annihilated by (p − 1)e(w).

Proof. We set � ∶= �ℤ,ℚc ,G , �̃w ∶= ( 2,∗ − 1)(�′Lw∕ℚp
) and abbreviate the map

ĩGH ∶ �(ℚc[H])× → �(ℚc[G])× to ĩw. Then, since i∗w◦�w = �◦ĩw (see (8)), the
stated element in the claim is equal to

� ∶= aL∕ℚ + �(ĩw(�̃w)).

First, we note that the horizontal isomorphism in [Fro83, Chap. II, §1, Lem.
1.6] implies that, in terms of the decomposition (1), for every �nite prime l,
a ∈ GLn(ℚc

l[G]) and � in Ĝ, one has that Nrdℚc
l[G]

(a)� = Det�(a), where Det
denotes the generalized determinant discussed in [Fro83, Chap. I, §2]. In this
way Nrdℚc

l[G]
(a) can be considered as Det(a) ∶ � ↦ Det�(a), an element of

Hom(RG ,ℚc×
l ). Writeℳ for the maximal order inℚ[G] that containsℤ[G], we

then deduce from [Fro83, Prop. 2.2, pp. 23] that,
∏

l
Nrdℚl[G](ℳ

×
l ) = Hom(RG , Uf(ℚc))Ωℚ ,

where the product runs over all �nite primesl andUf(ℚc) denotes the group of
unit ideles (i.e. the ideles u whose l-components are units for all �nite primes
l).

Then, the fact that the values of the unrami�ed characteristic are roots of
unity in ℚc (cf. [Fro83, Th. 29(i)]) and the de�nition of the induction map (7)
combine to imply that ĩw(( 2,∗ − 1)(y−1Lw∕ℚp

)) belongs to
∏

lNrdℚl[G](ℳ
×
l ). In

addition, the result [Vin03, Prop. 2.5] of Vinatier implies that the p-th power of
the element ĩw(( 2,∗ − 1)(�Lw∕ℚp

)) also belongs to
∏

lNrdℚl[G](ℳ
×
l ). In view
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of the isomorphisms (9) and (10), we can therefore deduce that the element

p ⋅ �(ĩw(�̃w)) = �
(
ĩw(( 2,∗ − 1)(�Lw∕ℚp

))p
)
+ �

(
ĩw(( 2,∗ − 1)(y−1Lw∕ℚp

))p
)

belongs to DT(ℤ[G]) = DT(ℤp[G]) (sinceℳl = ℤl[G] for all l ≠ p, see (10)
and (11)).

Since aL∕ℚ ∈ DT(ℤp[G]) (by Proposition 1.2(i)), it follows that the element
p ⋅ � also belongs to the subgroup DT(ℤp[G]) of K0(ℤp[G],ℚp[G]). For each
prime l, we identify K0(ℤl[G],ℚl[G]) with a subgroup of K0(ℤ[G],ℚ[G]) by
means of the decomposition (4) and recall the homomorphism jcp,∗ from (18).
In this way the image jcp,∗(p ⋅ �) is equal to p ⋅ � in K0(ℤp[G],ℚp[G]).

Set �w,p ∶= �1ℤp ,ℚc
p ,H

and let i∗w,p denote the induction homomorphism

K0(ℤp[H],ℚc
p[H])→ K0(ℤp[G],ℚc

p[G]).

Wenote that the decomposition result in (19) and Remark 4.2 combine to imply
that aL∕ℚ = i∗w,p(aLw∕ℚp

). Then,

p ⋅ � =p ⋅
(
jcp,∗

(
aL∕ℚ + �(ĩw(�̃w)))

)

=p ⋅ i∗w,p
(
aLw∕ℚp

+ �w,p(jcp(�̃w))
)

=p ⋅ i∗w,p
(
∆(ALw∕ℚp

) − �w,p
(
jcp(T

(2)
Lw∕ℚp

)
)
−ULw∕ℚp

+ �w,p(jcp(�̃w))
)

=p ⋅ i∗w,p
(
∆(ALw∕ℚp

) −ULw∕ℚp

)
. (26)

Here, the second equality follows from (8) that �◦ĩw = i∗w◦�w, the fact that
jcp,∗◦i∗w = i∗w,p◦jcp,∗ (directly from the de�nitions (6) and (18)) and [BB03, pp.
580] that jcp,∗◦�w = �w,p◦jcp. The third equality follows directly from the ex-
plicit de�nition of aLw∕ℚp

(see De�nition 4.1), and the �nal one is true since

T(2)Lw∕ℚp
= �̃w as �Hℚp

= 1.
Now, since p ⋅ � belongs to DT(ℤp[G]), Theorem 3.1(i) implies that

(p − 1)|G| ⋅ � = (1 − 1∕p)|G| ⋅ (p ⋅ �) = 0.

As e(w) is a non-trivial power of p, in order to prove that (p−1)e(w) ⋅ � = 0,
by Taylor’s Fixed Point Theorem, it is therefore enough to show that the image
in K0(Ot

p[G],ℚc
p[G]) of the element e(w) ⋅ � =

(
e(w)∕p

)
⋅ (p ⋅ �) is torsion and

of order prime to p.
Since the image ofULw∕ℚp

inK0(Ot
p[H],ℚc

p[H]) vanishes (see [Bre04a, Lem.
4.4]), the expression (26) reduces to showing that the image inK0(Ot

p[H],ℚc
p[H])

of e(w) ⋅ ∆(ALw∕ℚp
) is torsion and of order prime to p.

To prove this, we �x an element ap of Lw such that ALw∕ℚp
= ℤp[H] ⋅ ap.

Then, since the element �F (de�ned in (23)) is equal to 1 when F = ℚp, the
formula [Bre04a, Lem. 4.16] of Breuning implies that, in K0(ℤp[H],ℚc

p[H]),
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one has

∆(ALw∕ℚp
) = �w,p

⎛
⎜
⎝

∑

�∈Ĥp

(ap|�) ⋅ e�
⎞
⎟
⎠
.

We next note that, by the result [Vin03, Prop. 2.7] of Vinatier, there exists
a �nite unrami�ed extension E of ℚp such that if q is the order of the residue
�eld of E, for all � ∈ Ĥp, one has

(ap|�)(q−1)e(w) ∈ Det�(OE[H]×).
It follows that, in terms of [Fro83, Chap. II, §2, Lem. 2.1 and §1, Lem. 1.6], one
has ( ∑

�∈Ĥp

(ap|�) ⋅ e�
)(q−1)e(w)

∈ Nrdℚc
p[H]

(
K1(OE[H])

)
.

In particular, since the image of this element under �w,p represents (q−1)e(w) ⋅
∆(ALw∕ℚp

), and the composite homomorphism

K1(OE[H])→ K1(ℚc
p[H])→ K0(Ot

p[H],ℚc
p[H])

is zero (asE∕ℚp is unrami�ed), we deduce that the image inK0(Ot
p[H],ℚc

p[H])
of e(w) ⋅ ∆(ALw∕ℚp

) is torsion, and of order dividing q − 1.
Since q − 1 is prime to p, this implies the result we desire and hence, com-

pletes the proof. �

We shall �nish this article by making some remarks concerning the class of
[AL∕ℚ] in the class group.

Remark 5.2. If we project the result of Theorem 5.1 into the class group, the
bound we obtain on the order of [AL∕ℚ] is weaker than the one proved by
Vinatier in [Vin03, Th. 1]. This is due to the fact that, in the class group, one
knows that the class of [AL∕ℚ] belongs to the kernel subgroup D(ℤ[G]), which
is again a p-group if G has p-powered order (cf. [Vin03, pp. 404]). However,
this result is not shared by the torsion subgroup DT(ℤ[G]), and therefore we
are unable to obtain a sharper bound in K0(ℤ[G],ℚc[G]).
Corollary 5.3. Under the hypothesis of Theorem 5.1, one has that e(w)⋅[AL∕ℚ] =
0 in the class group. Moreover, if Lw∕ℚp is totally rami�ed, then the order of
[AL∕ℚ] is bounded by e(w)∕p.

Proof. The �rst claim will be proved by combining the results of Theorem 1.3
and 5.1. We �rst note that i∗w◦�w = �◦ĩw = )1ℤ,ℚc ,G◦(Nrdℚc[G])−1◦ĩw. Then
the image in Cl(ℤ[G]) of the correction term i∗w

(
�w(( 2,∗−1)(�′Lw∕ℚp

))
)
in The-

orem 5.1 vanishes since )0ℤ,ℚc ,G◦)
1
ℤ,ℚc ,G is a zero homomorphism (by the ex-

actness of (5)). We also recall from [BBH20, Th. 5.2(iv)] that )0ℤ,ℚc ,G(aL∕ℚ) =
[AL∕ℚ] and therefore deduce that, under the surjectivemapK0(ℤ[G],ℚc[G])→
Cl(ℤ[G]), the order of [AL∕ℚ] is bounded by

gcd(n(L∕K)∕p, (p − 1)e(w)) = e(w).
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In this way, we obtain the result of Vinatier.
Now suppose that |H| = e(w), the argument above Remark 4.9 implies that

e(w)∕p ⋅ aL∕ℚ = 0 in K0(ℤ[G],ℚc[G]) and so claim (ii) is true. �
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