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A semi-equivariant Dixmier-Douady
invariant

Simon Kitson

Abstract. A generalisation of the equivariant Dixmier-Douady invariant is
constructed as a second-degree cohomology class within a new semi-equi-
variant Čech cohomology theory. This invariant obstructs liftings of semi-
equivariant principal bundles that are associated to central exact sequences
of structure groups in which each structure group is acted on by the equivari-
ance group. The results and methods described can be applied to the study
of complex vector bundles equipped with linear/anti-linear actions, such as
Atiyah’s Real vector bundles.
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1. Introduction
A Real vector bundle (E, �) is a complex vector bundle equipped with an anti-

linear involution that covers an involution on its base space [1]. TheU(n)-frame
bundle Fr(E) of a Real vector bundle is equipped with two actions: a left action
of ℤ2 induced by �, and a right action of U(n). Due to the anti-linearity of �,
these actions do not commute. Rather, they combine into an action of ℤ2 ⋉
U(n), where ℤ2 acts on U(n) by elementwise conjugation.

More generally, if G is a Γ-group1 and P is a principal G-bundle equipped
with a left action of Γ that maps �bres to �bres and satis�es (pg) = (p)(g)
for all  ∈ Γ, p ∈ P and g ∈ G, then the actions on P combine into an action
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of Γ ⋉ G. In this situation, P is described as a Γ-semi-equivariant principal G-
bundle. When the Γ-action on G is trivial, P is an equivariant principal bundle
in the usual sense.

This paper solves the following lifting problem for semi-equivariant principal
bundles (see Theorem 5.5):

Lifting Problem. Given a central short exact sequenceA �→ B �→ C of Γ-groups
and a Γ-semi-equivariant principal C-bundle P, classify the liftings of P by � to a
Γ-semi-equivariant principal B-bundle.

In particular, the obstruction to such liftings is identi�ed as a semi-equivariant
Dixmier-Douady invariant. This new invariant lies in a semi-equivariant Čech
cohomology theory, which will be constructed in §4. The semi-equivariant
Dixmier-Douady invariant generalises the equivariant Dixmier-Douady invari-
ant, which lies in equivariant cohomology. These constructions and results are
motivated by their application to the classi�cation of Spinc-structures on Real
spaces and orientifolds. They originally appeared in the authors thesis [11].

2. Semi-equivariant principal bundles
Before examining semi-equivariant principal bundles, the notion of a semi-

direct product is brie�y reviewed.

De�nition 2.1. Let Γ be a Lie group. A (smooth) Γ-group (G, �) is a Lie group
equipped with a smooth action

� ∶ Γ→ Aut(G).
If (G, �) is a Γ-group, the action of an element  ∈ Γ on g ∈ G will often be

denoted by apposition, g ∶= �(g).
De�nition 2.2. A homomorphism' ∶ G → H of Γ-groups is a homomorphism
of Lie groups such that, for  ∈ Γ and g ∈ G,

'(g) = '(g).
De�nition 2.3. Let (G, �) be aΓ-group. The (outer) semi-direct product Γ⋉�G is
the Lie group consisting of elements (, g) ∈ Γ×G withmultiplication de�ned,
for i ∈ Γ and gi ∈ G, by

(1, g1)(2, g2) ∶= (12, g1(1g2)).
One situation in which semi-direct product groups arise is when G and Γ

both act on an object X and satisfy the relation (gx) = (g)(x), for some
action � of Γ on G. In this case, the two actions combine to form a single action
of the group Γ⋉� G by (, g)x ∶= g(x).
Example 2.4. The standard U(1)-action on ℂ and the ℤ2-action on ℂ by con-
jugation, combine into a ℤ2 ⋉� U(1)-action on ℂ, where � is the ℤ2-action on
U(1) by conjugation.
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Semi-equivariant principal bundles generalise equivariant principal bundles
by using a Γ-group (G, �) as the structure group. The action � determines the
commutation relation between the left action of Γ and right action of G on the
total space of the principal bundle. These actions combine into an action of the
semi-direct product Γ⋉� G. In the following de�nitions, let (G, �) be a smooth
Γ-group and X be a manifold equipped with a smooth Γ-action.

De�nition 2.5. A (smooth) Γ-semi-equivariant principal (G, �)-bundle over X
is a smooth principal G-bundle � ∶ P → X equipped with a smooth left action
of Γ such that, for  ∈ Γ, p ∈ P and g ∈ G,

�(p) = �(p) (pg) = (p)(g).

De�nition 2.6. An isomorphism ' ∶ P → Q of Γ-semi-equivariant principal
(G, �)-bundles is a di�eomorphism such that, for  ∈ Γ, p ∈ P and g ∈ G,

�P = �Q◦' '(pg) = '(p)g '(p) = '(p).

Next, let � ∶ (G, �) → (H, #) be a homomorphism of Γ-groups, and Q be a
Γ-semi-equivariant principal (H, #)-bundle.

De�nition2.7. A lifting ofQ by� is a pair (P, '), whereP is aΓ-semi-equivariant
principal (G, �)-bundle and ' ∶ P → Q is a smooth surjective map such that,
for  ∈ Γ, p ∈ P and g ∈ G,

�P = �Q◦' '(pg) = '(p)�(g) '(p) = '(p).

De�nition 2.8. Two liftings (P1, '1) and (P2, '2) of Q by � are equivalent if
there is an isomorphism  ∶ P1 → P2 such that '2◦ = '1.

The set of all smooth Γ-semi-equivariant principal (G, �)-bundles will be
denoted by PBΓ(X, (G, �)), and the isomorphisms classes will be denoted by
PB≃Γ (X, (G, �)).

3. Semi-equivariant transition cocycles
Transition cocycles are used to extract global topological information from a

principal bundle into a formwhich ismore easily analysed. A transition cocycle
over an open cover U ∶= {Ua} with values in a Lie group G is a collection of
smooth maps �a ∶ Ua → G. Maps on overlapping open sets are required to
satisfy a cocycle condition. This condition ensures that the cocycle can be used
to glue together the patches Ua × G into a principal G-bundle.

In the equivariant setting, a transition cocycle consists of maps �a(, ⋅) ∶
Ua → G for each Ua ∈ U and  ∈ Γ. The equivariant cocycle condition then
ensures that the elements �a(1, ⋅) can be used construct the total space of a
principal G-bundle, and that the elements �a(, ⋅) can be used to construct a
Γ-action. The derivation of the equivariant cocycle condition uses the fact that
the actions of G and Γ commute.
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Semi-equivariant transition cocycles can be de�ned in a similar fashion to
equivariant transition cocycles. However, the left and right actions on a Γ-semi-
equivariant principal (G, �)-bundle form an action of Γ ⋉� G. Thus, the com-
mutation relation between the left and right actions is controlled by �, and the
action � appears in the semi-equivariant cocycle condition. When this cocycle
condition is satis�ed, the elements �a(, ⋅) can be used to construct a semi-
equivariant Γ-action.

Throughout this section, let X be a Γ-space, (G, �) be a Γ-group and U ∶=
{Ua} be an open cover of X. The cover U is not required to be invariant.

De�nition 3.1. A (smooth) Γ-semi-equivariant (G, �)-valued transition cocycle
over U is a collection of smooth maps

� ∶=
{
�ba(, ⋅) ∶ Ua ∩ −1Ub → G ∣ Ua ∩ −1Ub ≠ ∅

}
,

satisfying

�aa(1, x0) = 1 �ca(′, x) = �cb(′, x)(′�ba(, x)), (3.1)

for x0 ∈ Ua, ′,  ∈ Γ and x ∈ Ua ∩ −1Ub ∩ (′)−1Uc.

Note that the conditions (3.1) de�ne a non-equivariant cocycle when re-
stricted to  = ′ = 1, and an equivariant cocycle when � = id.
De�nition 3.2. An equivalence of Γ-semi-equivariant (G, �)-valued transition
cocycles �1 and �2 with cover U is a collection of smooth maps

� ∶= {�a ∶ Ua → G}
such that

�b(x)�1ba(, x) = �2ba(, x)(�a(x)),
for  ∈ Γ and x ∈ Ua ∩ −1Ub .

Next, let � ∶ (G, �) → (H, #) be a homomorphism of Γ-groups, and � be a
Γ-semi-equivariant (H, #)-valued transition cocycle over U.

De�nition 3.3. A lifting of � by � is a Γ-semi-equivariant (G, �)-valued transi-
tion cocycle  such that �◦ ba = �ba.
De�nition 3.4. Two liftings  1 and  2 of � by � are equivalent if there exists
an equivalence � between  1 and  2.

The set of smooth Γ-semi-equivariant (G, �)-valued transition cocycles over
U will be denoted TCΓ(U, X, (G, �)). The set of equivalence classes of smooth
Γ-semi-equivariant (G, �)-valued transition cocycles over U will be denoted by
TC≃Γ (U, X, (G, �)).

The �rst step toward a correspondence between principal bundle and cocy-
cles is to show how a semi-equivariant transition cocycle can be constructed
from a semi-equivariant principal bundle. Implicit in the proof of this result is
the derivation of the semi-equivariant cocycle property.
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Proposition 3.5. Let P ∈ PBΓ(X, (G, �)) and s ∶=
{
sa ∶ Ua → P|Ua

}
be a choice

of smooth local sections over the coverU. The collection of maps

�s ∶=
{
�ba(, ⋅) ∶ Ua ∩ −1Ub → G ∣ Ua ∩ −1Ub ≠ ∅

}

de�ned by
sa(x) = sb(x)�ba(, x). (3.2)

is a smooth Γ-semi-equivariant (G, �)-valued transition cocycle.

Proof. The given condition implies the following three identities

′sa(x) = sc(′x)�sca(′, x)
′sb(x) = sc(′x)�scb(′, x)
sa(x) = sb(x)�sba(, x),

which, together, imply

sc(′x)�sca(′, x) = ′sa(x)
= ′(sb(x)�sba(, x))
= (′sb(x))(′�sba(, x))
= sc(′x)�scb(′, x)(′�

s
ba(, x)).

Thus, �s satis�es the cocycle property
�sca(′, x) = �scb(′, x)(′�

s
ba(, x)).

�

The map from semi-equivariant principal bundles to semi-equivariant tran-
sition cocycles, de�ned by Proposition 3.5, depends on a choice of local sec-
tions. However, if one passes to isomorphism classes of principal bundles and
equivalence classes of transition cocycles, this dependence disappears. The
next proposition shows that cocycles associated to isomorphic principal bun-
dles by Proposition 3.5 are always equivalent, regardless of which sections are
chosen.

Proposition 3.6. Let Pi ∈ PBΓ(X, (G, �)), and �i ∈ TCΓ(U, X, (G, �)) be the
cocycles associated to local sections si ∶=

{
sia ∶ Ua → Pi|Ua

}
as in Proposition

3.5. If ' ∶ P1 → P2 is an isomorphism, then the collection of maps

� ∶= {�a ∶ Ua → G}
de�ned by

'(s1a(x)) ∶= s2a(x)�a(x) (3.3)
is an equivalence between �1 and �2.
Proof. The properties of semi-equivariant principal bundle isomorphisms and
the de�ning property (3.3) imply that

'(s1a(x)) = '(s1a(x))
'(s1b(x)�

1
ba(, x)) = (s2a(x)�a(x))
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'(s1b(x))�
1
ba(, x) = (s2a(x))(�a(x))

s2b(x)�b(x)�
1
ba(, x) = s2b(x)�

2
ba(, x)(�a(x)).

Thus,
�b(x)�1ba(, x) = �2ba(, x)(�a(x)),

and � is an equivalence between �1 and �2 for any choice of sections si. �

Corollary 3.7. The map of Proposition 3.5 induces a well-de�ned map

PB≃Γ (X, (G, �))→ TC≃Γ (U, X, (G, �))
[P]↦ [�s],

where s is any collection of smooth local sections of P.
The correspondence between semi-equivariant cocycles and principal bun-

dles has now been shown in one direction. Next, an inversemap reconstructing
a semi-equivariant principal bundle from a semi-equivariant transition cocycle
is de�ned.

Proposition 3.8. Let � ∈ TCΓ(U, X, (G, �)). The bundle P� de�ned by
� ∶ (

⨆

a∈A
Ua × G∕ ∼)→ X,

where
(a) (a, x, g) ∼ (b, x, �ba(1, x)g) de�nes the equivalence relation ∼
(b) �[a, x, g] ∶= x is the projection map
(c) [a, x, g]g′ ∶= [a, x, gg′] de�nes the right-action of G
(d) [a, x, g] ∶= [b, x, �ba(, x)(g)] de�nes the left action of Γ,

is a smooth Γ-semi-equivariant principal (G, �)-bundle.
Proof. The elements {�ba(1, ⋅)} satisfy

�ca(1, x) = �cb(1, x)�ba(1, x)
and so form a G-valued cocycle in the usual sense. Therefore, the usual proof
that P� is a principal G-bundle applies. The Γ-action is well-de�ned on equiv-
alence classes as

[b, x, �ba(1, x)g] = [c, x, �cb(, x)(�ba(1, x)g)]
= [c, x, �cb(, x)(�ba(1, x))(g)]
= [c, x, �ca(, x)(g)]
= �[a, x, g].

The semi-equivariance property (pg) = (p)(g) is satis�ed as
([a, x, g]g′) = ([a, x, gg′])

= [b, x, �ba(, x)(gg′)]
= [b, x, �ba(, x)(g)(g′)]
= ([a, x, g])(g′)



A SEMI-EQUIVARIANT DIXMIER-DOUADY INVARIANT 153

Thus, P� is a Γ-semi-equivariant principal (G, �)-bundle. �

This reconstructionmap is also well-de�ned at the level of isomorphism and
equivalence classes.

Proposition 3.9. Let �i ∈ TCΓ(U, X, (G, �)) and Pi ∈ PBΓ(X, (G, �)) be the
associated principal bundles, constructed using Proposition 3.8. If

� ∶= {�a ∶ Ua → G}
is an equivalence between �1 and �2 then

' ∶ P1 → P2
[a, x, g]↦ [a, x, �a(x)g].

is an isomorphism.

Proof. That ' is a well-de�ned isomorphism of principal G-bundles follows
immediately from the proof in the non-equivarant case. Compatibility with the
Γ-action is satis�ed as

'([a, x, g]) = [a, x, �a(x)g]
= [b, x, �′ba(, x)(�a(x)g)]
= [b, x, �′ba(, x)(�a(x))(g)]
= [b, x, �b(x)�ba(, x)(g)]
= '([b, x, �ba(, x)(g)])
= '([a, x, g]).

Thus, ' is an isomorphism of Γ-semi-equivariant principal (G, �)-bundles. �

Corollary 3.10. The map of Proposition 3.8 induces a well-de�ned map

TC≃Γ (U, X, (G, �))→ PB≃Γ (X, (G, �))
[�]↦ [P�].

Finally, one shows that the two maps de�ned above are inverse to one an-
other.

Proposition 3.11. The maps

TC≃Γ (U, X, (G, �))→ PB≃Γ (X, (G, �))
[�]↦ [P�]

and

PB≃Γ (X, (G, �))→ TC≃Γ (U, X, (G, �))
[P]↦ [�s]

are inverse to one another.
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Proof. Let P ∈ PBΓ(X, (G, �)), � ∶= �s and P′ ∶= P� for some collection of
local sections s ∶=

{
sa ∶ Ua → P|Ua

}
. The sections {sa} de�ne a trivialization

{ta} of P by

ta ∶ P|Ua → Ua × G
sa(x)↦ (a, x, 1)

and a collection of maps
{
Ta ∶ P|Ua → G

}
by ta(p) =∶ (a, x, Ta(p)) where x =

�P(p). Note that Ta(pg) = Ta(p)g. De�ne

' ∶ P → P′
p ↦ [ta(p)].

That ' is a well-de�ned isomorphism of principal G-bundles follows from the
proof in the non-equivariant case. To check that ' is compatible with the Γ-
actions, �rst note that

tb◦�◦t−1a (a, x, g) = tb((sa(x)g))
= tb((sa(x))(g))
= tb(sb(x)�ba(, x)(g))
= (b, x, �ba(, x)(g))

where � is the Γ-action on P. Thus,

'(p) = [ta(p)]
= [a, x, Ta(p)]
= [b, x, �ba(, x)Ta(p)]
= [tb◦�◦t−1a (a, x, Ta(p))]
= [tb(p)]
= '(p).

Therefore, ' is an isomorphism of Γ-semi-equivariant principal (G, �)-bundles
and P ↦ �s ↦ P�s is the identity map at the level of isomorphism classes. �

The main theorem of this section has now been proved.

Theorem 3.12. There is a bijective correspondence

PB≃Γ (X, (G, �))↔ TC≃Γ (U, X, (G, �))

between semi-equivariant cocycles and principal bundles.
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Figure1. This �gure corresponds toℂ equippedwith conjuga-
tion as a ℤ2-action and U(1) acting by rotations, as in Example
2.4. The blue line represents the conjugation automorphism on
U(1). This conjugation is required in order to obtain the same
�nal result when the two actions are applied in reversed order.
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Figure 2. This diagram represents the derivation of the semi-
equivariant cocycle property, as in Proposition 3.5. Each node
of the diagram represents a local section of a principal bun-
dle. The diagonal arrows represent applications of the Γ-action,
while the vertical arrows represent the action of a cocycle � via
the right action of the structure group. With the exception of the
dashed line, all of the arrows follow from the de�nitions. The
dashed line follows by the semi-equivariance property of the
principal bundle, the blue ′ is acting on the element �ba(, x)
of the structure group.

Ua

x

s′a

sa

Ub

x

Ub

x
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sbsa
 �ba(, x)
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'
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�a

'

 �ba(, x)

Γ-equivariance G-equivariance

Semi-
equivariance

Cocycle
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Figure 3. This diagram depicts the derivation of the equiva-
lence property for semi-equivariant cocycles, see De�nition 3.2.
Here, ' is a semi-equivariant principal bundle isomorphism.
Each node of the diagram represents a local section of a prin-
cipal bundle. The arrows running downward are applications
of a principal bundle isomorphism '. The arrows running left
to right are applications of the Γ-action. The arrows running
right to left are right actions by the cocycle �. Those running
upward are right actions of the cocycle equivalence �. With the
exception of the dashed arrow, all of the arrows follow fromdef-
initions. The commutation of the top two squares follows from
the properties of principal bundle isomorphisms. The dashed
arrow follows from the semi-equivariance property of the prin-
cipal bundle. This twists the equivalence �a by the action of
Γ on the structure group, which is marked in blue. The lower
right square is the semi-equivariant cocycle equivalence condi-
tion.



A SEMI-EQUIVARIANT DIXMIER-DOUADY INVARIANT 157

4. Semi-equivariant cohomology
In order to study liftings of semi-equivariant principal bundles, a cohomol-

ogy theory is needed. The existing notions of equivariant cohomology are inap-
propriate for this task, and a new cohomology theory must be constructed. In
this section, a Γ-semi-equivariant Čech cohomology theory is developed with
an abelian Γ-group (G, �) as its coe�cient group. The theory makes use of a
simplicial space which encodes the group structure of Γ, and the action of Γ on
the manifold X. In addition to these actions, the e�ect of the action � must be
incorporated. This is achieved by twisting the coboundary map using �. There
are a few details to check, but everything works as one would wish. This semi-
equivariant cohomology theory generalises an equivariant cohomology theory
outlined by Brylinski [3, §A]. Another helpful reference is [7, §3.3]. One feature
of the presentation here is that it avoids the use of hypercohomology. The sec-
ond dimension of the bicomplex appearing in [3, §A] is an artifact of the choice
to separate the cocycle into two parts, one encoding the transition functions
for the total space and one encoding the action. Although this is ultimately a
notational matter, the reduced book-keeping is helpful when checking higher
cocycle conditions.

The construction of semi-equivariant Čech cohomology begins with the def-
inition of a simplicial space. The coboundary map on the underlying chain
complex of the cohomology theory will be constructed using the face maps of
this space.

De�nition 4.1. Let X be a manifold equipped with a smooth action of Γ. The
simplicial space associated to X is de�ned by

X∙ ∶= {Γp × X}p≥0 .
The simplicial space carries face and degeneracymaps

dpi ∶ Xp → Xp−1 epi ∶ Xp → Xp+1

de�ned by

dpi (1,… , p, x) ∶=
⎧
⎨
⎩

(2,… , p, x) for i = 0
(1,… , ii+1,… , p, x) for 1 ≤ i ≤ p − 1
(1,… , p−1, px) for i = p

(4.1)

epi (1,… , p, x) ∶= (1,… , i, 1, i+1,… , p, x) for 0 ≤ i ≤ p + 1

Notice that in (4.1) the facemap dp0 discards the element 1, this element will
be used to de�ne the simplicial twisting maps, in De�nition 4.3.

Proposition 4.2. The face and degeneracy maps satisfy the simplicial identities

di◦dj = dj−1◦di for i < j
ei◦ej = ej+1◦ei for i ≤ j di◦ej =

⎧
⎨
⎩

ej−1◦di for i < j
id for i = j, j + 1
ej◦di−1 for i > j + 1
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Corresponding to the face maps dpi , twisting maps �i ∶ Xp × G → G can be
de�ned. These maps encode the action � of Γ on G and will be used to twist the
coboundarymap. They are the basic ingredient needed for generalisation to the
semi-equivariant setting. Note that it is only the twisting map �0 that has any
e�ect. The rest of the twisting maps are included for notational convenience
when dealing with simplical identities.

De�nition 4.3. The simplicial twisting maps �i ∶ Xp × G → G are given by

�(1,…,p ,x)i ∶=
⎧
⎨
⎩

�1 for i = 0
id for 1 ≤ i ≤ p − 1
id for i = p

The twisting maps also satisfy simplicial identities which help to ensure that
the coboundary map in semi-equivariant cohomology squares to zero.

Proposition 4.4. The simplicial twisting maps satisfy the identities

�xp+1j ◦�dj(x
p+1)

i = �xp+1i ◦�di(x
p+1)

j−1 for i < j

�ej(x
p)

i =
⎧
⎨
⎩

�xpi for i < j
id for i = j, j + 1
�xpi−1 for i > j + 1,

where xp ∈ Xp.

Proof. The identities are trivial for most combinations of i and j. The remain-
ing cases can be checked individually. In particular, the �rst identity reduces
to

id◦�12 = �1◦�2
id◦�1 = �1◦id

id = id

for i = 0, j = 1
for i = 0, j ≥ 2
otherwise.

�

To construct a Čech-type theory, a simplicial coverU∙ of X∙ is needed. Such
a cover can be constructed from an appropriate cover U ∶= {Ua ∣ a ∈ A} of X.
First, the indexing set of the simplicial cover is de�ned. This indexing set has a
simplicial structure de�ned by face and degeneracy maps, which will again be
denoted by dpi and epi .
De�nition 4.5. De�ne the indexing set for U∙ by

A∙ ∶= {Ap}p≥0
whereAp ∶=

{
(a0,… , ap) ∣ ai ∈ A

}
. Elements ofAp will be denoted by ap. This

set carries face and degeneracy maps

dpi ∶ Ap → Ap−1 epi ∶ Ap → Ap+1
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de�ned by

dpi (a0,… , ap) ∶= (a0,… , âi,… , ap)
epi (a0,… , ap) ∶= (a0,… , ai, ai, ai+1,… , ap),

where âi denotes the removal of the element ai.
Proposition 4.6. The face and degeneracy maps of the indexing set A∙ satisfy

di◦dj = dj−1◦di for i < j
ei◦ej = ej+1◦ei for i ≤ j di◦ej =

⎧
⎨
⎩

ej−1◦di for i < j
id for i = j, j + 1
ej◦di−1 for i > j + 1.

Before de�ning the simplicial cover itself, observe that the elements of the
simplicial space de�ne sequences of points in X.
De�nition 4.7. Let xp = (1,… , p, x) ∈ Xp. The associated sequence

{
xpi

}
is

de�ned by
xpi ∶= p−i⋯ px ∈ X.

Simplicial covers generalise the nerves of covers. The de�nitionwill bemade
using the de�nitions of the sequences xpi and indexing set A∙.

De�nition 4.8. The simplicial cover

U∙ ∶= {Up}p≥0
associated to U is a sequence of covers Up of Xp each indexed by Ap. A set

U(a0,…,ap) ∈ Up

consists of all points in Xp such that xpi ∈ Uai for 0 ≤ i ≤ p.
For example, (1, 2, 3, x) ∈ U(a0,a1,a2,a3) can be visualised as a path

Ua0
x

Ua1
3x

3

Ua2
23x

2

Ua3
123x

1

.
Note that a re�nement ofU induces a re�nement ofU∙. Also, the face maps of
the simplicial cover are compatible with those of the simplicial space. This is
necessary to ensure that the coboundary map is well-de�ned.

Proposition 4.9. The pullback maps of the simplicial space are compatible with
those on the indexing set of the cover in the sense that di(Uap) ⊆ Udi(ap).

Semi-equivariant Čech cohomology is based on a single cochain complex. A
p-cochain for this cohomology theory consists of a smooth function on each set
in the pth level of the simplicial cover.
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De�nition 4.10. The group of p-cochains is de�ned by

Kp
Γ (U, X, (G, �)) ∶=

∏

ap∈Ap
C∞(Uap , G),

with the group operation (�′�)ap ∶= �′ap�ap .
These cochains can be pulled back by the facemaps. In the semi-equivariant

setting, the pullbackmaps are composed with the twistingmaps. This modi�es
the pullback by d0.
De�nition 4.11. The twisted pullback maps

)pi ∶ K
p
Γ (U, X, (G, �))→ Kp+1

Γ (U, X, (G, �))
are de�ned by

()pi �)ap+1(xp+1) ∶= �xp+1i ◦�dpi (ap+1)◦d
p
i (xp+1)

Note that the property di(Uap) ⊆ Udi(ap) of the cover ensures that )i(�) is a
well-de�ned element of Kp+1

Γ (U, X, (G, �)).
Proposition 4.12. The twisted pullback maps are group homomorphisms.

Proof. Using the fact that � is an automorphism for all  ∈ Γ,
()i(�′�))ap+1(xp+1)

= �xp+1i ◦(�′�)di(ap+1)◦di(xp+1)
= �xp+1i

(
(�′di(ap+1)◦di(x

p+1))(�di(ap+1)◦di(xp+1))
)

=
(
�xp+1i ◦�′di(ap+1)◦di(x

p+1)
)(
�xp+1i ◦�di(ap+1)◦di(xp+1)

)

=
(
()i�′)ap+1(xp+1)

)(
()i�)ap+1(xp+1)

)

�

The simplicial identities of the face maps for the simplicial space, the sim-
plicial cover and the twisting maps combine to produce a simplicial identity for
the twisted pullback maps.

Proposition 4.13. For i < j the twisted pullback maps satisfy the identity

)j◦)i = )i◦)j−1.
Proof. Using the corresponding simplicial identities between facemaps on the
simplicial complex, those on the simplicial cover, and those between the sim-
plical twisting maps one can directly compute

()j()i�))ap+2(xp+2) = �xp+2j ◦()i�)dj(ap+2)◦dj(xp+2)

= �xp+2j ◦�dj(x
p+2)

i ◦�di◦dj(ap+2)◦di◦dj(xp+2)

= �xp+2i ◦�di(x
p+2)

j−1 ◦�dj−1◦di(ap+2)◦dj−1◦di(xp+2)
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= �xp+2i ◦()j−1�)di(ap+2)◦di(xp+2)
= ()i()j−1�))ap+2(xp+2).

�

Finally, the coboundary maps are de�ned.

De�nition 4.14. The coboundary maps

)p ∶ Kp
Γ (U, X, (G, �))→ Kp+1

Γ (U, X, (G, �))
are de�ned by

)p ∶=
∑

0≤i≤p
(−1)i)pi .

Using the simplicial identity for the twisted pullbackmaps, the square of the
coboundary map is shown to be zero.

Proposition 4.15. The coboundary map satis�es )) = 0.
Proof. First note, using Proposition 4.13, that

∑

i<j,j≤p+2
(−1)i+j)j)i =

∑

i<j,j≤p+2
(−1)i+j)i)j−1

=
∑

i≤j,j≤p+1
(−1)i+j)i)j =

∑

j≤i,i≤p+1
(−1)i+j)j)i.

Therefore,
)) =

∑

0≤j≤p+2
(−1)j)j(

∑

0≤i≤p+1
(−1)i)i) =

∑

0≤j≤p+2

∑

0≤i≤p+1
(−1)i+j)j)i

=
∑

j≤i,i≤p+1
(−1)i+j)j)i +

∑

i<j,j≤p+2
(−1)i+j)j)i = 0.

�

When (G, �) is abelian, Proposition 4.15 allows the cohomology groups

Hp
Γ (U, X, (G, �))

of the complex (K∙
Γ(U, X, (G, �)), )) to be de�ned. The restriction to abelian Γ-

groups is necessary to ensure that the coboundarymaps )p are grouphomomor-
phisms. In order to obtain a cohomology theory which is independent of the
coverU, the direct limit of these cohomology groups will be taken with respect
to re�nements of the cover. A re�nement of U consists of another cover V in-
dexed by some set B, and a re�ning map r ∶ B → A such that Vb ⊂ Ur(b) for all
b ∈ B. Such a re�nement induces a re�nement of the associated simplicial cov-
ers, and restriction homomorphisms r∗ ∶ Kp

Γ (U, X, (G, �)) → Kp
Γ (V , X, (G, �))

de�ned by
(r∗�)(b0,…,bp) ∶= �(r(b0),…,r(bp))|V(b0 ,…,bp ) .

These restriction homomorphisms, in turn, induce maps

Hp
Γ (U, X, (G, �))→ Hp

Γ (V , X, (G, �))
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on the cohomology of the complexes. In order for the direct limit of cohomology
groups to be well-de�ned, the maps induced on cohomology by two di�erent
re�ning maps need to be equal. This is true in the equivariant setting, and in
the semi-equivariant setting it just needs to be checked that the twisting of the
coboundary map using � doesn’t cause any problems.

Lemma 4.16. Let (V , r) and (V , s) be re�nements ofU with re�ning maps r, s ∶
B → A. The maps induced on semi-equivariant cohomology by r and s are iden-
tical.

Proof. By analogy with the proof in the non-equivariant case (see for example
[16, pp. 78-79]), a cochain homotopy

Kp
Γ (U, X, (G, �))

ℎp

vv

r∗
��

s∗
��

)p // Kp+1
Γ (U, X, (G, �))

ℎp+1

vv

Kp−1
Γ (V , X, (G, �)) )p−1 // Kp

Γ (V , X, (G, �)).
is de�ned by

(ℎp�)(b0,…,bp−1) =
p−1∑

k=0
(−1)k�(r(b0),…,r(bk),s(bk),…,s(bp−1))◦ek,

where ek is the kth degeneracy map. Just as in the non-equivariant case, ex-
panding the expression

(ℎp+1)p�)(b0,…,bp) − ()p−1ℎp�)(b0,…,bp) ∈ Kp
Γ (V , X, (G, �))

results in a large amount of cancellation. The remaining expression is

()p0�)(r(b0),s(b0),…,s(bp))◦e0 − ()pp+1�)(r(b0),…,r(bp),s(bp))◦ep.

The twisted coboundary maps )00 and )
p
p+1 involve the Γ-actions � on G and �

on X, respectively. However, in the above expression, the degeneracy maps e0
and ep ensure that � and � only ever act via the identity element of Γ. Thus, the
above expression simpli�es to

�(s(b0),…,s(bp)) − �(r(b0),…,r(bp)) = (s∗�)(b0,…,bp) − (r∗�)(b0,…,bp).
Therefore, if � ∈ Hp

Γ (V , X, (G, �)) is a cocycle, then
(s∗�) − (r∗�) = ℎp+1◦)p(�) − )p−1◦ℎp(�) = )p−1◦ℎp(�),

which is a coboundary. Thus, r∗ and s∗ induce the same cohomology groups.
�

It is now possible to de�ne the semi-equivariant cohomology groups.

De�nition4.17. The (smooth)Γ-semi-equivariantČech cohomology groupswith
coe�cients in an abelian Γ-group (G, �) are de�ned by

Hp
Γ (X, (G, �)) ∶= lim

→
Hp
Γ (U, X, (G, �)),
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whereHp
Γ (U, X, (G, �)) are the cohomology groups of the complex

(K∙
Γ(U, X, (G, �)), )),

and the direct limit is taken with respect to re�nements of U.

Semi-equivariant cohomology is functorial with respect to homomorphisms
of abelian Γ-groups.

Proposition 4.18. A homomorphism � ∶ A → B of abelian Γ-groups induces a
morphism of complexes

�∙ ∶ (K∙
Γ(U, X, A), ))→ (K∙

Γ(U, X, B), ))

de�ned by (�p�)ap ∶= �◦�ap .

Proof. Let � be the Γ-action on A and # be the Γ-action on B. As � is a ho-
momorphism of Γ-groups �p◦�xpi = #xpi ◦�p for all xp ∈ Xp and 0 ≤ i ≤ p.
Thus,

(�p+1()i�))ap+1(xp+1) = �◦()i�)ap+1(xp+1)
= �◦�xp+1i ◦�di(ap+1)◦di(xp+1)
= #xp+1i ◦�◦�di(ap+1)◦di(xp+1)
= #xp+1i ◦(�p�)di(ap+1)◦di(xp+1)
= ()i(�p�))ap+1(xp+1).

Therefore, �p+1◦) = )◦�p and �p de�nes a morphism of complexes. �

Given a short exact sequence of abelian Γ-groups, connectingmaps for a long
exact sequence can be constructed.

Theorem 4.19. A short exact sequence of abelian Γ-groups

1→ A �→ B �→ C → 1

induces a long exact sequence

… ∆p−1→ Hp
Γ (X,A)

�p→ Hp
Γ (X, B)

�p→ Hp
Γ (X,C)

∆p→ Hp+1
Γ (X,A) �

p+1
→ … ,

where ∆p(�) ∶= [)( )] for any element  ∈ Kp
Γ (B) such that �p( ) = �.

Proof. The proposition follows by standard diagram chasing arguments ap-
plied to the exact sequence of complexes

1→ (K∙
Γ(X,A), ))

�∙→ (K∙
Γ(X, B), ))

�∙→ (K∙
Γ(X,C), ))→ 1.

For an example, see the proof of [16, Theorem 4.30]. �
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5. Semi-equivariant Dixmier-Douady invariants
In order to apply semi-equivariant cohomology to the classi�cation of semi-

equivariant liftings, its relationship with semi-equivariant principal bundles
must be clari�ed. ByTheorem3.12, this reduces to the problemof relating semi-
equivariant transition cocycles and semi-equivariant cohomology classes. In
this section, semi-equivariant transition cocycles will be interpreted as degree-
1 cocycles which can take values in a non-abelian coe�cient group. An ana-
logue of Theorem4.19will be proved that constructs a connectingmap from the
transition cocycles into degree-2 cohomology. The theorem can be used to clas-
sify certain liftings of semi-equivariant principal bundles between non-abelian
structure groups. This method has its origins in the work of Dixmier-Douady
on continuous trace C∗-algebras [5]. See also [4, §4] and [16, §4.3].

To begin, note that thep-cochains ofDe�nition 4.10 and the twisted pullback
maps of De�nition 4.11 are well-de�ned for non-abelian Γ-groups. Thus, it is
possible to make the following de�nitions.

De�nition 5.1.
TC0Γ(U, X, (G, �)) ∶=

{
� ∈ K0

Γ(U, X, (G, �)) ∣ ()1�)−1()0�) = 1
}

(5.1)

TC1Γ(U, X, (G, �))
∶=

{
� ∈ K1

Γ(U, X, (G, �)) ∣ ()1�)−1()2�)()0�) = 1
}
∕ ∼ (5.2)

where �1 ∼ �2 if and only if there exists a � ∈ K0
Γ(U, X, (G, �)) such that

()1�)�1 = �2()0�).
The set TC1Γ(U, X, (G, �)) is just TC≃Γ (U, X, (G, �)) with the transition cocy-

cle condition and equivalence condition expressed in terms of twisted pullback
maps. Note that the particular order of the terms )i� in (5.1) and )i� in (5.2)
is important as the elements � and � take values in G, which is not necessarily
abelian. When G is abelian, these terms may be rearranged to give the corre-
sponding cocycle properties in semi-equivariant cohomology. An abelian struc-
ture group also ensures that pointwise multiplication is a well-de�ned group
structure on TC0Γ and TC1Γ, which, in general, are only pointed sets.

Theorem 5.2. When G is abelian

TC0Γ(U, X, (G, �)) ≃ H0
Γ(U, X, (G, �)) (5.3)

TC1Γ(U, X, (G, �)) ≃ H1
Γ(U, X, (G, �)). (5.4)

Proof. When G is abelian, the de�ning condition on TC0Γ(U, X, (G, �)) and the
0-cocycle condition on cohomology are equivalent as

0 = −()1�) + ()0�) = ()0�) − ()1�) = )�.
This proves (5.3). Similarly, the de�ning condition onTC1Γ(U, X, (G, �)) and the
1-cocycle condition on cohomology are equivalent as

0 = −()1�) + ()2�) + ()0�) = ()0�) − ()1�) + ()2�) = )�,
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and the equivalence relations on TC1Γ(U, X, (G, �)) andH0
Γ(U, X, (G, �)) are the

same as
()1�) + �1 = �2 + ()0�)
�1 − �2 = ()0�) − ()1�)
�1 − �2 = )�.

These two facts imply (5.4). �

Together, Theorem 4.19 and Theorem 5.2 enable liftings of semi-equivariant
principal bundles between abelian structure groups to be classi�ed. However,
the construction of a Dirac operator involves the construction of liftings be-
tween non-abelian groups. The next theorem is a generalisation of Theorem
4.19 that can be used to classify certain liftings between non-abelian structure
groups.

Theorem 5.3. A short exact sequence of Γ-groups

1→ A �→ B �→ C → 1,
where �(A) is central in B, induces an exact sequence of pointed sets

0→ H0
Γ(X,A)

�0→ TC0Γ(X, B)
�0→ TC0Γ(X,C)

∆0→ …

… ∆0→ H1
Γ(X,A)

�1→ TC1Γ(X, B)
�1→ TC1Γ(X,C)

∆1→ H2
Γ(X,A),

where the connecting maps ∆0 and ∆1 are de�ned by
∆0([�]) ∶= [()1�)−1()0�)] ∆1([�]) ∶= [()1 )−1()2 )()0 )],

for any � ∈ K0
Γ(X, B),  ∈ K1

Γ(X, B) satisfying �0(�) = �, �1( ) = �.
Proof. The diagram chasing arguments used in the proof of Theorem 4.19 do
not apply directly. However, they can be imitated by carefully working around
any lack of commutativity in the groupsB andC. Note that Proposition 4.18 and
Proposition 4.13 continue to hold when the structure groups involved are non-
abelian. Thus, the twisted pullback maps )i commute with the maps �i and �i
induced by � and �, and also satisfy the simplicial identity )j◦)i = )i◦)j−1 for
i < j.

First, the map ∆0 will be considered. Let � ∶= ()1�)−1()0�) ∈ K1
Γ(X, B). The

cochain � is a lifting by � of � so �(�) = 1. Thus, � takes values in ker(�) ≃ A
and de�nes an element ofK1

Γ(X,A). The simplicial identity can be used to show
that the cochain � satis�es the cocycle property,

()1�)−1()0�) =
[
()1)1�)−1()1)0�)

]−1[
()0)1�)−1()0)0�)

]

= ()1)0�)−1()1)1�)()0)1�)−1()0)0�)
= ()1)0�)−1()1)1�)()0)1�)−1()0)0�)
= ()0)0�)−1()1)1�)()1)1�)−1()0)0�) = 1.
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Therefore, ∆0([�]) ∶= [�] ∈ H1
Γ(X,A).

Next, it needs to be shown that ∆0([�]) ∶= [()1�)−1()0�)] is independent of
the choice of �. Let �′ ∈ K0

Γ(X, B) be another element such that �(�′) = �. Set
! ∶= �′�−1 and �′ ∶= ()1�′)−1()0�′) ∈ K1

Γ(X, B). Then �(!) = �(�′�−1) =
��−1 = 1. Thus, ! de�nes an element of K0

Γ(X,A) and )! ∈ K1
Γ(X,A) is a

coboundary. Using the fact that � and )! take values in the abelian group A,
()!)� = ()!)()1�)−1()0�)

= ()1�)−1()!)()0�)
= ()1�)−1()1�)()1�′)−1()0�′)()0�)−1()0�)
= ()1�′)−1()0�′)
= �′.

Therefore, [�] = [�′] ∈ H1
Γ(X,A).

In order to examine themap∆1, let � ∶= ()1 )−1()2 )()0 ) ∈ K2
Γ(X, B). The

cochain  ∈ K1
Γ(X, B) is a �-lifting of the cocycle � ∈ TC1Γ(X,C) so �(�) = 1.

Therefore, � de�nes an element of K2
Γ(X,A). Using the simplicial identity, and

the fact that � takes values in the centre of B, it can be shown that � satis�es the
2-cocycle propery. First, compute

()1�)()3�) = ()1)1 )−1()1)2 )()1)0 )()3�)
= ()1)1 )−1()1)2 )()3�)()1)0 )
= ()1)1 )−1()1)2 )

[
()3)1 )−1()3)2 )()3)0 )

]
()1)0 )

= ()1)1 )−1()1)2 )
[
()1)2 )−1()3)2 )()3)0 )

]
()1)0 )

= ()1)1 )−1()3)2 )()3)0 )()1)0 )
= ()1)1 )−1()3)2 )

[
()2)0 )()2)0 )−1

]
()3)0 )()1)0 )

= ()2)1 )−1()2)2 )
[
()2)0 )()0)1 )−1

]
()0)2 )()0)0 )

=
[
()2)1 )−1()2)2 )()2)0 )

][
()0)1 )−1()0)2 )()0)0 )

]

= ()2�)()0�).
Then

()�) = ()0�)()1�)−1()2�)()3�)−1

= ()0�)()2�)()3�)−1()1�)−1

= ()0�)()2�)
[
()1�)()3�)

]−1

= ()0�)()2�)
[
()0�)()2�)

]−1

= 1,
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and so [�] ∈ H2
Γ(X,A).

Next, it needs to be shown that ∆1 is well-de�ned. Speci�cally, that
∆1([�]) ∶= [()1 )−1()2 )()0 )]

is independent of the choice of , and depends only on the class of� inTC1Γ(X,C).
To prove the �rst statement, let  ′ ∈ K1

Γ(X, B) be another �-lifting of � and
�′ ∶= ()1 ′)−1()2 ′)()0 ′) be the corresponding element of H2

Γ(X,A). If ! ∶=
 ′ −1 then �(!) = �( ′ −1) = ��−1 = 1. Thus, ! ∈ K1

Γ(X,A) and )! ∈
K2
Γ(X,A) is a coboundary. Next, using the fact that ! takes values in the center

of B,
()!)� = ()0!)()1!)−1()2!)()1 )−1()2 )()0 )

= ()1 )−1()1!)−1()2!)()2 )()0!)()0 )
= ()1 )−1()1 ′ −1)−1()2 ′ −1)()2 )()0 ′ −1)()0 )
= ()1 )−1()1 )()1 ′)−1()2 ′)()2 )−1()2 )()0 ′)()0 )−1()0 )
= ()1 ′)−1()2 ′)()0 ′)
= �′.

Therefore, [�] = [�′] ∈ H2
Γ(X,A).

In order to prove that∆1([�]) depends only on the class of�, suppose that� is
a coboundary i.e. that � = ()1�̃)−1()0�̃) for some �̃ ∈ K0

Γ(X,C). By surjectivity
of �, there exists an element  ̃ such that �( ̃) = �̃. Then  ∶= ()1 ̃)−1()0 ̃) is
a lifting by � of � as

�( ) = �
[
()1 ̃)−1()0 ̃)

]

= (�)1 ̃)−1(�)0 ̃)
= ()1� ̃)−1()0� ̃)
= ()1�̃)−1()0�̃)
= �.

So, again applying the simplicial identity,

∆1([�]) = [()1 )−1()2 )()0 )]
= [()1)0 ̃)−1()1)1 ̃)()2)1 ̃)−1()2)0 ̃)()0)1 ̃)−1()0)0 ̃)]
= [()0)0 ̃)−1()1)1 ̃)()1)1 ̃)−1()0)1 ̃)()0)1 ̃)−1()0)0 ̃)]
= 1.

Thus, ∆1([�]) depends only on the class of � in TC1Γ(X,C). �

It is now possible to de�ne the semi-equivariant Dixmier-Douady invariant
and resolve the main problem of this paper.
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De�nition 5.4. The semi-equivariant Dixmier-Douady invariant of a Γ-semi-
equivariant principal C-bundle P associated to a central exact sequence

1→ A �→ B �→ C → 1
is de�ned by

DD(P) ∶= ∆1([�]) ∈ H2
Γ(X,A),

where ∆1 is the connecting map provided by Theorem 5.3 and [�] is the transi-
tion cocycle associated to P by Proposition 3.5.

Theorem 5.5. The exact sequence produced by Theorem 5.3 implies that
(a) P can be lifted by � if and only if DD(P) = 0,
(b) when DD(P) = 0, the liftings of P by � correspond non-canonically to the

classes ofH1
Γ(X,A).

6. Related work and applications
Semi-equivariant principal bundles are well-known objects that have been

studied by several authors, including tom Dieck [17]. A more general type of
bundle also appears in the literature [13] [14, IV §1]. These bundles are associ-
ated to a short exact sequence 1 → G → Ω → Γ → 1 of Lie groups. They coin-
cide with Γ-semi-equivariant principal (G, �)-bundles whenever the sequence
splits so that Ω = Γ⋉� G.

Semi-equivariant principal bundles can be related to equivariant principal
bundles equipped with an appropriate structure group reduction. In the fol-
lowing proposition, let B≃ denote the set of isomorphism classes of pairs (Q, s),
where � ∶ Q → X is a Γ-equivariant principal Γ⋉�G-bundle and s ∶ X → Q∕G
is a section that satis�es s(x) = s(x)−1. This proposition is a special case of
a more general result described in [13, pp. 266-267].

Proposition 6.1. There is a bijective correspondence
PB≃Γ (X, (G, �))↔ B≃

[P]↦
[
P ×G (Γ⋉� G), s

]
,

where  ∈ Γ and ! ∈ Γ⋉� G act on [p, �] ∈ P ×G (Γ⋉� G) by
[p, �] ∶= [p, (, 1)�] [p, �]! ∶= [p, �!],

and s is de�ned by
s ∶ X → P ×G (Γ⋉� G)∕G

x ↦ [p, 1],
for any p in the �bre over x. In the above, P ×G (Γ ⋉� G) is the quotient with
respect to the left G-action g(p, �) ∶= (pg, (1, g)�) and P ×G (Γ ⋉� G)∕G is the
subsequent quotient with respect to the right G-action [p, �]g ∶= [p, �(1, g)].

Semi-equivariant Čech cohomologyH∙
Γ(X, (G, �)) is closely related to several

other cohomology theories. For example,
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(a) When Γ is the trivial group,H∙
Γ(X, (G, �)) is Čech cohomology.

(b) When � is the trivial action,H∙
Γ(X, (G, �)) is equivariant Čech cohomol-

ogy Ȟ∙
Γ(X,G). When X is a compact manifold acted upon by a �nite

group, the equivariantČech cohomology can be related toGrothendieck’s
equivariant sheaf cohomology [8, §5.5] or Borel cohomology [3, §A], [7,
§3.3].

(c) There is a restriction homomorphism

Hp
Γ (X, (G, �))→ Hp

ΓG (X, (G, �)) ≃ Ȟp
ΓG (X,G),

where ΓG ⊆ Γ is the stabiliser subgroup that acts trivially on G. In this
way, the semi-equivariant cohomology can be regarded as a restriction
of equivariant cohomology.

(d) WhenX is a point,H∙
Γ(X, (G, �)) is the group cohomologyH∙(Γ, G�) of Γ

with coe�cients in the Γ-module G� de�ned by G and � [2, p. 35]. With
this in mind, semi-equivariant cohomology can be viewed as a cross be-
tween group cohomology and equivariant cohomology.

(e) When X is a Real space and � is the conjugation action on U(1),
H∙
Gal(ℂ∕ℝ)(X, (U(1), �))

is closely related to theReal Čech cohomology of [15], and theReal sheaf
cohomology de�ned in [9]. Note that, in this case, the semi-equivariant
cohomology incorporates aspects of equivariant Čech cohomology and
Galois cohomology for the �eld extension ℂ∕ℝ.

An important application of Theorem 5.3 arises in the study of Spinc struc-
tures on Real spaces [1] and orientifolds [6]. Such structures correspond to
semi-equivariant liftings of equivariant principal SO(n)-bundles via the central
exact sequence

1→ (U(1), �◦�)→ (Spinc(n), �◦�) Ad
c

→ (SO(n), id◦�)→ 1.
Here � ∶ Γ → ℤ2 is a homomorphism from a �nite group Γ, and � denotes
the conjugation action on U(1) and Spinc(n). The topic of Spinc-structures on
orientifolds and their associated Dirac operators is treated in [12].
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