
New York Journal of Mathematics
New York J. Math. 29 (2023) 193–202.

A note on simply interpolating sequences
for the Dirichlet space

Nikolaos Chalmoukis

Abstract. We study simply interpolating sequences for the Dirichlet space
in the unit disc. In particular we are interested in comparing three di�erent
su�cient conditions for simply interpolating sequences. The �rst one is the
the so called one box condition, the second is the column bounded property
for the associated Grammian matrix and the third one is a restricted version
of the one box condition introduced by Bishop and, independently, by Mar-
shall and Sundberg. We prove that the one box condition implies the column
bounded property which in turn implies the restricted one box condition of
Bishop-Marshall-Sundberg, and we give two counterexamples which show
that the reverse implications fail even for weakly separated sequences.
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1. Introduction
Let ℋ be a reproducing kernel Hilbert space (rkHs) consisting of functions

de�ned on some set X, with reproducing kernel K ∶ X × X → ℂ. Given a
sequence of points Z = {zn} ⊆ X there exists a natural weighted restriction
operator associated to the sequence {zn}

ℛZ ∶ℋ ⤏ l2(ℕ)
f ↦ {K(zn, zn)−1∕2f(zn)}.
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The dashed arrow indicates that in principle this operator does not necessarily
take values in l2(ℕ). The sequence Z is called universally interpolating (UI) if
range(ℛZ) = l2(ℕ) and simply interpolating (SI) if range(ℛZ) ⊇ l2(ℕ). Fur-
thermore letℳ(ℋ) be themultiplier algebra associated toℋ which consists of
functions m ∶ X → ℂ such that mf ∈ ℋ whenever f ∈ ℋ. An interpolation
problem can be also de�ned for the multiplier algebra ofℋ by considering the
(unweighted) restriction operator

TZ ∶ℳ(ℋ)⟶ l∞(ℕ)
m ↦ {m(zn)}.

A sequence such that TZ(ℳ(ℋ)) = l∞(ℕ) it is called multiplier interpolating
(MI). Such sequences have been �rst studied by Carleson for the multiplier al-
gebra of the Hardy space H2(D), which coincides with the algebra of bounded
analytic functions in D, in his seminal paper [7]. Shapiro and Shields have
also studied universally and simply interpolating sequences for theHardy space
[12]. An interesting phenomenonwhich arises in this case is that all three types
of interpolation describe the same class of sequences.

The fact thatmultiplier interpolating anduniversally interpolating sequences
coincide turns out to be a common feature of many well known reproducing
kernel Hilbert spaces. In particular it remains true in all spaces with the com-
plete Nevanlinna Pick property [2, Theorem 9.19]. This is a technical property
which we are not going to de�ne here but the interested reader can consult the
monograph [2]. Many of the crucial properties of sequences regarding interpo-
lation are encoded by the Grammatrix. Let Z = {zn} be a sequence in X andℋ
a rkHs of functions on X with kernel K. The Gram matrix of Z with respect to
K is de�ned as the in�nite matrix

G = (gnm)n,m ∶= (
K(zn, zm)√

K(zn, zn)K(zm, zm)
)
n,m

.

It is known that for a complete Nevanlinna Pick space universally interpolat-
ing (equivalently multiplier interpolating) sequences are characterized by the
following two conditions on the Gram matrix

sup
n≠m

|gnm| < 1, and G ∶ l2(ℕ)→ l2(ℕ) is bounded.

This is a highly non-trivial theorem, proved �rst in [3] as a consequence of the
positive answer to the Kadison-Singer problem [10] and then in [9] using dif-
ferent methods. The �rst condition is usually called weak separation and the
second bounded Grammian condition.

On the other hand the relation between simply and universally interpolat-
ing sequences is more subtle. In the best of our knowledge the only space in
which it is known that there exist simply interpolating sequences which are not
universally interpolating is the Dirichlet space.
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The Dirichlet space D is de�ned as the space of analytic functions f in the
unit disc such that

∫
D
|f′(z)|2dz ∧ dz̄ < +∞.

It is well known that, once equipped with the inner product

⟨f, g⟩D ∶= 1
� ∫

D
f′(z)g′(z)dz ∧ dz̄ + 1

2� lim
r→1−

∫
T
f(r�)g(r�)d�,

the spaceD becomes a reproducing kernel Hilbert space with reproducing ker-
nel given by the formula

KD(z, w) ∶=
1
zw̄ log 1

1 − zw̄ , (z, w ∈ D).

FurthermoreD has the complete Nevanlinna Pick property and therefore mul-
tiplier and universally interpolating sequences coincide for D. In two unpub-
lished papers, [5, 11] Bishop and Marshall & Sundberg gave a su�cient condi-
tion for a sequence to be simply interpolating for theDirichlet space. In a subse-
quent work [6, Corollary 5.1], Bøe gave another su�cient condition for simple
interpolation which closely resembles the one of Bishop, Marshall & Sundberg.
The problem of simply interpolating sequences has been studied further in [4]
and [8].

To take a closer look at these conditions let us introduce an auxiliarymeasure
associated to a sequence of points Z = {zn} ⊆ D. If �z is the Dirac measure at
z, we de�ne

�Z ∶=
∞∑

n=1

�zn
KD(zn, zn)

.

Then, a sequence satis�es the bounded Grammian condition if and only if �Z is
a Carleson measure forD. Carleson measures for the Dirchlet space have been
characterized by Stegenga [13] as positive Borel measures in D such that there
exists a constant C(�Z) > 0 such that for all �nite collections of arcs I1, I2,… Ik
in the unit circle,

�Z
( k⋃

j=1
S(Ij)

)
≤ C(�Z) cap

( k⋃

j=1
Ij
)
,

where S(I) is the Carleson box corresponding to I de�ned by

S(I) ∶= {z ∈ D ⧵ {0} ∶ z∕|z| ∈ I, 1 − |z| ≤ |I|}
and cap is the classical logarithmic capacity in the complex plane. We present
�rst the condition of Bøe which is easier to state. A sequence is simply inter-
polating if it is weakly separated and satis�es the one box condition, i.e., there
exists a constant C(�Z) > 0 such that

�Z(S(I)) ≤ C(�Z)
(
log 1

|I|
)−1

, (∀I ⊆ T arcs). (OB)
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Notice that the one box condition corresponds to Stegenga’s condition for
k = 1. In particular setting I = T we �nd that the measure �Z must be �nite.

On the other hand the condition which was introduced by Bishop, Marshall
& Sundberg is a variant of the one box conditionwhichwewill call the restricted
one box condition and it involves testing on speci�c Carleson boxes. Let � ∈
(0, 1), for an arc I ⊆ T we denote by I� the arc with the same midpoint as I
and length |I|�. Let Z = {zn} be a sequence in the unit disc and In the arc with
midpoint zn∕|zn| and length 1− |zn|. The restricted one box condition requires
that �Z is �nite and there exist C(�Z) > 0 and � ∈ (0, 1) such that

�Z(S(I�n)) ≤ C(�Z)
(
log 1

1 − |zn|
)−1

, (∀n ≥ 0). (ROB)

It should be noted that Marshall-Sundberg construct sequences which are
not universally interpolating but are weakly separated and satisfy the one box
condition hence are simply interpolating.

Yet another condition which appears in the literature is what we call the
column bounded property of the Grammian. A sequence Z is called column
bounded (CB) if the corresponding Grammian G is bounded as a linear oper-
ator from l2(ℕ) to l∞(ℕ) or equivalently if the columns of G form a bounded
sequence in l2(ℕ). It is the understanding of the author that so far the three
conditions have fallen under the general term “one box condition” and at times
have been considered to be equivalent. In this short note we will establish the
exact implications between these three conditions.

Theorem 1.1. Let Z be a sequence in the unit disc. The following implications
hold

(OB) ⟹ (CB) ⟹ (ROB).
Furthermore, neither of the above implications is reversible even for sequences
which are weakly separated.

We should note at this point that there exist simply interpolating sequences
which do not satisfy the restricted one box condition, hence Theorem 1.1 does
not include all simply interpolating sequences.

Notation. If A and B are quantities that depend on some parameters we will
use the notation A ≲ B to denote that there exists C > 0 such that A ≤ CB for
all choices of the parameters. If A ≲ B and B ≲ A we write A ≈ B.

2. Proof of the main theorem
Let us start by introducing some useful notation. For a point z ∈ D ⧵ {0} we

denote by I(z) ⊆ T the unique arc such that z∗ ∶= z∕|z| is the midpoint of I(z)
and |I(z)| = 1− |z|. Furthermore let Γ(z) be the Stolz angle centered at z∗, i.e.,
the set of points w ∈ D such that |z∗ − w| ≤ 2(1 − |w|).

Other objects we are going to use are the dilated Carleson boxes. Let � ∈
(0, 1) be a dilation factor, then we de�ne the dilated Carleson box S�(I) as the
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Carleson box which corresponds to the interval with the same midpoint as I
and length |I|�. Similarly we de�ne S�(z) ∶= S�(I(z)).

For proving the next lemma it will be convenient to have a more geometric
description of the weak separation condition in the Dirichlet space. For this
recall that the hyperbolic metric dD in the unit disc is given by the formula

dD(z, w) ∶=
1
2 log

1 + |'z(w)|
1 − |'z(w)|

, where 'z(w) =
z − w
1 − zw

.

As itwas shown in [5] and [11] a sequenceZ is weakly separated in theDirichlet
space if and only if there exists a constant K = K(Z) such that

dD(zn, 0) + 1 ≤ KdD(zn, zm), (∀n ≠ m).

We will also denote by B(z, r) the hyperbolic disc with center z and radius r.
A convenient assumption we are going to make throughout the proof is that
|zn| ≥ 1∕2,∀zn ∈ Z. This does not a�ect the statement of Theorem 1.1 since a
�nite number of points in the disc {|z| ≤ 1∕2} can be added or removed from the
sequence without altering either the assumption or the conclusion of Theorem
1.1. With this at hand we can prove the following.

Lemma 2.1. Let Z ⊆ D be a sequence which satis�es the one box condition.
Then for every c > 0, there exists N = N(c) ∈ ℕ such that for every z ∈ D the
hyperbolic disc centered at z of radius c(dD(0, z) + 1) contains at most N points
of the sequence Z.

Proof. The lemma follows by the following observation. Fix c > 0, then there
exists a positive constant � = �(c) ∈ (0, 1) such that the dilated Carleson box
S�(z) contains the hyperbolic ball of radius R = c(dD(0, z) + 1) centered at z.
We leave this elementary but tedious veri�cation to the reader.

Then, if �Z is the measure associated to the sequence

�Z(B(z, R)) ≤ �(S�(z)) ≲ �C(�Z)
1

dD(0, z) + 1
.

One the other hand,

�Z(B(z, r)) =
∑

zn∈Z∩B(z,R)

1
KD(zn, zn)

≈
∑

zn∈Z∩B(z,R)

1
dD(0, zn) + 1

≥ #(Z ∩ B(z, R))
dD(0, z) + R + 1

≳ #(Z ∩ B(z, R))
dD(0, z) + 1

.

Hence there exists a natural numberN such that every hyperbolic discB(z, R)
contains at most N points. �

Lemma 2.2. Let � < 1 and z ∈ D. There existsM = M(�) > 0 such that for any
z ∈ D ⧵ {0} the set Γ(z) ∩ (S�(z) ⧵ S(z)) is contained in a hyperbolic ball of radius
at mostM(1 + dD(0, z)).
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Proof. Assume without loss of generality that 0 < z < 1 and hence Γ(z) =
Γ(1). Let E ∶= Γ(1) ∩ (S�(z) ⧵ S(z)). We have that

dD(0, 1 − (1 − |z|)) − dD(0, 1 − (1 − |z|)�)

= �1 − �
2 log 1

1 − |z| +O(1) ≲ dD(z, 0) + 1.

For w = |w|ei� ∈ Γ(1), by integrating the hyperbolic element of arc length
over the curve (s) = |w|eis, 0 ≤ s ≤ |�| we �nd

dD(w, |w|) ≤ ∫


ds
1 − s2 =

|�w|
1 − |w|2 ≲

|1 − w|
1 − |w| ≤ 2.

Finally ifw,! ∈ E, by constructionwe have that (1−|z|) ≤ |w|, |!| ≤ (1−|z|)�,
hence,

dD(w,!) ≤ dD(w, |w|) + dD(|w|, |!|) + dD(|!|, !) ≲ dD(z, 0) + 1.

�

Proof of Theorem 1.1. For convenience we will assume that for zn, zm ∈ Z,
|z∗n − z∗m| ≤ 1. Suppose that Z satis�es the one box condition and let zn ∈ Z,
we have the following elementary inequalities

∞∑

m=1
|gnm|2 =

∞∑

m=1

|||||
1

zn z̄m
log 1

1−znzm

|||||
2

KD(zn, zn)KD(zm, zm)
≲

∞∑

m=1

(
log 1

|1−znzm|

)2

KD(zn, zn)KD(zm, zm)

=
∑

zm∈S(zn)
+

∑

zm∉Γ(zn)∪S(zn)
+

∑

zm∈Γ(zn)
zm∉S(zn)

(
log 1

|1−znzm|

)2

KD(zn, zn)KD(zm, zm)

= (A) + (B) + (C),

where the quantity that we sum has the same occurrence. We proceed now to
estimate the quantities (A), (B) and (C) separately. For (A) we have

(A) ≈
∑

zm∈S(zn)

KD(zn, zn)
KD(zm, zm)

= KD(zn, zn)�Z(S(zn)) ≲
KD(zn, zn)
log 1

|I(zn)|

≲ 1,

where in the second to last inequality we have used that �Z satis�es the simple
box condition of Bishop-Marshall-Sundberg. Let us now estimate (B), for this
�x � = 1

2
and proceed as follows
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(B) ≈
∑

zm∉Γ(zn)∪S(zn)

(
log 1

|z∗n−z∗m|

)2

KD(zn, zn)KD(zm, zm)

= 1
KD(zn, zn)

∞∑

k=0

∑

zm∉Γ(zn)∪S(zn)
zm∈S2

−(k+1) (zn)⧵S2
−k (zn)

(
log 1

|z∗n−z∗m|

)2

KD(zm, zm)

≲ 1
KD(zn, zn)

∞∑

k=0

∑

zm∈S2−(k+1) (zn)⧵S2−k (zn)

(
log 1

(1−|zn|)2−k
)2

KD(zm, zm)

≲ 1
KD(zn, zn)

∞∑

k=0

∑

zm∈S2−(k+1) (zn)⧵S2−k (zn)
2−2k

(
log 1

1−|zn|

)2

KD(zm, zm)

≈ KD(zn, zn)
∞∑

k=0
2−2k�Z(S2

−(k+1)(zn))

≲ KD(zn, zn)
∞∑

k=0
21−k

(
log 1

1 − |zn|
)−1

≲ 1.

For estimating (C) we apply Lemmata 2.1 and 2.2, so we have

(C) ≈
∞∑

k=0

∑

zm∈S2−(k+1) (zn)⧵S2−k (zn)∩Γ(zn)

KD(zm, zm)
KD(zn, zn)

≤ N0
KD(zn, zn)

∞∑

k=0
log 1

(1 − |zn|)2−k
≲ 1.

Suppose now that Z is column bounded, we can apply [1, Proposition 9.11]
to conclude that we canwriteZ as a �nite union of weakly separated sequences.
Furthermore the associated measure is automatically �nite. 1

If a sequence is column bounded, then pick any 0 < � < 1. By the column
bounded property we have that

∑

zm∈S�(zn)

(
log 1

|1−znzm|

)2

KD(zn, zn)KD(zm, zm)
≤ C.

1As it stated [1, Proposition 9.11] applies to sequences such that the Grammian is bounded
on l2(ℕ) but its proof clearly only uses the column boundedness.
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Then it just remains to notice that for zm ∈ S�(zn) we can estimate below

� log 1
1 − |zn|

≲ log 1
|1 − znzm|

.

Where the implicit constant does not depend on � or the sequence. Combining
the two inequalities we get that

�Z(S�(zn)) ≲
1
�
(
log 1

(1 − |zn|)�
)−1

.

Which shows that the restricted one box condition holds for �. �

We shall construct now an example of a sequence which satis�es the column
bounded property and is weakly separated but it does not satisfy the one box
condition and an example of a weakly separated sequence which satis�es the
restricted one box condition but not the column bounded property.

Example 2.3.

Let 1
2
< r < 1, N ∈ ℕ, 0 < l < 1. Consider furthermore an interval I ⊆ T

such that |I| = l. On the arc rI we place N equispaced points and let ℰ =
ℰ(r,l, N) be the set of these points.

The one box condition is satis�ed for this sequence with a constant which is
at least

(
log 1

|I|
) ∑

z∈ℰ

1
‖Kz‖2D

≥
N log 1

l

log 1
1−r2

.

On the other hand, if z, w ∈ ℰ,

|K(z, w)| ≈ log 1
|1 − zw|

≈ log 1
max(1 − |z|2, 1 − |w|2, |z∗ − w∗|)

≤ min
(
log 1

1 − r2 , log
N
l
)
.

If we furthermore impose the conditions

N2 ≤ l2
1 − r2 , N ≤ log 1l (1)

we can conclude that

|K(z, w)| ≲ log 1l , z, w ∈ ℰ.

Hence the l2 norm of a column of the Grammian of the sequence ℰ can be
estimated thusly

∑

z∈ℰ

|K(z, w)|2

‖Kz‖2D‖Kw‖2D
≲ N

( log 1
l

log 1
1−r2

)2
.

Finally note that under (1) the sequence is weakly separated with e constant
that does not depend on r, N,l, because the hyperbolic distance between two
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adjacent points in ℰ is comparable with absolute constants to log l
N(1−r2)

which,

by the �rst of the two equations in (1), is bigger than 1
2
log 1

1−r2
.

To construct a sequence which is column bounded but it does not satisfy the
one box condition consider R = log 1

1−r2
as a free parameter and set

N = ⌊(logR)2⌋, log 1l = R
logR .

It is then readily veri�ed that the assumptions (1) are satis�ed for R su�ciently
big and

N log 1
l

log 1
1−r2

≈ logR, N
( log 1

l

log 1
1−r2

)2
≈ 1.

To conclude the example it su�ces to choose an increasing sequence of Rn
such that for the corresponding sequences of pointsℰn thatwehave constructed
before, the following holds

|K(z, w)|2

‖Kz‖2D‖Kw‖2D
< 1
2nNn

∑n−1
i=1 Ni

, z ∈ ℰn, w ∈
⋃

m<n
ℰm.

Then the union of the sequences ℰn is column bounded but it does not satisfy
the one box condition.

To construct the second example, notice that as soon as ℰ is weakly separated
then it satis�es the restricted one box condition with a constant that does not
depend on r, N,l since there exists some 0 < � < 1which depends only on the
weak separation constant of ℰ such that S�(z) ∩ S�(w) = ∅ for z, w ∈ ℰ.

Consider now the following choice of parameters

R = log 1
1 − r2 , N = ⌊(logR)3⌋, log 1l = R

logR ,

and pick an increasing sequence ofRn and choose the arcs In in the construction
of ℰn in such a way such that if z ∈ ℰn, w ∈ ℰm, then the dilated Carleson boxes
S�(z), S�(w) are still disjoint.

Furthermore to satisfy the �nite measure property it su�ces to take Rn such
that

∑

n

(logRn)3
Rn

<∞.

Then clearly the union of the sequences ℰn satis�es the restricted one box con-
dition but not the column bounded property.
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