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Generating iterative schemes to locate
common fixed points of nonlinear mappings

using shrinking projection methods

Atsumasa Kondo

Abstract. We introduce iterative scheme generating methods (ISGMs) to
find common fixed points of nonlinear mappings through shrinking projec-
tion methods, leading to strong convergence theorems. These findings ex-
tend a recent study by Kondo [A. Kondo, Math. Ann. 391 (2025), 2007–
2028], which only demonstrates weak convergence. Although ISGMs com-
bined with shrinking projection methods were explored in a prior study [A.
Kondo, Carpathian J. Math. 40 (2024), 819–840], that work depended on
mean-valued sequence properties. This study develops ISGMs without rely-
ing on mean-valued sequences, yielding infinitely many strong convergence
theorems. An application to a common split feasibility problem is also pre-
sented.
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1. Introduction
Let 𝐻 be a real Hilbert space equipped with an inner product ⟨⋅, ⋅⟩ and the

induced norm ‖⋅‖. Let 𝑆 be a mapping from 𝐶 into 𝐻, where 𝐶 is a nonempty
subset of𝐻. Denote by

𝐹 (𝑆) = {𝑥 ∈ 𝐶 ∶ 𝑆𝑥 = 𝑥}
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the set of all fixed points of 𝑆. A mapping 𝑆 ∶ 𝐶 → 𝐻 is termed nonexpansive if
‖𝑆𝑥 − 𝑆𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. Due to its broad applicability, researchers
have widely studied constructing a sequence approximating a fixed point of a
nonexpansive mapping. Recently, Kondo [27] proved the following theorem:

Theorem 1.1 ([27]). Let 𝐶 be a nonempty, closed, and convex subset of 𝐻. Let
𝑆, 𝑇 ∶ 𝐶 → 𝐶 be quasi-nonexpansive mappings (2.8) such that 𝐼 − 𝑆 and 𝐼 − 𝑇

are demiclosed (2.9) and 𝐹 (𝑆)∩𝐹 (𝑇) ≠ ∅, where 𝐼 denotes the identity mapping.
Denote by𝑃𝐹(𝑆)∩𝐹(𝑇) themetric projection from𝐻 onto𝐹 (𝑆)∩𝐹 (𝑇). Let {𝑎𝑛}, {𝑏𝑛},
and {𝑐𝑛} be sequences of real numbers in the interval [0, 1] such that 𝑎𝑛+𝑏𝑛+𝑐𝑛 =
1 for all 𝑛 ∈ ℕ, lim

𝑛→∞
𝑎𝑛𝑏𝑛 > 0, and lim

𝑛→∞
𝑎𝑛𝑐𝑛 > 0, where ℕ = {1, 2,⋯}.

Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 ∈ 𝐶 is given,
𝑥𝑛+1 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑧𝑛 + 𝑐𝑛𝑇𝑤𝑛

for all 𝑛 ∈ ℕ, where {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are sequences in 𝐶 that satisfy the follow-
ing conditions:

‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , and ‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ (1.1)

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ and

𝑥𝑛 − 𝑦𝑛 → 0 , 𝑥𝑛 − 𝑧𝑛 → 0 , and 𝑥𝑛 − 𝑤𝑛 → 0 . (1.2)

Then, the sequence {𝑥𝑛} converges weakly to a point 𝑥 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇), where
𝑥 ≡ lim𝑛→∞ 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑥𝑛.

The class of mappings considered in Theorem 1.1 includes nonexpansive
mappings, as well as more general types of mappings; see the Appendix of
Kondo [27] for further details. In Theorem 1.1, the sequence {𝑥𝑛} is defined
with given sequences {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛}, and the required conditions for these
sequences {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are explicitly stated in (1.1) and (1.2). Conse-
quently, many iterative schemes can be derived from this theorem. For exam-
ple, consider the following iterative scheme:

𝑧𝑛 = 𝜆′𝑛𝑥𝑛 +
(
1 − 𝜆′𝑛

)
𝑇𝑥𝑛, (1.3)

𝑦𝑛 = 𝜆𝑛𝑧𝑛 + (1 − 𝜆𝑛) 𝑆𝑧𝑛,

𝑥𝑛+1 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑦𝑛 + 𝑐𝑛𝑇𝑦𝑛,

where an initial point 𝑥1 ∈ 𝐶 is provided. The coefficients of the convex com-
binations 𝜆𝑛 and 𝜆′𝑛 are required to satisfy 𝜆𝑛 → 1 and 𝜆′𝑛 → 1, respectively;
see Corollary 4.4 in Kondo [27]. It can be confirmed that 𝑦𝑛 in (1.3) satisfies
the conditions ‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ and 𝑥𝑛 − 𝑦𝑛 → 0. Therefore, according
to Theorem 1.1, the sequence {𝑥𝑛}, defined by the rule (1.3), converges weakly
to a common fixed point of 𝑆 and 𝑇. The iterative scheme in (1.3) is a three-
step scheme; see Noor [36], Dashputre and Diwan [7], and Phuengrattana and
Suantai [37]. By setting 𝜆′𝑛 = 1 for all 𝑛 ∈ ℕ in (1.3), a two-step iterative scheme
is obtained. For more on the two-step iterative methods, see Ishikawa [14], Xu
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[45], Tan and Xu [44], and Berinde [2, 3]. This method, which generates in-
finitely many iterative schemes, is referred to as an iterative scheme generating
method (ISGM); see Kondo [22, 24, 25, 26, 28].
In 2003, Nakajo and Takahashi [35] proposed the CQ method and proved a

strong convergence theorem for finding a fixed point of nonexpansivemapping.
In 2006, Martinez-Yanes and Xu [33] extended the CQ method and proved the
following theorem:

Theorem 1.2 ([33]). Let 𝐶 be a nonempty, closed, and convex subset of 𝐻. Let
𝑆 ∶ 𝐶 → 𝐶 be a nonexpansive mapping such that 𝐹 (𝑆) ≠ ∅. Let {𝛼𝑛} and {𝛽𝑛}
be sequences of real numbers in the interval [0, 1] such that 0 ≤ 𝛼𝑛 ≤ 𝛼 < 1 and
𝛽𝑛 → 1, where 𝛼 ∈ [0, 1). Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑆𝑥𝑛,

𝑋𝑛 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑆𝑦𝑛,

𝐶𝑛 =
{
ℎ ∈ 𝐶 ∶ ‖𝑋𝑛 − ℎ‖

2
≤ ‖𝑥𝑛 − ℎ‖

2

+ (1 − 𝛼𝑛)
(
‖𝑦𝑛‖

2
− ‖𝑥𝑛‖

2
− 2 ⟨𝑦𝑛 − 𝑥𝑛, ℎ⟩

)}
,

𝑄𝑛 = {ℎ ∈ 𝐶 ∶ ⟨𝑥 − 𝑥𝑛, 𝑥𝑛 − ℎ⟩ ≥ 0}

𝑥𝑛+1 = 𝑃𝐶𝑛∩𝑄𝑛𝑥

for all 𝑛 ∈ ℕ. Then, {𝑥𝑛} converges strongly to an element 𝑥 in 𝐹 (𝑆), where 𝑥 =

𝑃𝐹(𝑆)𝑥.

In 2008, Takahashi et al. [42] also developed the CQmethod and established
a strong convergence theorem utilizing metric projections on shrinking sets
{𝐶𝑛}, where {𝐶𝑛} satisfies the condition 𝐶𝑛 ⊂ 𝐶𝑛−1 ⊂ ⋯ ⊂ 𝐶1 = 𝐶. This
approach is referred to as the shrinking projection method. For other related
works, see Kimura and Nakajo [16], as well as Ibaraki and Saejung [13]. In
2023, Kondo [24] applied ISGMs with mean-valued sequences, such as

𝑋𝑛 = 𝑎𝑛𝑥𝑛 + 𝑏𝑛
1

𝑛

𝑛−1∑

𝑘=0

𝑆𝑘𝑧𝑛 + 𝑐𝑛
1

𝑛

𝑛−1∑

𝑘=0

𝑇𝑘𝑤𝑛, (1.4)

to the CQ and shrinking projection methods and obtained various strong con-
vergence theorems. In (1.4), the point 𝑥𝑛+1 is determined depending on 𝑋𝑛 as
in Theorem 1.2. For iterative methods involving mean-valued sequences, refer
to Shimizu and Takahashi [38], Atsushiba and Takahashi [1], Kondo [23], and
articles cited therein.
This study establishes ISGMs using the shrinking projection method incor-

porating the Martinez-Yanes and Xu method. Through these efforts, we derive
numerous strong convergence theorems. These results enhance Theorem 1.1,
which previously only provided weak convergence. Although ISGMs utilizing
the shrinking projection method and the Martinez-Yanes and Xu method were
also explored in Kondo [26], that study’s findings depended on the properties
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of mean-valued sequences. In contrast, as demonstrated in Theorem 1.1, this
study develops ISGMs without relying on mean-valued sequences. We explore
a broader class of mappings, including nonexpansive mappings as specific in-
stances. As an application, a common split feasibility problem is also presented.
The structure of this article is as follows: Section 2 provides essential pre-

liminary information. In Section 3, we establish an ISGM using the shrinking
projection method. Section 4 integrates the Martinez-Yanes and Xu iterative
scheme with the shrinking projection method, further extending the ISGM.
Section 5 offers a comparison between the present study and previous work
[26], highlighting the unique contributions of this research. Section 6 presents
iterative schemes derived from the results in Section 3 and 4 to demonstrate the
broad applicability of the main findings of this study. Finally, in Section 7, we
apply the result of this study to a common split feasibility problem to further
support the effectiveness of this study.

2. Preliminaries
This section introduces preliminary concepts and results. Let 𝐻 represent a

real Hilbert space. For 𝑥, 𝑦, 𝑧 ∈ 𝐻 and 𝑎, 𝑏, 𝑐 ∈ ℝ such that 𝑎 + 𝑏 + 𝑐 = 1, the
following holds:

‖𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧‖
2 (2.1)

= 𝑎 ‖𝑥‖
2
+ 𝑏 ‖𝑦‖

2
+ 𝑐 ‖𝑧‖

2
− 𝑎𝑏 ‖𝑥 − 𝑦‖

2
− 𝑏𝑐 ‖𝑦 − 𝑧‖

2
− 𝑐𝑎 ‖𝑧 − 𝑥‖

2
;

see Maruyama et al. [34] and Zegeye and Shahzad [48]. In (2.1), the condi-
tions 𝑎, 𝑏, 𝑐 ∈ [0, 1] are not required. However, if 𝑎, 𝑏, 𝑐 ∈ [0, 1], the following
inequality holds:

‖𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧‖
2
≤ 𝑎 ‖𝑥‖

2
+ 𝑏 ‖𝑦‖

2
+ 𝑐 ‖𝑧‖

2
. (2.2)

Let 𝐶 be a nonempty, closed, and convex subset of 𝐻. We define 𝑃𝐶 as the
metric projection from𝐻 onto 𝐶, meaning

‖𝑥 − 𝑃𝐶𝑥‖ ≤ ‖𝑥 − ℎ‖ for all 𝑥 ∈ 𝐻 and ℎ ∈ 𝐶. (2.3)

The metric projection 𝑃𝐶 is firmly nonexpansive, that is,

‖𝑃𝐶𝑥 − 𝑃𝐶𝑦‖
2
≤ ⟨𝑥 − 𝑦, 𝑃𝐶𝑥 − 𝑃𝐶𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻. (2.4)

Any firmly nonexpansive mapping is nonexpansive. Thus, metric projections
are nonexpansive. The metric projection 𝑃𝐶 ∶ 𝐻 → 𝐶 satisfies

⟨𝑥 − 𝑃𝐶𝑥, 𝑃𝐶𝑥 − ℎ⟩ ≥ 0 and (2.5)

‖𝑥 − 𝑃𝐶𝑥‖
2
+ ‖𝑃𝐶𝑥 − ℎ‖

2
≤ ‖𝑥 − ℎ‖

2 (2.6)

for all 𝑥 ∈ 𝐻 and ℎ ∈ 𝐶. Furthermore, note that 𝐹 (𝑃𝐶) = 𝐶.
Let 𝐶 be a nonempty, closed, and convex subset of𝐻 with 𝑥 ∈ 𝐻 and 𝑑 ∈ ℝ.

Then, a subset 𝐷 of 𝐶 defined by

𝐷 = {ℎ ∈ 𝐶 ∶ 0 ≤ ⟨𝑥, ℎ⟩ + 𝑑} (2.7)
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is also closed and convex; refer to Martinez-Yanes and Xu [33].
A mapping 𝑆 ∶ 𝐶 → 𝐻 with 𝐹 (𝑆) ≠ ∅ is called quasi-nonexpansive if

‖𝑆𝑥 − 𝑞‖ ≤ ‖𝑥 − 𝑞‖ for all 𝑥 ∈ 𝐶 and 𝑞 ∈ 𝐹(𝑆). (2.8)

The set of all fixed points of a quasi-nonexpansive mapping is closed and con-
vex; see Itoh and Takahashi [15]. Any nonexpansive mapping that has a fixed
point is quasi-nonexpansive.
Let {𝑥𝑛} be a sequence in 𝐻. Denote by 𝑥𝑛 → 𝑥 and 𝑥𝑛 ⇀ 𝑥 the strong and

weak convergence to a point 𝑥, respectively. Let 𝐶 be a nonempty, closed, and
convex subset of 𝐻 and let 𝑆 ∶ 𝐶 → 𝐶 with 𝐹 (𝑆) ≠ ∅. The mapping 𝐼 − 𝑆 is
called demiclosed if

𝑥𝑛 − 𝑆𝑥𝑛 → 0 and 𝑥𝑛 ⇀ 𝑢⟹ 𝑢 ∈ 𝐹 (𝑆) , (2.9)

where {𝑥𝑛} is a sequence in 𝐶 and 𝐼 stands for the identity mapping. Note
that it is often said that 𝑆 is demiclosed when (2.9) holds. The class of quasi-
nonexpansive mappings with the condition (2.9) includes nonexpansive map-
pings and a broader categories of mappings; for further details, see Appendix
in Kondo [27].
In what follows, we assume the existence of a common fixed point for non-

linear mappings. The following is a simple version of a classical result demon-
strated in 1965 by Browder [4] in a certain class of a Banach space:

Theorem2.1. Let𝐶 be a nonempty, closed, convex, and bounded subset of𝐻. Let
𝑆, 𝑇 ∶ 𝐶 → 𝐶 be nonexpansive mappings such that 𝑆𝑇 = 𝑇𝑆. Then, 𝐹(𝑆) ∩ 𝐹(𝑇)
is not empty.

See also Göhde [10] and Kirk [17]. For more recent developments on fixed
point and common fixed point theorems, see [8, 9, 12, 18, 21, 31, 39, 40, 47] and
the articles cited therein.

3. Takahashi–Takeuchi–Kubota method
This section presents a strong convergence theorem approximating a com-

mon fixed point of two nonlinear mappings. As we show in Section 6, this
theorem generates many other iterative schemes. We employ the shrinking
projection method by Takahashi et al. [42].
For that aim, we can relax a required assumption for mappings in compar-

ison to (2.9). Let 𝐶 be a nonempty, closed, and convex subset of a real Hilbert
space𝐻 and let 𝑆 ∶ 𝐶 → 𝐶 with 𝐹 (𝑆) ≠ ∅. Let {𝑧𝑛} be a sequence in 𝐶. Follow-
ing Kondo [20], consider the following condition:

𝑧𝑛 − 𝑆𝑧𝑛 → 0 and 𝑧𝑛 → 𝑢⟹ 𝑢 ∈ 𝐹 (𝑆) . (3.1)

If the mapping 𝑆 is continuous or 𝐼 − 𝑆 is demiclosed (2.9), then 𝑆 satisfies the
condition (3.1). Therefore, broad classes of mappings, including nonexpansive
mappings, satisfy this condition (3.1). In the remainder of this article, we will
focus on quasi-nonexpansive mappings (2.8) that satisfy the condition (3.1).
In the main theorems presented below, we assume the following setting:
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(⋆) Let 𝐶 be a nonempty, closed, and convex subset of a real Hilbert space
𝐻. Let 𝑆, 𝑇 ∶ 𝐶 → 𝐶 be quasi-nonexpansive mappings (2.8) that satisfy the
condition (3.1). Suppose that 𝐹 (𝑆) ∩ 𝐹 (𝑇) ≠ ∅. Let {𝑎𝑛}, {𝑏𝑛}, and {𝑐𝑛} be
sequences of real numbers in the interval [0, 1] such that 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 = 1 for
all 𝑛 ∈ ℕ, lim𝑛→∞ 𝑎𝑛𝑏𝑛 > 0, and lim𝑛→∞𝑎𝑛𝑐𝑛 > 0. Let {𝑢𝑛} be a sequence in𝐻
such that 𝑢𝑛 → 𝑢 (∈ 𝐻).

Then, we can prove the following theorem:

Theorem 3.1. Assume the setting (⋆). Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑧𝑛 + 𝑐𝑛𝑇𝑤𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ, where {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are sequences in 𝐶 that satisfy the follow-
ing conditions:

‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ (3.2)

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ and

𝑥𝑛 − 𝑦𝑛 → 0, 𝑥𝑛 − 𝑧𝑛 → 0, 𝑥𝑛 − 𝑤𝑛 → 0, (3.3)

as 𝑛 → ∞. Then, {𝑥𝑛} converges strongly to an element 𝑢 in 𝐹 (𝑆) ∩ 𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.

Proof. First, we verify the following: (a) 𝐶𝑛 is closed and convex, (b) 𝐹 (𝑆) ∩
𝐹 (𝑇) ⊂ 𝐶𝑛 for all 𝑛 ∈ ℕ, and (c) the sequences {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛}, {𝑤𝑛}, {𝑋𝑛} in 𝐶,
and {𝐶𝑛} are properly defined. Here, we prove (a) through (c) simultaneously
by using an induction method.
(i) We start with the case 𝑛 = 1. Given 𝑥1 ∈ 𝐶1 (= 𝐶), we can select 𝑦1,

𝑧1, and 𝑤1 ∈ 𝐶 that satisfy (3.2) and (3.3) for 𝑛 = 1. For instance, if we set
𝑦1 = 𝑧1 = 𝑤1 = 𝑥1, then both (3.2) and (3.3) hold. With 𝑥1, 𝑦1, 𝑧1, 𝑤1 ∈ 𝐶, 𝑋1
and 𝐶2 are defined as follows:

𝑋1 = 𝑎1𝑦1 + 𝑏1𝑆𝑧1 + 𝑐1𝑇𝑤1 ∈ 𝐶 and
𝐶2 = {ℎ ∈ 𝐶1 ∶ ‖𝑋1 − ℎ‖ ≤ ‖𝑥1 − ℎ‖} .

As 𝐶1 is closed and convex, 𝐶2 is also closed and convex. Observe that 𝐹 (𝑆) ∩
𝐹 (𝑇) ⊂ 𝐶2. Choose 𝑞 ∈ 𝐹 (𝑆)∩𝐹 (𝑇) (⊂ 𝐶1) arbitrarily. As the mappings 𝑆 and
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𝑇 are quasi-nonexpansive (2.8), from (3.2), we have

‖𝑋1 − 𝑞‖ = ‖𝑎1𝑦1 + 𝑏1𝑆𝑧1 + 𝑐1𝑇𝑤1 − 𝑞‖

≤ 𝑎1 ‖𝑦1 − 𝑞‖ + 𝑏1 ‖𝑆𝑧1 − 𝑞‖ + 𝑐1 ‖𝑇𝑤1 − 𝑞‖

≤ 𝑎1 ‖𝑦1 − 𝑞‖ + 𝑏1 ‖𝑧1 − 𝑞‖ + 𝑐1 ‖𝑤1 − 𝑞‖

≤ 𝑎1 ‖𝑥1 − 𝑞‖ + 𝑏1 ‖𝑥1 − 𝑞‖ + 𝑐1 ‖𝑥1 − 𝑞‖

= ‖𝑥1 − 𝑞‖ .

This indicates that 𝑞 ∈ 𝐶2. Therefore, 𝐹 (𝑆) ∩ 𝐹 (𝑇) ⊂ 𝐶2 as asserted. As
𝐹 (𝑆) ∩ 𝐹 (𝑇) ≠ ∅ is assumed, it follows that 𝐶2 ≠ ∅. Consequently, the metric
projection 𝑃𝐶2 exists and 𝑥2 = 𝑃𝐶2𝑢2 is defined.
(ii) Given that 𝑥2 ∈ 𝐶2 (with 𝐶2 ⊂ 𝐶1 = 𝐶), we can choose 𝑦2, 𝑧2, and𝑤2 ∈ 𝐶

under the conditions provided in (3.2) and (3.3) for 𝑛 = 2. Then, 𝑋2 and 𝐶3 are
defined accordingly:

𝑋2 = 𝑎2𝑦2 + 𝑏2𝑆𝑧2 + 𝑐2𝑇𝑤2 ∈ 𝐶 and
𝐶3 = {ℎ ∈ 𝐶2 ∶ ‖𝑋2 − ℎ‖ ≤ ‖𝑥2 − ℎ‖} .

By the same reasoning as in case (i), we can confirm that𝐶3 is closed and convex
and that 𝐹 (𝑆) ∩ 𝐹 (𝑇) ⊂ 𝐶3. As 𝐹 (𝑆) ∩ 𝐹 (𝑇) ≠ ∅ is supposed, we conclude
that 𝐶3 ≠ ∅. Consequently, the metric projection 𝑃𝐶3 exists and 𝑥3 = 𝑃𝐶3𝑢3 is
defined.
By repeating the same argument, we can establish (a), (b), and (c) as stated.
Define 𝑢𝑛 = 𝑃𝐶𝑛𝑢 (∈ 𝐶𝑛). The sequence

{
𝑢𝑛
}
is contained in 𝐶, as 𝐶𝑛 ⊂

𝐶𝑛−1 ⊂ ⋯ ⊂ 𝐶1 = 𝐶. As 𝑢𝑛 = 𝑃𝐶𝑛𝑢 and 𝐹 (𝑆) ∩ 𝐹 (𝑇) ⊂ 𝐶𝑛, it follows from
(2.3) that

‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖ ≤

‖𝑢 − 𝑞‖ (3.4)

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ. This implies that the sequence
{
𝑢𝑛
}
is

bounded.
From 𝑢𝑛 = 𝑃𝐶𝑛𝑢 and 𝑢𝑛+1 = 𝑃𝐶𝑛+1𝑢 ∈ 𝐶𝑛+1 ⊂ 𝐶𝑛, it follows that

‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖ ≤

‖‖‖‖𝑢 − 𝑢𝑛+1
‖‖‖‖

for all 𝑛 ∈ ℕ. In other words, the sequence
{‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

}
(⊂ ℝ) is monotone in-

creasing. As
{
𝑢𝑛
}
is bounded,

{‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖

}
is also bounded. Therefore, the se-

quence
{‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

}
of real numbers converges.

We now show that
{
𝑢𝑛
}
converges in 𝐶, meaning that there exists 𝑢 ∈ 𝐶 such

that
𝑢𝑛 → 𝑢. (3.5)

Choose 𝑚, 𝑛 ∈ ℕ such that 𝑚 ≥ 𝑛. As the sequence of sets {𝐶𝑛} is shrinking,
it follows from 𝑚 ≥ 𝑛 that 𝐶𝑚 ⊂ 𝐶𝑛. Given that 𝑢𝑛 = 𝑃𝐶𝑛𝑢 and 𝑢𝑚 = 𝑃𝐶𝑚𝑢 ∈

𝐶𝑚 ⊂ 𝐶𝑛, we obtain from (2.6) that
‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

2
+
‖‖‖‖𝑢𝑛 − 𝑢𝑚

‖‖‖‖

2
≤
‖‖‖‖𝑢 − 𝑢𝑚

‖‖‖‖

2
.
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As
{‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

}
converges, it holds that 𝑢𝑛 −𝑢𝑚 → 0 as𝑚, 𝑛 →∞, meaning that

{
𝑢𝑛
}
is a Cauchy sequence in 𝐶. As 𝐶 is closed in the real Hilbert space 𝐻, it is

complete. Thus, there exists 𝑢 ∈ 𝐶 such that 𝑢𝑛 → 𝑢 as claimed.
We now prove that

𝑥𝑛 → 𝑢. (3.6)
As the metric projection 𝑃𝐶𝑛 is nonexpansive, it follows from the assumption
𝑢𝑛 → 𝑢 and (3.5) that

‖‖‖‖𝑥𝑛 − 𝑢
‖‖‖‖ ≤

‖‖‖‖𝑥𝑛 − 𝑢𝑛
‖‖‖‖ +

‖‖‖‖𝑢𝑛 − 𝑢
‖‖‖‖

=
‖‖‖‖𝑃𝐶𝑛𝑢𝑛 − 𝑃𝐶𝑛𝑢

‖‖‖‖ +
‖‖‖‖𝑢𝑛 − 𝑢

‖‖‖‖

≤ ‖𝑢𝑛 − 𝑢‖ +
‖‖‖‖𝑢𝑛 − 𝑢

‖‖‖‖→ 0

as claimed. As {𝑥𝑛} converges, it is bounded. Moreover, from (3.3), we obtain

𝑧𝑛 → 𝑢 and 𝑤𝑛 → 𝑢. (3.7)

Next, observe that
𝑥𝑛 − 𝑋𝑛 → 0. (3.8)

Indeed, as {𝑥𝑛} is convergent, it holds that 𝑥𝑛−𝑥𝑛+1 → 0 as 𝑛 →∞. Given that
𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1 ∈ 𝐶𝑛+1, it follows that

‖𝑋𝑛 − 𝑥𝑛+1‖ ≤ ‖𝑥𝑛 − 𝑥𝑛+1‖→ 0.

Consequently, we have

‖𝑥𝑛 − 𝑋𝑛‖ ≤ ‖𝑥𝑛 − 𝑥𝑛+1‖ + ‖𝑥𝑛+1 − 𝑋𝑛‖→ 0

as claimed. As {𝑥𝑛} is bounded, {𝑋𝑛} is also bounded, according to (3.8).
We show that

𝑦𝑛 − 𝑆𝑧𝑛 → 0 and 𝑦𝑛 − 𝑇𝑤𝑛 → 0. (3.9)
Select 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) arbitrarily. As 𝑆 and 𝑇 are quasi-nonexpansive (2.8),
from (2.1) and (3.2), the following holds:

‖𝑋𝑛 − 𝑞‖
2

= ‖𝑎𝑛 (𝑦𝑛 − 𝑞) + 𝑏𝑛 (𝑆𝑧𝑛 − 𝑞) + 𝑐𝑛 (𝑇𝑤𝑛 − 𝑞)‖
2

= 𝑎𝑛 ‖𝑦𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑆𝑧𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑇𝑤𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

≤ 𝑎𝑛 ‖𝑦𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑧𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

≤ 𝑎𝑛 ‖𝑥𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑥𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑥𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

= ‖𝑥𝑛 − 𝑞‖
2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2
.
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As 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖
2
≥ 0, we have

𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
+ 𝑎𝑛𝑐𝑛 ‖𝑦𝑛 − 𝑇𝑤𝑛‖

2

≤ ‖𝑥𝑛 − 𝑞‖
2
− ‖𝑋𝑛 − 𝑞‖

2

≤ (‖𝑥𝑛 − 𝑞‖ + ‖𝑋𝑛 − 𝑞‖) |||‖𝑥𝑛 − 𝑞‖ − ‖𝑋𝑛 − 𝑞‖|||

≤ (‖𝑥𝑛 − 𝑞‖ + ‖𝑋𝑛 − 𝑞‖) ‖𝑥𝑛 − 𝑋𝑛‖ .

As both {𝑥𝑛} and {𝑋𝑛} are bounded, and from (3.8), along with the assumptions
lim𝑛→∞ 𝑎𝑛𝑏𝑛 > 0 and lim𝑛→∞𝑎𝑛𝑐𝑛 > 0, we obtain (3.9) as asserted.
Next, we aim to demonstrate that

𝑧𝑛 − 𝑆𝑧𝑛 → 0 and 𝑤𝑛 − 𝑇𝑤𝑛 → 0. (3.10)

Using (3.3) and (3.9), we have

‖𝑧𝑛 − 𝑆𝑧𝑛‖ ≤ ‖𝑧𝑛 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑆𝑧𝑛‖→ 0.

The second part of (3.10) can be verified in a similar way. As 𝑆 and 𝑇 satisfy the
condition (3.1), according to (3.7) and (3.10), it holds that 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇).
Finally, we verify that

𝑢 (= lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝑥𝑛) = 𝑢
(
= 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢

)
.

As 𝑢 ∈ 𝐹 (𝑆)∩𝐹 (𝑇) and 𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢, it is sufficient to prove that
‖‖‖‖𝑢 − 𝑢

‖‖‖‖ ≤

‖𝑢 − 𝑢‖. From 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and (3.4), it holds that ‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖ ≤

‖𝑢 − 𝑢‖.
From (3.5), we obtain ‖‖‖‖𝑢 − 𝑢

‖‖‖‖ ≤
‖𝑢 − 𝑢‖. Therefore, 𝑢 = 𝑢. Given (3.6), we

can conclude that 𝑥𝑛 → 𝑢
(
= 𝑢

)
. This completes the proof. □

For the convergent sequence {𝑢𝑛} (⊂ 𝐻) in Theorem 3.1, see Yao et al. [46]
and Hojo et al. [11]. Setting 𝑦𝑛 = 𝑧𝑛 = 𝑤𝑛 = 𝑥𝑛 in Theorem 3.1 yields the
following corollary, which corresponds to Theorem 4.1 in Kondo [20]:

Corollary 3.2 ([20]). Assume the setting (⋆). Define a sequence {𝑥𝑛} in 𝐶 as
follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑋𝑛 = 𝑎𝑛𝑥𝑛 + 𝑏𝑛𝑆𝑥𝑛 + 𝑐𝑛𝑇𝑥𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ. Then, {𝑥𝑛} converges strongly to an element 𝑢 in𝐹 (𝑆)∩𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.
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4. Martinez–Yanes and Xumethod
In this section, we incorporate the method of Martinez–Yanes and Xu [33]

into the usual shrinking projection method presented in the previous section
(Section 3). The following is themain theorem of this section, where the setting
(⋆) is given at the beginning of Section 3:

Theorem 4.1. Assume the setting (⋆). Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑧𝑛 + 𝑐𝑛𝑇𝑤𝑛,

𝐶𝑛+1 =
{
ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖

2
≤ 𝑎𝑛 ‖𝑦𝑛 − ℎ‖

2
+ 𝑏𝑛 ‖𝑧𝑛 − ℎ‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − ℎ‖

2
}
,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ, where {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are sequences in 𝐶 that satisfy the follow-
ing conditions:

‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ (4.1)

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ and

𝑥𝑛 − 𝑦𝑛 → 0, 𝑥𝑛 − 𝑧𝑛 → 0, 𝑥𝑛 − 𝑤𝑛 → 0 (4.2)

as 𝑛 → ∞. Then, {𝑥𝑛} converges strongly to an element 𝑢 in 𝐹 (𝑆) ∩ 𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.

Remark 4.2. See the definition of 𝐶𝑛+1. It follows that

‖𝑋𝑛 − ℎ‖
2
≤ 𝑎𝑛 ‖𝑦𝑛 − ℎ‖

2
+ 𝑏𝑛 ‖𝑧𝑛 − ℎ‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − ℎ‖

2

⇔ 0 ≤ 𝑎𝑛 ‖𝑦𝑛‖
2
+ 𝑏𝑛 ‖𝑧𝑛‖

2
+ 𝑐𝑛 ‖𝑤𝑛‖

2
− ‖𝑋𝑛‖

2 (4.3)
−2 ⟨𝑎𝑦𝑛 + 𝑏𝑧𝑛 + 𝑐𝑤𝑛 − 𝑋𝑛, ℎ⟩

⇔ ‖𝑋𝑛 − ℎ‖
2
≤ ‖𝑦𝑛 − ℎ‖

2
+ 𝑏𝑛

(
‖𝑧𝑛‖

2
− ‖𝑦𝑛‖

2
− 2 ⟨𝑧𝑛 − 𝑦𝑛, ℎ⟩

)
(4.4)

+𝑐𝑛

(
‖𝑤𝑛‖

2
− ‖𝑦𝑛‖

2
− 2 ⟨𝑤𝑛 − 𝑦𝑛, ℎ⟩

)
.

From (4.4), Theorem 4.1 corresponds to theMartinez–Yanes and Xu type; see The-
orem 1.2 in Section 1. Suppose that 𝑋𝑛, 𝑦𝑛, 𝑧𝑛, 𝑤𝑛 ∈ 𝐶 and 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 ∈ ℝ are
given. From (2.7) and (4.3), the set 𝐶𝑛+1 is closed and convex if 𝐶𝑛 is closed and
convex.

Proof. At the outset, observe that (a)𝐶𝑛 is closed and convex, (b)𝐹 (𝑆)∩𝐹 (𝑇) ⊂
𝐶𝑛 for all 𝑛 ∈ ℕ, and (c) the sequences {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛}, {𝑤𝑛}, {𝑋𝑛} (⊂ 𝐶), and {𝐶𝑛}
are defined properly. We demonstrate (a)–(c) by induction.
(i) Given 𝑥1 ∈ 𝐶1 (= 𝐶), we can select 𝑦1, 𝑧1, and 𝑤1 ∈ 𝐶 to satisfy (4.1) and

(4.2) for 𝑛 = 1. For instance, by letting 𝑦1 = 𝑧1 = 𝑤1 = 𝑥1, those conditions are
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fulfilled. With 𝑥1, 𝑦1, 𝑧1, 𝑤1 ∈ 𝐶, 𝑋1 and 𝐶2 are defined as follows:

𝑋1 = 𝑎1𝑦1 + 𝑏1𝑆𝑧1 + 𝑐1𝑇𝑤1 ∈ 𝐶 and

𝐶2 =
{
ℎ ∈ 𝐶1 ∶ ‖𝑋1 − ℎ‖

2
≤ 𝑎1 ‖𝑦1 − ℎ‖

2
+ 𝑏1 ‖𝑧1 − ℎ‖

2
+ 𝑐1 ‖𝑤1 − ℎ‖

2
}
.

From (2.7) and (4.3), 𝐶2 is closed and convex as 𝐶1 (= 𝐶) is closed and convex.
We verify that 𝐹 (𝑆) ∩ 𝐹 (𝑇) ⊂ 𝐶2. Let 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) (⊂ 𝐶1). As 𝑆 and 𝑇 are
quasi-nonexpansive (2.8), from (2.2), it follows that

‖𝑋1 − 𝑞‖
2
= ‖𝑎1𝑦1 + 𝑏1𝑆𝑧1 + 𝑐1𝑇𝑤1 − 𝑞‖

2

= ‖𝑎1 (𝑦1 − 𝑞) + 𝑏1 (𝑆𝑧1 − 𝑞) + 𝑐1 (𝑇𝑤1 − 𝑞)‖
2

≤ 𝑎1 ‖𝑦1 − 𝑞‖
2
+ 𝑏1 ‖𝑆𝑧1 − 𝑞‖

2
+ 𝑐1 ‖𝑇𝑤1 − 𝑞‖

2

≤ 𝑎1 ‖𝑦1 − 𝑞‖
2
+ 𝑏1 ‖𝑧1 − 𝑞‖

2
+ 𝑐1 ‖𝑤1 − 𝑞‖

2
,

which implies that 𝑞 ∈ 𝐶2. Therefore, 𝐹 (𝑆)∩𝐹 (𝑇) ⊂ 𝐶2 as asserted. Given the
assumption that 𝐹 (𝑆) ∩𝐹 (𝑇) ≠ ∅, 𝐶2 is nonempty. Thus, the metric projection
𝑃𝐶2 exists and 𝑥2 = 𝑃𝐶2𝑢2 is defined.
(ii) Given 𝑥2 ∈ 𝐶2 (⊂ 𝐶1 = 𝐶), we can select 𝑦2, 𝑧2, and 𝑤2 ∈ 𝐶 such that

(4.1) and (4.2) are satisfied for 𝑛 = 2. With these elements, 𝑋2 and 𝐶3 are
defined as follows:

𝑋2 = 𝑎2𝑦2 + 𝑏2𝑆𝑧2 + 𝑐2𝑇𝑤2 ∈ 𝐶 and

𝐶3 =
{
ℎ ∈ 𝐶2 ∶ ‖𝑋2 − ℎ‖

2
≤ 𝑎2 ‖𝑦2 − ℎ‖

2
+ 𝑏2 ‖𝑧2 − ℎ‖

2
+ 𝑐2 ‖𝑤2 − ℎ‖

2
}
.

Using the same argument as in case (i), we can demonstrate that 𝐶3 is closed
and convex and that 𝐹 (𝑆)∩𝐹 (𝑇) ⊂ 𝐶3. From the assumption 𝐹 (𝑆)∩𝐹 (𝑇) ≠ ∅,
we conclude that 𝐶3 ≠ ∅. Consequently, the metric projection 𝑃𝐶3 exists and
𝑥3 = 𝑃𝐶3𝑢3 is defined.
Repeating the same analysis guarantees that (a), (b), and (c) are true.
Define 𝑢𝑛 = 𝑃𝐶𝑛𝑢 ∈ 𝐶𝑛. As 𝐶𝑛 ⊂ 𝐶𝑛−1 ⊂ ⋯ ⊂ 𝐶1 = 𝐶,

{
𝑢𝑛
}
is a sequence

contained in 𝐶. We claim that
‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖ ≤
‖𝑢 − 𝑞‖ (4.5)

for all 𝑞 ∈ 𝐹 (𝑆) ∩𝐹 (𝑇) and 𝑛 ∈ ℕ. This follows from the definition 𝑢𝑛 = 𝑃𝐶𝑛𝑢

and the fact that 𝑞 ∈ 𝐹 (𝑆) ∩𝐹 (𝑇) ⊂ 𝐶𝑛; see (2.3). From (4.5), we can conclude
that

{
𝑢𝑛
}
is bounded.

Note that
‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖ ≤
‖‖‖‖𝑢 − 𝑢𝑛+1

‖‖‖‖ (4.6)

for all 𝑛 ∈ ℕ. Indeed, as 𝑢𝑛 = 𝑃𝐶𝑛𝑢 and 𝑢𝑛+1 = 𝑃𝐶𝑛+1𝑢 ∈ 𝐶𝑛+1 ⊂ 𝐶𝑛, the
inequality (4.6) follows. This implies that

{‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖

}
is monotone increasing.

As
{‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

}
is bounded, it is convergent.

We now prove that
{
𝑢𝑛
}
converges in 𝐶; that is, there exists 𝑢 ∈ 𝐶 such that

𝑢𝑛 → 𝑢. (4.7)
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Let 𝑚, 𝑛 ∈ ℕ with 𝑚 ≥ 𝑛. As 𝑢𝑛 = 𝑃𝐶𝑛𝑢 and 𝑢𝑚 = 𝑃𝐶𝑚𝑢 ∈ 𝐶𝑚 ⊂ 𝐶𝑛, from
(2.6), it holds that

‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖

2
+
‖‖‖‖𝑢𝑛 − 𝑢𝑚

‖‖‖‖

2
≤
‖‖‖‖𝑢 − 𝑢𝑚

‖‖‖‖

2
.

As
{‖‖‖‖𝑢 − 𝑢𝑛

‖‖‖‖

}
is convergent, it follows that 𝑢𝑛 − 𝑢𝑚 → 0 as 𝑚, 𝑛 → ∞. Thus,

{
𝑢𝑛
}
is a Cauchy sequence in 𝐶. As 𝐶 is complete, there exists 𝑢 ∈ 𝐶 such that

𝑢𝑛 → 𝑢 as claimed.
Our next aim is to demonstrate that {𝑥𝑛} has the same limit point, that is,

𝑥𝑛 → 𝑢. (4.8)

As the metric projection is nonexpansive, using (4.7) and the hypothesis 𝑢𝑛 →
𝑢, we obtain

‖‖‖‖𝑥𝑛 − 𝑢
‖‖‖‖ ≤

‖‖‖‖𝑥𝑛 − 𝑢𝑛
‖‖‖‖ +

‖‖‖‖𝑢𝑛 − 𝑢
‖‖‖‖

=
‖‖‖‖𝑃𝐶𝑛𝑢𝑛 − 𝑃𝐶𝑛𝑢

‖‖‖‖ +
‖‖‖‖𝑢𝑛 − 𝑢

‖‖‖‖

≤ ‖𝑢𝑛 − 𝑢‖ +
‖‖‖‖𝑢𝑛 − 𝑢

‖‖‖‖→ 0

as𝑛 tends to infinity. This shows that (4.8) holds true as claimed. Consequently,
{𝑥𝑛} is bounded. From (4.1), {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are also bounded. Furthermore,
according to (4.2) and (4.8), we have

𝑧𝑛 → 𝑢 and 𝑤𝑛 → 𝑢. (4.9)

As {𝑥𝑛} converges, it holds that

𝑥𝑛 − 𝑥𝑛+1 → 0. (4.10)

Next, let us show that

𝑋𝑛 − 𝑥𝑛+1 → 0. (4.11)

As 𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1 ∈ 𝐶𝑛+1, it follows from the definition of 𝐶𝑛+1 that

‖𝑋𝑛 − 𝑥𝑛+1‖
2 (4.12)

≤ 𝑎𝑛 ‖𝑦𝑛 − 𝑥𝑛+1‖
2
+ 𝑏𝑛 ‖𝑧𝑛 − 𝑥𝑛+1‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − 𝑥𝑛+1‖

2

≤ 𝑎𝑛 (‖𝑦𝑛 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑥𝑛+1‖)
2
+ 𝑏𝑛 (‖𝑧𝑛 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑥𝑛+1‖)

2

+𝑐𝑛 (‖𝑤𝑛 − 𝑥𝑛‖ + ‖𝑥𝑛 − 𝑥𝑛+1‖)
2
.

From (4.2) and (4.10), we can conclude that 𝑋𝑛 − 𝑥𝑛+1 → 0 as stated. From
(4.10) and (4.11), wehave𝑥𝑛−𝑋𝑛 → 0. As {𝑥𝑛} is bounded, {𝑋𝑛} is also bounded.
Observe that

𝑦𝑛 − 𝑆𝑧𝑛 → 0 and 𝑦𝑛 − 𝑇𝑤𝑛 → 0. (4.13)
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Choose 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) arbitrarily. Using (2.1), (2.8), and (4.1) yields

‖𝑋𝑛 − 𝑞‖
2

= ‖𝑎𝑛 (𝑦𝑛 − 𝑞) + 𝑏𝑛 (𝑆𝑧𝑛 − 𝑞) + 𝑐𝑛 (𝑇𝑤𝑛 − 𝑞)‖
2

= 𝑎𝑛 ‖𝑦𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑆𝑧𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑇𝑤𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

≤ 𝑎𝑛 ‖𝑦𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑧𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

≤ 𝑎𝑛 ‖𝑥𝑛 − 𝑞‖
2
+ 𝑏𝑛 ‖𝑥𝑛 − 𝑞‖

2
+ 𝑐𝑛 ‖𝑥𝑛 − 𝑞‖

2

−𝑎𝑛𝑏𝑛 ‖𝑥𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2

= ‖𝑥𝑛 − 𝑞‖
2

−𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
− 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖

2
− 𝑐𝑛𝑎𝑛 ‖𝑇𝑤𝑛 − 𝑦𝑛‖

2
.

As 𝑏𝑛𝑐𝑛 ‖𝑆𝑧𝑛 − 𝑇𝑤𝑛‖
2
≥ 0, we have

𝑎𝑛𝑏𝑛 ‖𝑦𝑛 − 𝑆𝑧𝑛‖
2
+ 𝑎𝑛𝑐𝑛 ‖𝑦𝑛 − 𝑇𝑤𝑛‖

2

≤ ‖𝑥𝑛 − 𝑞‖
2
− ‖𝑋𝑛 − 𝑞‖

2

≤ (‖𝑥𝑛 − 𝑞‖ + ‖𝑋𝑛 − 𝑞‖) |||‖𝑥𝑛 − 𝑞‖ − ‖𝑋𝑛 − 𝑞‖|||

≤ (‖𝑥𝑛 − 𝑞‖ + ‖𝑋𝑛 − 𝑞‖) ‖𝑥𝑛 − 𝑋𝑛‖ .

Recall that {𝑥𝑛} and {𝑋𝑛} are bounded and 𝑥𝑛 − 𝑋𝑛 → 0. Thus, we obtain
𝑦𝑛 − 𝑆𝑧𝑛 → 0 and 𝑦𝑛 − 𝑇𝑤𝑛 → 0 as asserted.
From (4.2) and (4.13), it follows that

𝑧𝑛 − 𝑆𝑧𝑛 → 0 and 𝑤𝑛 − 𝑇𝑤𝑛 → 0. (4.14)

As 𝑆 and 𝑇 satisfy the condition (3.1), from (4.9) and (4.14), we obtain 𝑢 ∈

𝐹 (𝑆) ∩ 𝐹 (𝑇).
Our objective is to demonstrate that 𝑥𝑛 → 𝑢. From (4.8), it is sufficient to

show that
𝑢 (= lim

𝑛→∞
𝑢𝑛 = lim

𝑛→∞
𝑥𝑛) = 𝑢

(
= 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢

)
.

Applying (4.5) for 𝑞 = 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇), we have ‖‖‖‖𝑢 − 𝑢𝑛
‖‖‖‖ ≤

‖𝑢 − 𝑢‖ for all
𝑛 ∈ ℕ. From (4.7), it holds that ‖‖‖‖𝑢 − 𝑢

‖‖‖‖ ≤
‖𝑢 − 𝑢‖. As 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and

𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢, we obtain 𝑢 = 𝑢. This concludes the proof. □

Setting 𝑦𝑛 = 𝑧𝑛 = 𝑤𝑛 = 𝑥𝑛 in Theorem 4.1, we again obtain Corollary 3.2.

5. Remarks
This section provides brief notes regarding the main theorems of this study

in comparison with previous results. Let 𝑆 ∶ 𝐶 → 𝐶 with 𝐹 (𝑆) ≠ ∅, where
𝐶 is a nonempty, closed, and convex subset of a real Hilbert space 𝐻. For a
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bounded sequence {𝑧𝑛} in𝐶, define𝑍𝑛 =
1

𝑛

∑𝑛−1

𝑘=0
𝑆𝑘𝑧𝑛 (∈ 𝐶). Kondo [19] called

a mapping 𝑆 ∶ 𝐶 → 𝐶 mean-demiclosed if

𝑍𝑛𝑗 ⇀ 𝑢 (weak convergence) ⟹ 𝑢 ∈ 𝐹 (𝑆) , (5.1)

where
{
𝑍𝑛𝑗

}
is a subsequence of {𝑍𝑛}. According to Kondo and Takahashi [29], a

nonexpansive mapping is mean-demiclosed; see also Claim 1 in Kondo [24] or
Proposition 2.1 in Kondo [26]. Furthermore, consider the following condition:

𝑍𝑛𝑗 → 𝑢 (strong convergence) ⟹ 𝑢 ∈ 𝐹 (𝑆) . (5.2)

A mean-demiclosed mapping (5.1) satisfies the condition (5.2) and therefore,
broad classes of mappings, including nonexpansive mappings, satisfy this con-
dition (5.2); see Appendix in Kondo [24]. Consider the following setting:

(⋆⋆) Let 𝐶 be a nonempty, closed, and convex subset of a real Hilbert space
𝐻. Let 𝑆, 𝑇 ∶ 𝐶 → 𝐶 be quasi-nonexpansive mappings (2.8) that satisfy the
condition (5.2). Suppose that 𝐹 (𝑆) ∩ 𝐹 (𝑇) ≠ ∅. Let {𝑎𝑛}, {𝑏𝑛}, and {𝑐𝑛} be
sequences of real numbers in the interval [0, 1] such that 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 = 1 for
all 𝑛 ∈ ℕ, lim𝑛→∞ 𝑎𝑛𝑏𝑛 > 0, and lim𝑛→∞𝑎𝑛𝑐𝑛 > 0. Let {𝑢𝑛} be a sequence in𝐻
such that 𝑢𝑛 → 𝑢 (∈ 𝐻).

The only difference between the settings (⋆) and (⋆⋆) is with regard to the
mapping conditions (3.1) and (5.2), where the setting (⋆) is stated at the begin-
ning of Section 3. The following two theorems are contained in Kondo [26]:

Theorem 5.1 ([26]). Assume the setting (⋆⋆). Define a sequence {𝑥𝑛} in 𝐶 as
follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛
1

𝑛

𝑛−1∑

𝑙=0

𝑆𝑙𝑧𝑛 + 𝑐𝑛
1

𝑛

𝑛−1∑

𝑙=0

𝑇𝑙𝑤𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ, where {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are sequences in 𝐶 that satisfy the follow-
ing conditions:

‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ and

𝑥𝑛 − 𝑦𝑛 → 0 (5.3)

as 𝑛 → ∞. Then, {𝑥𝑛} converges strongly to an element 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.
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Theorem 5.2 ([26]). Assume the setting (⋆⋆). Define a sequence {𝑥𝑛} in 𝐶 as
follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛
1

𝑛

𝑛−1∑

𝑙=0

𝑆𝑙𝑧𝑛 + 𝑐𝑛
1

𝑛

𝑛−1∑

𝑙=0

𝑇𝑙𝑤𝑛,

𝐶𝑛+1 =
{
ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖

2
≤ 𝑎𝑛 ‖𝑦𝑛 − ℎ‖

2
+ 𝑏𝑛 ‖𝑧𝑛 − ℎ‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − ℎ‖

2
}
,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ, where {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are sequences in 𝐶 that satisfy the follow-
ing conditions:

‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ , ‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ and

𝑥𝑛 − 𝑦𝑛 → 0, 𝑥𝑛 − 𝑧𝑛 → 0, 𝑥𝑛 − 𝑤𝑛 → 0 (5.4)

as 𝑛 → ∞. Then, {𝑥𝑛} converges strongly to an element 𝑢 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.

First, we compare Theorem 3.1 with 5.1. As can be seen in (3.3) and (5.3),
Theorem 3.1 requires additional assumptions 𝑥𝑛 − 𝑧𝑛 → 0 and 𝑥𝑛 − 𝑤𝑛 → 0,
although it can be established without relying onmean-valued sequences. Fur-
thermore, the conditions formappings 𝑆 and𝑇 in Theorem3.1 differ from those
in Theorem 5.1. For quasi-nonexpansive mappings with (3.1), see Appendix in
Kondo [27] and for quasi-nonexpansive mappings with (5.2), see Appendix in
Kondo [24].
Next, we compare Theorem 4.1 with 5.2. In these two theorems, the required

conditions on the sequences {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛} are the same as those in Theo-
rem 3.1. For this point, see Remark 5.2 in Kondo [26]. In other words, Theorem
4.1 can be proved without using mean-valued sequences and without any ad-
ditional conditions on the sequences {𝑦𝑛}, {𝑧𝑛}, and {𝑤𝑛}. However, as in the
cases of Theorems 3.1 and 5.1, the conditions on the mappings are different.

6. Corollaries
In this section, we provide strong convergence results deduced from Theo-

rems 3.1 and 4.1 to demonstrate the effectiveness of the main theorems of this
study. Recall that the setting (⋆) is described at the beginning of Section 3. The
following is a four-step iterative method to approximate a common fixed point
of quasi-nonexpansive mappings with the condition (3.1):

Corollary 6.1. Assume the setting (⋆). Let {𝜆𝑛}, {𝜇𝑛}, {𝜈𝑛},
{
𝜆′𝑛
}
,
{
𝜇′𝑛
}
,
{
𝜈′𝑛
}
,
{
𝜆′′𝑛
}
,

{
𝜇′′𝑛
}
, and

{
𝜈′′𝑛
}
be sequences of real numbers in the interval [0, 1] such that 𝜆𝑛 +
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𝜇𝑛 + 𝜈𝑛 = 1, 𝜆′𝑛 + 𝜇′𝑛 + 𝜈′𝑛 = 1, 𝜆′′𝑛 + 𝜇′′𝑛 + 𝜈′′𝑛 = 1 for all 𝑛 ∈ ℕ, 𝜆𝑛 → 1, 𝜆′𝑛 → 1,
and 𝜆′′𝑛 → 1. Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given, (6.1)
𝐶1 = 𝐶,

𝑤𝑛 = 𝜆′′𝑛𝑥𝑛 + 𝜇′′𝑛 𝑆𝑥𝑛 + 𝜈′′𝑛𝑇𝑥𝑛,

𝑧𝑛 = 𝜆′𝑛𝑤𝑛 + 𝜇′𝑛𝑆𝑤𝑛 + 𝜈′𝑛𝑇𝑤𝑛,

𝑦𝑛 = 𝜆𝑛𝑧𝑛 + 𝜇𝑛𝑆𝑧𝑛 + 𝜈𝑛𝑇𝑧𝑛,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑦𝑛 + 𝑐𝑛𝑇𝑦𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ. Then, the sequence {𝑥𝑛} converges strongly to an element 𝑢 ∈

𝐹 (𝑆) ∩ 𝐹 (𝑇), where 𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.

Proof. From Theorem 3.1, it is sufficient to demonstrate that
‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ, (6.2)
𝑥𝑛 − 𝑦 𝑛 → 0 as 𝑛 →∞. (6.3)

Before that, we shall verify that (a) 𝐶𝑛 is closed and convex, (b) 𝐹 (𝑆) ∩ 𝐹 (𝑇) ⊂
𝐶𝑛 for all 𝑛 ∈ ℕ, and (c) the sequences {𝑥𝑛} , {𝑤𝑛} , {𝑧𝑛} , {𝑦𝑛} , {𝑋𝑛} , and {𝐶𝑛} are
properly defined. These parts can be shown in a similar manner to the proof of
Theorem 3.1 and thus, we omit them here.
Observe that

‖𝑤𝑛 − 𝑞‖ ≤ ‖𝑥𝑛 − 𝑞‖ for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ. (6.4)
As 𝑆 and 𝑇 are quasi-nonexpansive (2.8), we can verify (6.4) as follows:

‖𝑤𝑛 − 𝑞‖ = ‖𝜆′′𝑛𝑥𝑛 + 𝜇′′𝑛 𝑆𝑥𝑛 + 𝜈′′𝑛𝑇𝑥𝑛 − 𝑞‖

= ‖𝜆′′𝑛 (𝑥𝑛 − 𝑞) + 𝜇′′𝑛 (𝑆𝑥𝑛 − 𝑞) + 𝜈′′𝑛 (𝑇𝑥𝑛 − 𝑞)‖

≤ 𝜆′′𝑛 ‖𝑥𝑛 − 𝑞‖ + 𝜇′′𝑛 ‖𝑆𝑥𝑛 − 𝑞‖ + 𝜈′′𝑛 ‖𝑇𝑥𝑛 − 𝑞‖

≤ 𝜆′′𝑛 ‖𝑥𝑛 − 𝑞‖ + 𝜇′′𝑛 ‖𝑥𝑛 − 𝑞‖ + 𝜈′′𝑛 ‖𝑥𝑛 − 𝑞‖

= ‖𝑥𝑛 − 𝑞‖ .

Similarly, we can prove
‖𝑧𝑛 − 𝑞‖ ≤ ‖𝑤𝑛 − 𝑞‖ and ‖𝑦𝑛 − 𝑞‖ ≤ ‖𝑧𝑛 − 𝑞‖ (6.5)

for all 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇) and 𝑛 ∈ ℕ. From (6.4) and (6.5), we obtain (6.2).
Define 𝑢𝑛 = 𝑃𝐶𝑛𝑢 ∈ 𝐶𝑛. In a similar manner to the proof of Theorem 3.1,

we can show that there exists 𝑢 ∈ 𝐶 such that 𝑢𝑛 → 𝑢 and 𝑥𝑛 → 𝑢. As {𝑥𝑛} is
convergent, it is bounded. Moreover, as 𝑆 and 𝑇 are quasi-nonexpansive, {𝑆𝑥𝑛}
and {𝑇𝑥𝑛} are also bounded. In fact, for 𝑞 ∈ 𝐹 (𝑆) ∩ 𝐹 (𝑇), it holds that

‖𝑆𝑥𝑛‖ ≤ ‖𝑆𝑥𝑛 − 𝑞‖ + ‖𝑞‖

≤ ‖𝑥𝑛 − 𝑞‖ + ‖𝑞‖
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for all 𝑛 ∈ ℕ. As {𝑥𝑛} is bounded, {𝑆𝑥𝑛} is also bounded. Similarly, we can
verify that {𝑇𝑥𝑛} is also bounded as claimed.
As {𝑥𝑛} is bounded, from (6.4) and (6.5), {𝑤𝑛} , {𝑧𝑛} , and {𝑦𝑛} are also bounded.

Consequently, {𝑆𝑤𝑛} , {𝑇𝑤𝑛} ,⋯ are also bounded.
We show that 𝑥𝑛 − 𝑤𝑛 → 0. As 𝜆′′𝑛 → 1, it follows that 𝜇′′𝑛 → 0 and 𝜈′′𝑛 → 0.

Thus, we have

‖𝑥𝑛 − 𝑤𝑛‖ =
‖‖‖‖𝑥𝑛 −

(
𝜆′′𝑛𝑥𝑛 + 𝜇′′𝑛 𝑆𝑥𝑛 + 𝜈′′𝑛𝑇𝑥𝑛

)‖‖‖‖

=
‖‖‖‖

(
1 − 𝜆′′𝑛

)
𝑥𝑛 − 𝜇′′𝑛 𝑆𝑥𝑛 − 𝜈′′𝑛𝑇𝑥𝑛

‖‖‖‖

≤
(
1 − 𝜆′′𝑛

)
‖𝑥𝑛‖ + 𝜇′′𝑛 ‖𝑆𝑥𝑛‖ + 𝜈′′𝑛 ‖𝑇𝑥𝑛‖→ 0

as asserted. Similarly, as 𝜆′𝑛 → 1, we have𝑤𝑛−𝑧𝑛 → 0. Furthermore, as 𝜆𝑛 → 1,
it follows that 𝑧𝑛 − 𝑦𝑛 → 0. Therefore, we obtain (6.3). From the above, the
desired result follows from Theorem 3.1. □

The iterative scheme (6.1) is a four-step type. Setting 𝜆′′𝑛 = 1 in (6.1) derives
a three-step iterative method and setting 𝜆′′𝑛 = 𝜆′𝑛 = 1 yields a two-step type.
When 𝜆′′𝑛 = 𝜆′𝑛 = 𝜆𝑛 = 1, Corollary 6.1 coincides with Corollary 3.2. Setting
𝜆′′𝑛 = 1 and 𝜇′𝑛 = 𝜈𝑛 = 0, we obtain the (1.3)-type three-step iterative scheme:

𝑧𝑛 = 𝜆′𝑛𝑥𝑛 +
(
1 − 𝜆′𝑛

)
𝑇𝑥𝑛, (6.6)

𝑦𝑛 = 𝜆𝑛𝑧𝑛 + (1 − 𝜆𝑛) 𝑆𝑧𝑛,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑦𝑛 + 𝑐𝑛𝑇𝑦𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1,

where 𝑥1 = 𝑥 ∈ 𝐶 is given and 𝐶1 = 𝐶. Furthermore, the iterative scheme
(6.1) can be replaced by

𝑦𝑛 = 𝜆𝑛𝑥𝑛 + 𝜇𝑛𝑆𝑥𝑛 + 𝜈𝑛𝑇𝑥𝑛 + 𝜉𝑛𝑇
2𝑥𝑛, (6.7)

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑆𝑦𝑛 + 𝑐𝑛𝑇𝑦𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1,

where 𝑥1 = 𝑥 ∈ 𝐶 is given and 𝐶1 = 𝐶. In (6.7), the parameters 𝜆𝑛, 𝜇𝑛, 𝜈𝑛, 𝜉𝑛 ∈
[0, 1] are required to satisfy 𝜆𝑛 + 𝜇𝑛 + 𝜈𝑛 + 𝜉𝑛 = 1 and 𝜆𝑛 → 1. This type of
iterative scheme,which includes the term𝑇2𝑥𝑛, was utilized byMaruyama et al.
[34] to address more general class of mappings than nonexpansive mappings;
see also Kondo and Takahashi [30], Kondo [20], and the articles cited therein.
Hence, it is effective for nonexpansive mappings.
We also obtain the following result from Theorem 4.1:

Corollary 6.2. Assume the setting (⋆). Let {𝜆𝑛}, {𝜇𝑛}, {𝜈𝑛},
{
𝜆′𝑛
}
,
{
𝜇′𝑛
}
, and

{
𝜈′𝑛
}

be sequences of real numbers in the interval [0, 1] such that 𝜆𝑛 + 𝜇𝑛 + 𝜈𝑛 = 1,
𝜆′𝑛 + 𝜇′𝑛 + 𝜈′𝑛 = 1 for all 𝑛 ∈ ℕ, 𝜆𝑛 → 1 and 𝜆′𝑛 → 1. Define a sequence {𝑥𝑛} in 𝐶
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as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑧𝑛 = 𝜆𝑛𝑥𝑛 + 𝜇𝑛𝑆𝑥𝑛 + 𝜈𝑛𝑇𝑥𝑛,

𝑤𝑛 = 𝜆′𝑛𝑥𝑛 + 𝜇′𝑛𝑆𝑥𝑛 + 𝜈′𝑛𝑇𝑥𝑛,

𝑋𝑛 = 𝑎𝑛𝑥𝑛 + 𝑏𝑛𝑆𝑧𝑛 + 𝑐𝑛𝑇𝑤𝑛,

𝐶𝑛+1 =
{
ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖

2
≤ 𝑎𝑛 ‖𝑥𝑛 − ℎ‖

2
+ 𝑏𝑛 ‖𝑧𝑛 − ℎ‖

2
+ 𝑐𝑛 ‖𝑤𝑛 − ℎ‖

2
}
,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ. Then, {𝑥𝑛} converges strongly to an element 𝑢 in𝐹 (𝑆)∩𝐹 (𝑇), where
𝑢 = 𝑃𝐹(𝑆)∩𝐹(𝑇)𝑢.

The proof is omitted here. To the author’s best knowledge, even Corollary
6.2 is a new result in the literature. Apart from the iterative methods explicitly
discussed in this section, Theorems 3.1 and 4.1 give rise to an infinite number
of iterative methods for finding common fixed points of nonlinear mappings;
see also Kondo [22, 24, 25, 26, 27, 28].

7. Application
In this section, we show how to apply the results established in this article

to split feasibility problems (SFPs). For SFPs, see Censor and Elfving [6] and
Takahashi [41]. A common solution of two SFPs is strongly approximated by
applying a three-step version of Corollary 6.1.
We start with an explanation of a SFP. Let 𝐻 and 𝐻′ be real Hilbert spaces

and let 𝐶 (⊂ 𝐻) and 𝑄
(
⊂ 𝐻′

)
be nonempty, closed, and convex subsets of 𝐻

and𝐻′, respectively. Let𝐴 ∶ 𝐻 → 𝐻′ be a linear and continuous mapping and
let 𝐴∗ ∶ 𝐻′ → 𝐻 be the adjoint operator of 𝐴. The SFP is as follows:

(SFP) Find an element 𝑥 ∈ 𝐶 ∩ 𝐴−1𝑄.

The next classes of mappings are frequently used in the literature:

Definition 7.1. Let 𝐶 be a nonempty subset of a real Hilbert space𝐻.
(a)Amapping 𝑆 ∶ 𝐶 → 𝐻 is called𝐾-Lipschitz continuous if there exists𝐾 > 0

such that ‖𝑆𝑥 − 𝑆𝑦‖ ≤ 𝐾 ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶.
(b) A mapping 𝑆 ∶ 𝐶 → 𝐻 is called monotone if 0 ≤ ⟨𝑥 − 𝑦, 𝑆𝑥 − 𝑆𝑦⟩ for all

𝑥, 𝑦 ∈ 𝐶.
(c) A mapping 𝑆 ∶ 𝐶 → 𝐻 is called 𝛼-inverse strongly monotone if there exists

𝛼 > 0 such that

𝛼 ‖𝑆𝑥 − 𝑆𝑦‖
2
≤ ⟨𝑥 − 𝑦, 𝑆𝑥 − 𝑆𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐶.

Clearly, a mapping is 1-Lipschitz continuous iff it is nonexpansive. For in-
verse stronglymonotonemappings, refer to Browder and Petryshyn [5] and Liu
and Nashed [32]. Amapping is 1-inverse strongly monotone iff it is firmly non-
expansive. The metric projection is firmly nonexpansive; see (2.4) in Section
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2. Therefore, the metric projection is 1-inverse strongly monotone. It can be
demonstrated that an 𝛼-inverse strongly monotone mapping is (1∕𝛼)-Lipschitz
continuous and monotone.
To apply fixed point theory to SFPs, the following lemma is crucial:

Lemma7.2. Let𝐻 and𝐻′ be realHilbert spaces and let𝐶 (⊂ 𝐻)and𝑄
(
⊂ 𝐻′

)
be

nonempty, closed, and convex subsets of𝐻 and𝐻′, respectively. Let 𝐴 ∶ 𝐻 → 𝐻′

be a linear and continuousmapping and let𝐴∗ ∶ 𝐻′ → 𝐻 be the adjoint operator
of 𝐴. Assume that 𝐶 ∩ 𝐴−1𝑄 ≠ ∅. Then,

𝐶 ∩ 𝐴−1𝑄 = 𝐹
(
𝑃𝐶

(
𝐼 − 𝜂𝐴∗

(
𝐼 − 𝑃𝑄

)
𝐴
))

for all 𝜂 > 0.

Proof. First, we verify the inclusion (⊂). Let 𝑥 ∈ 𝐶 ∩𝐴−1𝑄, that is, 𝑥 ∈ 𝐶 and
𝐴𝑥 ∈ 𝑄. From 𝑥 ∈ 𝐶, it holds that 𝑃𝐶𝑥 = 𝑥. Furthermore, as𝐴𝑥 ∈ 𝑄, we have
that 𝑃𝑄𝐴𝑥 = 𝐴𝑥. Therefore,

𝑃𝐶
(
𝐼 − 𝜂𝐴∗

(
𝐼 − 𝑃𝑄

)
𝐴
)
𝑥 = 𝑃𝐶

(
𝑥 − 𝜂𝐴∗

(
𝐴𝑥 − 𝑃𝑄𝐴𝑥

))

= 𝑃𝐶 (𝑥 − 𝜂𝐴∗0) = 𝑃𝐶𝑥 = 𝑥.

This indicates that 𝑥 ∈ 𝐹
(
𝑃𝐶

(
𝐼 − 𝜂𝐴∗

(
𝐼 − 𝑃𝑄

)
𝐴
))
.

Next, we show the part (⊃). Let 𝜂 > 0 and 𝑥 ∈ 𝐹
(
𝑃𝐶

(
𝐼 − 𝜂𝐴∗

(
𝐼 − 𝑃𝑄

)
𝐴
))
.

Then,
𝑥 = 𝑃𝐶

(
𝑥 − 𝜂𝐴∗

(
𝐴𝑥 − 𝑃𝑄𝐴𝑥

))
. (7.1)

This implies that 𝑥 ∈ 𝐶. Our aim is to prove that𝐴𝑥 ∈ 𝑄. From (2.5) and (7.1),
⟨(
𝑥 − 𝜂𝐴∗

(
𝐴𝑥 − 𝑃𝑄𝐴𝑥

))
− 𝑥, 𝑥 − ℎ

⟩
≥ 0 for all ℎ ∈ 𝐶,

which results in
⟨
−𝜂𝐴∗

(
𝐴𝑥 − 𝑃𝑄𝐴𝑥

)
, 𝑥 − ℎ

⟩
≥ 0 for all ℎ ∈ 𝐶.

As 𝜂 > 0,
⟨
𝐴∗

(
𝐴𝑥 − 𝑃𝑄𝐴𝑥

)
, ℎ − 𝑥

⟩
≥ 0 for all ℎ ∈ 𝐶.

As 𝐴 is linear and 𝐴∗ is the adjoint operator of 𝐴,
⟨
𝐴𝑥 − 𝑃𝑄𝐴𝑥, 𝐴ℎ − 𝐴𝑥

⟩
≥ 0 for all ℎ ∈ 𝐶. (7.2)

As 𝐶 ∩ 𝐴−1𝑄 ≠ ∅ is assumed, we can choose 𝑥0 ∈ 𝐶 ∩ 𝐴−1𝑄. This means that
𝑥0 ∈ 𝐶 and 𝐴𝑥0 ∈ 𝑄. As 𝑥0 ∈ 𝐶, substituting ℎ = 𝑥0 in (7.2), we obtain

⟨
𝐴𝑥 − 𝑃𝑄𝐴𝑥, 𝐴𝑥0 − 𝐴𝑥

⟩
≥ 0. (7.3)

On the other hand, from 𝐴𝑥0 ∈ 𝑄 and (2.5),
⟨
𝐴𝑥 − 𝑃𝑄𝐴𝑥, 𝑃𝑄𝐴𝑥 − 𝐴𝑥0

⟩
≥ 0. (7.4)

Summing (7.3) and (7.4) yields
⟨
𝐴𝑥 − 𝑃𝑄𝐴𝑥, 𝑃𝑄𝐴𝑥 − 𝐴𝑥

⟩
≥ 0,

which implies that 𝐴𝑥 = 𝑃𝑄𝐴𝑥. Thus, 𝐴𝑥 ∈ 𝑄. This completes the proof. □
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We aim to demonstrate that the mapping 𝑃𝐶
(
𝐼 − 𝜂𝐴∗

(
𝐼 − 𝑃𝑄

)
𝐴
)
becomes

nonexpansive if 𝜂 is sufficiently close to 0 (Lemma 7.6). For that aim, we will
prove the following:

Sublemma 7.3. Let 𝐶 be a nonempty subset of 𝐻 and let 𝑉 ∶ 𝐶 → 𝐻. Then, 𝑉
is firmly nonexpansive if and only if 𝐼 − 𝑉 is firmly nonexpansive.

Proof. Let 𝑥, 𝑦 ∈ 𝐶. It follows that

𝐼 − 𝑉 is firmly nonexpansive.

⇔ ‖(𝐼 − 𝑉) (𝑥) − (𝐼 − 𝑉) (𝑦)‖
2
≤ ⟨𝑥 − 𝑦, (𝐼 − 𝑉) (𝑥) − (𝐼 − 𝑉) (𝑦)⟩

⇔ ‖𝑥 − 𝑦 − (𝑉𝑥 − 𝑉𝑦)‖
2
≤ ⟨𝑥 − 𝑦, 𝑥 − 𝑦 − (𝑉𝑥 − 𝑉𝑦)⟩

⇔
‖𝑥 − 𝑦‖

2
− 2 ⟨𝑥 − 𝑦, 𝑉𝑥 − 𝑉𝑦⟩ + ‖𝑉𝑥 − 𝑉𝑦‖

2

≤ ‖𝑥 − 𝑦‖
2
− ⟨𝑥 − 𝑦, 𝑉𝑥 − 𝑉𝑦⟩

⇔ ‖𝑉𝑥 − 𝑉𝑦‖
2
≤ ⟨𝑥 − 𝑦, 𝑉𝑥 − 𝑉𝑦⟩

⇔ 𝑉 is firmly nonexpansive.

This concludes the proof. □

Furthermore, we have the following result:

Sublemma 7.4. Let 𝐴 ∶ 𝐻 → 𝐻′ be a linear and continuous mapping and let
𝐴∗ ∶ 𝐻′ → 𝐻 be the adjoint operator of 𝐴, where 𝐻 and 𝐻′ are real Hilbert
spaces. Let 𝐺 ∶ 𝐻′ → 𝐻′ be an 𝛼-inverse strongly monotone mapping, where
𝛼 > 0. Then, 𝐴∗𝐺𝐴 is an 𝛼

‖𝐴𝐴∗‖
-inverse strongly monotone, where ‖𝐴𝐴∗‖ is an

operator norm of 𝐴𝐴∗.

Proof. Our goal is to demonstrate that
𝛼

‖𝐴𝐴∗‖
‖𝐴∗𝐺𝐴𝑥 − 𝐴∗𝐺𝐴𝑦‖

2
≤ ⟨𝑥 − 𝑦, 𝐴∗𝐺𝐴𝑥 − 𝐴∗𝐺𝐴𝑦⟩

for all 𝑥, 𝑦 ∈ 𝐶. We can show this as follows:

𝐿𝐻𝑆 =
𝛼

‖𝐴𝐴∗‖
⟨𝐴∗𝐺𝐴𝑥 − 𝐴∗𝐺𝐴𝑦, 𝐴∗𝐺𝐴𝑥 − 𝐴∗𝐺𝐴𝑦⟩

=
𝛼

‖𝐴𝐴∗‖
⟨𝐴𝐴∗𝐺𝐴𝑥 − 𝐴𝐴∗𝐺𝐴𝑦, 𝐺𝐴𝑥 − 𝐺𝐴𝑦⟩

≤
𝛼

‖𝐴𝐴∗‖
‖𝐴𝐴∗𝐺𝐴𝑥 − 𝐴𝐴∗𝐺𝐴𝑦‖ ‖𝐺𝐴𝑥 − 𝐺𝐴𝑦‖

≤
𝛼

‖𝐴𝐴∗‖
‖𝐴𝐴∗‖ ‖𝐺𝐴𝑥 − 𝐺𝐴𝑦‖

2

= 𝛼 ‖𝐺𝐴𝑥 − 𝐺𝐴𝑦‖
2

≤ ⟨𝐴𝑥 − 𝐴𝑦, 𝐺𝐴𝑥 − 𝐺𝐴𝑦⟩

= ⟨𝑥 − 𝑦, 𝐴∗𝐺𝐴𝑥 − 𝐴∗𝐺𝐴𝑦⟩

as 𝐺 is 𝛼-inverse strongly monotone. This completes the proof. □
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We know the following Sublemma:

Sublemma 7.5. Let 𝐴′ be an 𝛼-inverse strongly monotone mapping from 𝐶 into
𝐻, where 𝐶 is a nonempty subset of𝐻 and 𝛼 > 0. Then, 𝐼−𝜂𝐴′ is a nonexpansive
mapping from 𝐶 into𝐻 if 𝜂 ∈ [0, 2𝛼].

Proof. See page 419 in Toyoda and Takahashi [43] or Proposition 5.2 in Kondo
[27]. □

Based on Sublemmas 7.3–7.5, we obtain the following:

Lemma 7.6. Let 𝐻 and 𝐻′ be real Hilbert spaces. Let 𝐴 ∶ 𝐻 → 𝐻′ be a lin-
ear and continuous mapping and let 𝐴∗ ∶ 𝐻′ → 𝐻 be the adjoint operator
of 𝐴. Let 𝐶 be a nonempty subset of 𝐻 and 𝑈 ∶ 𝐻 → 𝐶 be a 𝐾-Lipschitz
continuous mapping. Let 𝑉 ∶ 𝐻′ → 𝐻′ be a firmly nonexpansive mapping.
Then, the mapping 𝑈 (𝐼 − 𝜂𝐴∗ (𝐼 − 𝑉)𝐴) ∶ 𝐻 → 𝐶 is 𝐾-Lipschitz continuous

if 𝜂 ∈ [0,
2

‖𝐴𝐴∗‖
]. In particular, if 𝑈 ∶ 𝐻 → 𝐶 is nonexpansive, the mapping

𝑈 (𝐼 − 𝜂𝐴∗ (𝐼 − 𝑉)𝐴) ∶ 𝐻 → 𝐶 is also nonexpansive under the assumption

𝜂 ∈ [0,
2

‖𝐴𝐴∗‖
].

Proof. Select 𝜂 ∈ [0,
2

‖𝐴𝐴∗‖
] arbitrarily. As 𝑉 is firmly nonexpansive, from

Sublemma 7.3, 𝐼 −𝑉 is also firmly nonexpansive. A firmly nonexpansive map-
ping is 1-inverse stronglymonotone. Thus, fromSublemma7.4, the self-mapping
𝐴∗ (𝐼 − 𝑉)𝐴 defined on𝐻 is 1

‖𝐴𝐴∗‖
-inverse strongly monotone.

Since 𝜂 ∈ [0,
2

‖𝐴𝐴∗‖
], from Sublemma 7.5, 𝐼 − 𝜂𝐴∗ (𝐼 − 𝑉)𝐴 is a nonexpan-

sive mapping from 𝐻 into itself. As 𝑈 ∶ 𝐻 → 𝐶 is 𝐾-Lipschitz continuous,
𝑈 (𝐼 − 𝜂𝐴∗ (𝐼 − 𝑉)𝐴) ∶ 𝐻 → 𝐶 is also 𝐾-Lipschitz continuous. In particular,
suppose that 𝑈 ∶ 𝐻 → 𝐶 is nonexpansive, which means that it is 1-Lipschitz
continuous. Then,𝑈 (𝐼 − 𝜂𝐴∗ (𝐼 − 𝑉)𝐴) ∶ 𝐻 → 𝐶 also becomes nonexpansive
under the same setting. This concludes the proof. □

Using these lemmas and Corollary 6.1 with (6.6), we obtain the following
theorem:

Theorem7.7. Let𝐻,𝐻1, and𝐻2 be real Hilbert spaces. Let𝐶 (⊂ 𝐻) , 𝑄1 (⊂ 𝐻1) ,

and 𝑄2 (⊂ 𝐻2) be nonempty, closed, and convex subsets. Let 𝑃𝐶 ∶ 𝐻 → 𝐶, 𝑃𝑄1 ∶

𝐻1 → 𝑄1, and 𝑃𝑄2 ∶ 𝐻2 → 𝑄2 be the metric projections. Let 𝐴1 ∶ 𝐻 → 𝐻1 and
𝐴2 ∶ 𝐻 → 𝐻2 be linear continuous mappings and let 𝐴∗

1
and 𝐴∗

2
be the adjoint

operators of 𝐴1 and 𝐴2, respectively. Assume that

Ω ≡ 𝐶 ∩ 𝐴−1
1
𝑄1 ∩ 𝐴

−1
2
𝑄2 ≠ ∅.

Let {𝑎𝑛}, {𝑏𝑛}, and {𝑐𝑛} be sequences of real numbers in the interval [0, 1] such that
𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 = 1 for all 𝑛 ∈ ℕ, lim𝑛→∞ 𝑎𝑛𝑏𝑛 > 0, and lim𝑛→∞𝑎𝑛𝑐𝑛 > 0. Let {𝜆𝑛}
and

{
𝜆′𝑛
}
be sequences of real numbers in the interval [0, 1] such that 𝜆𝑛 → 1 and
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𝜆′𝑛 → 1. Let 𝜂1 ∈ (0,
2

‖𝐴1𝐴
∗
1
‖
] and 𝜂2 ∈ (0,

2

‖𝐴2𝐴
∗
2
‖
]. Let {𝑢𝑛} be a sequence in𝐻

such that 𝑢𝑛 → 𝑢 (∈ 𝐻). Define a sequence {𝑥𝑛} in 𝐶 as follows:

𝑥1 = 𝑥 ∈ 𝐶 is given,
𝐶1 = 𝐶,

𝑧𝑛 = 𝜆′𝑛𝑥𝑛 +
(
1 − 𝜆′𝑛

)
𝑃𝐶

(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

)
𝑥𝑛,

𝑦𝑛 = 𝜆𝑛𝑧𝑛 + (1 − 𝜆𝑛)𝑃𝐶
(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

)
𝑧𝑛,

𝑋𝑛 = 𝑎𝑛𝑦𝑛 + 𝑏𝑛𝑃𝐶
(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

)
𝑦𝑛

+𝑐𝑛𝑃𝐶
(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

)
𝑦𝑛,

𝐶𝑛+1 = {ℎ ∈ 𝐶𝑛 ∶ ‖𝑋𝑛 − ℎ‖ ≤ ‖𝑥𝑛 − ℎ‖} ,

𝑥𝑛+1 = 𝑃𝐶𝑛+1𝑢𝑛+1

for all 𝑛 ∈ ℕ. Then, the sequence {𝑥𝑛} converges strongly to an element 𝑢 ∈ Ω,
where 𝑢 = 𝑃Ω𝑢.

Proof. As the metric projections are firmly nonexpansive, they are nonexpan-

sive. Furthermore, as 𝜂1 ∈ (0,
2

‖𝐴1𝐴
∗
1
‖
] ⊂ [0,

2

‖𝐴1𝐴
∗
1
‖
], from Lemma 7.6, the

mapping 𝑃𝐶
(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

)
from𝐻1 into𝐶 is nonexpansive. Similarly,

𝑃𝐶
(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

)
∶ 𝐻2 → 𝐶 is also nonexpansive. As the range of

these mappings is 𝐶, the sequences {𝑧𝑛}, {𝑦𝑛}, {𝑋𝑛}, and {𝑥𝑛} are properly de-
fined as sequences in 𝐶.
As 𝜂1, 𝜂2 > 0, from Lemma 7.2, it holds that

𝐹
(
𝑃𝐶

(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

))
= 𝐶 ∩ 𝐴−1

1
𝑄1 and

𝐹
(
𝑃𝐶

(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

))
= 𝐶 ∩ 𝐴−1

2
𝑄2.

Therefore,

𝐹
(
𝑃𝐶

(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

))
∩ 𝐹

(
𝑃𝐶

(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

))

= 𝐶 ∩ 𝐴−1
1
𝑄1 ∩ 𝐴

−1
2
𝑄2 = Ω.

From the above, we can apply Corollary 6.1 with (6.6) by regarding as

𝑆 = 𝑃𝐶
(
𝐼 − 𝜂1𝐴

∗
1

(
𝐼 − 𝑃𝑄1

)
𝐴1

)
and

𝑇 = 𝑃𝐶
(
𝐼 − 𝜂2𝐴

∗
2

(
𝐼 − 𝑃𝑄2

)
𝐴2

)
,

and obtain the desired result. □

As a final remark of this article, we can prove similar results using the CQ
method by Nakajo and Takahashi [35].
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