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Zero Products of Toeplitz operators on the
Hardy and Bergman spaces over an annulus

Susmita Das and E. K. Narayanan

Abstract. We study the zero product problem of Toeplitz operators on the
Hardy space and Bergman space over an annulus. Assuming a condition on
the Fourier expansion of the symbols, we show that there are no zero divisors
in the class of Toeplitz operators on theHardy space of the annulus. Using the
reduction theorem due to Abrahamse, we characterize compact Hankel op-
erators on the Hardy space of the annulus, which also leads to a zero product
result. Similar results are proved for the Bergman space over the annulus.
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1. Introduction
Let 𝔻 be the open unit disc in ℂ and 𝐻2(𝔻) be the Hardy space over 𝔻. For

𝜑 ∈ 𝐿∞(𝕋) (where 𝕋 is the unit circle), the Toeplitz operator 𝑇𝜑 with symbol 𝜑
is defined to be

𝑇𝜑𝑓 = 𝑃(𝜑𝑓)
where 𝑃 is the orthogonal projection from 𝐿2(𝕋) onto 𝐻2(𝔻). The algebraic
properties of these operators were studied by Brown and Halmos in their sem-
inal paper [4]. Among other results, one of the important results they estab-
lished was that there are no zero divisors for the class of Toeplitz operators. In
other words, if 𝑇𝜑𝑇𝜓 = 0, then either 𝜑 or 𝜓 is identically zero. This result has
attracted a lot of attention in the past. In particular, there have been attempts
to extend this result to other spaces, like the Bergman space over the 𝔻, and
to spaces over domains in higher dimensions. See, for example, [5] [6] and [7].
Interestingly, the zero product theorem for the Bergman space in full generality
is still open even for the unit disc. In [2], Ahern and Čučković proved that if
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the symbols are bounded harmonic functions on the disc, then the zero product
theorem is true. Notice that if 𝜑 is a bounded function on 𝔻, it admits a polar
decomposition

𝜑(𝑟𝑒𝑖𝜃) =
∞∑

𝑘=−∞
𝜑𝑘(𝑟) 𝑒𝑖𝑘𝜃,

where 𝜑𝑘(𝑟) are the Fourier coefficients of the function 𝑒𝑖𝜃 → 𝜑(𝑟𝑒𝑖𝜃). A zero
product theorem for Toeplitz operators on the Bergman space over the disc was
proved in [11] under some assumptions on the polar decomposition of one of
the symbols. More precisely, assume that 𝜓 ∈ 𝐿∞(𝔻) and 𝜑 ∈ 𝐿∞(𝔻), with the
polar decomposition

𝜑(𝑟𝑒𝑖𝜃) =
𝑁∑

𝑘=−∞
𝜑𝑘(𝑟) 𝑒𝑖𝑘𝜃

where 𝑁 is a positive integer. Assume that 𝑛0 is the smallest integer such that
𝜑𝑁(2𝑛+𝑁+2) ≠ 0 for all 𝑛 ≥ 𝑛0,where 𝜑𝑁 is the Mellin transform defined by

𝜑𝑁(𝑧) = ∫
1

0
𝜑𝑁(𝑟) 𝑟𝑧−1 𝑑𝑟,

then 𝑇𝜓𝑇𝜑 = 0 implies 𝜓 = 0.

Our aim in this paper is to prove similar results for the Toeplitz operators
defined on the Hardy space and the Bergman space over the annulus

𝐴 = 𝐴1,𝑅 = {𝑧 ∈ ℂ ∶ 𝑅 < |𝑧| < 1}.

While we follow the methods in [11], we also bring in a powerful theorem,
namely the reduction theorem due to Abrahamse [1], to deal with these ques-
tions. The reduction theorem allows us to reduce some of the problems for
Toeplitz operators on general multi-connected domains to that of the unit disc.
Crucially, using this theorem we also provide a characterization of the com-
pactness of Hankel operators on the annulus, thus establishing an analogue of
Hartman’s theorem.

To state the main results of the paper we begin by recalling the Hardy space
over 𝐴 = 𝐴1,𝑅 = {𝑧 ∈ ℂ ∶ 𝑅 < |𝑧| < 1}, and some necessary details. This
space was introduced and studied in detail by Sarason in [13]. We denote by
𝜕𝐴 the boundary of the annulus 𝐴. Then 𝜕𝐴 = 𝐶 ∪ 𝐶0, where 𝐶 = {𝑧 ∈
ℂ ∶ |𝑧| = 1} and 𝐶0 = {𝑧 ∈ ℂ ∶ |𝑧| = 𝑅}. While viewing the unit circle
as a boundary component of the annulus, we use 𝐶 and otherwise we use the
standard notation𝕋.To define theHardy space𝐻2(𝜕𝐴) as a subspace of 𝐿2(𝜕𝐴),
we need to introduce the measure, norm, and inner product on 𝐿2(𝜕𝐴).

Definition 1.1. A subset 𝐸 of 𝜕𝐴 is called measurable if {𝑎 ∈ [0, 2𝜋) ∶ 𝑒𝑖𝑎 ∈ 𝐸}
and {𝑏 ∈ [0, 2𝜋) ∶ 𝑅𝑒𝑖𝑏 ∈ 𝐸} are both Borel subsets ofℝ.
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Let 𝜎 be the measure defined on 𝜕𝐴 obtained by summing the Lebesgue mea-
sure on each component of 𝜕𝐴 and normalised so that 𝜎(𝜕𝐴) = 2. More pre-
cisely, for 𝐸 ⊆ 𝜕𝐴measurable, we define

𝜎(𝐸) = 1
2𝜋

((
𝜇{𝑎 ∈ [0, 2𝜋) ∶ 𝑒𝑖𝑎 ∈ 𝐸}

)
+
(
𝜇{𝑏 ∈ [0, 2𝜋) ∶ 𝑅𝑒𝑖𝑏 ∈ 𝐸}

))
,

where 𝜇 denotes the Lebesgue measure on ℝ.
With this measure 𝜎, we will define the space 𝐿2(𝜕𝐴), as the space of all 𝜎-

measurable square integrable functions as follows:

𝐿2(𝜕𝐴) = {𝑓 ∶ 𝜕𝐴⟶ ℂ ∶ ‖𝑓‖𝜕𝐴 <∞}
where

‖𝑓‖2𝜕𝐴 =
1
2𝜋 ∫

2𝜋

0
|𝑓(𝑒𝑖𝑡)|2𝑑𝑡 + 1

2𝜋 ∫
2𝜋

0
|𝑓(𝑅𝑒𝑖𝑡)|2𝑑𝑡,

and for 𝑓, 𝑔 ∈ 𝐿2(𝜕𝐴), the corresponding inner product is given by

⟨𝑓, 𝑔⟩𝜕𝐴 = ∫
𝜕𝐴
𝑓𝑔 𝑑𝜎

= 1
2𝜋 ∫

2𝜋

0
𝑓(𝑒𝑖𝑡)𝑔(𝑒𝑖𝑡)𝑑𝑡 + 1

2𝜋 ∫
2𝜋

0
𝑓(𝑅𝑒𝑖𝑡)𝑔(𝑅𝑒𝑖𝑡)𝑑𝑡.

The Hardy space 𝐻2(𝜕𝐴) is defined to be the closure in 𝐿2(𝜕𝐴) of rational
functions on ℂ, having no poles in 𝐴. Recall that (see [10]), the set {𝑒𝑛(𝑧)}𝑛∈ℤ
forms an orthonormal basis for𝐻2(𝜕𝐴) where

𝑒𝑛(𝑧) =
1

√
1 + 𝑅2𝑛

𝑧𝑛, 𝑧 ∈ 𝜕𝐴. (1)

The orthogonal complement of 𝐻2(𝜕𝐴) in 𝐿2(𝜕𝐴) (see [10]) is the closed sub-
space, span{𝑓𝑛, 𝑛 ∈ ℤ}, where the functions 𝑓𝑛 are defined by

𝑓𝑛(𝑧) =
⎧

⎨
⎩

𝑅𝑛
√
1+𝑅2𝑛

𝑧𝑛, if |𝑧| = 1
−1

𝑅𝑛
√
1+𝑅2𝑛

𝑧𝑛, if |𝑧| = 𝑅.
(2)

To study the Toeplitz operator 𝑇𝑓 on 𝐻2(𝜕𝐴), we need the following defini-
tion of Fourier coefficients of 𝑓 for the outer and inner components 𝐶 and 𝐶0
respectively of 𝜕𝐴.

Definition 1.2. Let 𝑓 ∈ 𝐿2(𝜕𝐴). For 𝑛 ∈ ℤ, the 𝑛-th pair of Fourier coefficients
of 𝑓 denoted by 𝑓𝐶(𝑛) and 𝑓𝐶0(𝑛) respectively and are defined by

𝑓𝐶(𝑛) =
1
2𝜋 ∫

2𝜋

0
𝑓(𝑒𝑖𝑡)𝑒−𝑖𝑛𝑡𝑑𝑡

𝑓𝐶0(𝑛) =
1
2𝜋 ∫

2𝜋

0
𝑓(𝑅𝑒𝑖𝑡)𝑒−𝑖𝑛𝑡𝑑𝑡.
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Let 𝑃𝑅 denote the orthogonal projection of 𝐿2(𝜕𝐴) onto 𝐻2(𝜕𝐴). For 𝑓 ∈
𝐿∞(𝜕𝐴), the Toeplitz operator 𝑇𝑓 ∶ 𝐻2(𝜕𝐴) ⟶ 𝐻2(𝜕𝐴) is defined by 𝑇𝑓ℎ =
𝑃𝑅(𝑓ℎ), for all ℎ ∈ 𝐻2(𝜕𝐴). We have the following zero product theorem for
Toeplitz operators on𝐻2(𝜕𝐴). See Section 2 for a proof.

Theorem 1.3. Let 𝑔(𝑟𝑒𝑖𝜃) = ∑𝑁
𝑘=−∞ 𝑔𝑘(𝑟)𝑒𝑖𝑘𝜃 and 𝑓(𝑟𝑒𝑖𝜃) =

∑𝑁′

𝑘=−∞ 𝑓𝑘(𝑟)𝑒𝑖𝑘𝜃,
for 𝑟 = 𝑅, 1 and𝑁,𝑁′ ∈ ℤ, be two functions of 𝐿∞(𝜕𝐴). Then 𝑇𝑓𝑇𝑔 = 0 implies
𝑓 = 0 or 𝑔 = 0.

Our next theorem is a characterization of compact Hankel operators on the
annulus, which uses the reduction theorem due to Abrahamse. The reduction
theorem is a powerful tool which connects Toeplitz operators on the Hardy
space over amultiply connected domain to Toeplitz operators on the direct sum
of copies of 𝐻2(𝔻) modulo compact operators. We prove a characterization of
compact Hankel operators on the annulus using the reduction theorem and
deduce a zero product theorem for Toeplitz operators.
Let the domain 𝒟 stand for 𝔻 or 𝐴1,𝑅 and let 𝜕𝒟 be its boundary. Let 𝜙 ∈

𝐿∞(𝜕𝒟) and 𝑃𝑅 ∶ 𝐿2(𝜕𝒟) → 𝐻2(𝜕𝒟) be the orthogonal projection. Then the
Hankel operator𝐻𝜙, with symbol 𝜙 is defined by𝐻𝜙 ∶ 𝐻2(𝜕𝒟)→ 𝐻2(𝜕𝒟)⟂,

𝐻𝜙(𝑓) = (𝐼 − 𝑃𝑅)𝜙𝑓, for all 𝑓 ∈ 𝐻2(𝜕𝒟).
In Section 3, we prove an analogue of Hartman’s theorem, characterizing com-
pact Hankel operators. For 𝜙 ∈ 𝐿∞(𝜕𝐴), let 𝜙𝐶(𝑧) = 𝜙(𝑧) for 𝑧 ∈ 𝕋, and
𝜙𝐶0(𝑧) = 𝜙(𝑅∕𝑧) for 𝑧 ∈ 𝕋.

Theorem 1.4. The operator 𝐻𝜙 ∶ 𝐻2(𝜕𝐴) ⟶ 𝐻2(𝜕𝐴)⟂ with 𝜙 ∈ 𝐿∞(𝜕𝐴) is
compact if and only if the functions 𝜙𝐶 , 𝜙𝐶0 ∈ 𝐻∞ + 𝐶.

As an immediate corollary, we deduce a zero product theorem. See Section
3 for the proof.

Theorem1.5. Let𝜙, 𝜓 ∈ 𝐿∞(𝜕𝐴) be such that𝜙𝐶 and𝜙𝐶0(or𝜓𝐶 and𝜓𝐶0) belong
to𝐻∞ + 𝐶. Then 𝑇𝜙𝑇𝜓 = 0 on𝐻2(𝜕𝐴), if and only if 𝜙 = 0 or 𝜓 = 0.

Next, wemove on to a similar problemon the Bergman space on the annulus.
Recall that, the Bergman space 𝐵2(𝐴1,𝑅) is the space of all square integrable
holomorphic functions on 𝐴1,𝑅 i.e.,

𝐵2(𝐴1,𝑅) = {𝑓 ∶ 𝐴1,𝑅 → ℂ, holomorphic and ∫
𝐴1,𝑅

|𝑓(𝑧)|2 𝑑𝐴(𝑧) <∞},

where 𝑑𝐴(𝑧) = 𝑑𝑥𝑑𝑦 is the area measure. For 𝑓, 𝑔 ∈ 𝐵2(𝐴1,𝑅), the norm and
inner product of the space are given by

‖𝑓‖2𝐵2(𝐴1,𝑅)
= 1
2𝜋 ∫

𝐴1,𝑅

|𝑓(𝑧)|2𝑑𝐴(𝑧),
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⟨𝑓, 𝑔⟩𝐵2(𝐴1,𝑅) =
1
2𝜋 ∫

𝐴1,𝑅

𝑓(𝑔)𝑔(𝑧)𝑑𝐴(𝑧).

It is easy to see that 𝐵2(𝐴1,𝑅) is a closed subspace of 𝐿2(𝐴1,𝑅, 𝑑𝐴). Let 𝐿∞(𝐴1,𝑅)
denote the algebra of all essentially bounded functions on 𝐴1,𝑅 and 𝑃𝐵2(𝐴1,𝑅)
be the orthogonal projection from 𝐿2(𝐴1,𝑅) onto 𝐵2(𝐴1,𝑅). Corresponding to
𝑓 ∈ 𝐿∞(𝐴1,𝑅), the Toeplitz operator 𝑇𝑓 ∶ 𝐵2(𝐴1,𝑅) → 𝐵2(𝐴1,𝑅) is defined by
𝑇𝑓𝜑 = 𝑃𝐵2(𝐴1,𝑅)(𝑓𝜑). For Toeplitz operators on𝐵

2(𝐴1,𝑅), we prove the following
zero product theorem in Section 4.

Theorem 1.6. Let 𝑓, 𝑔 ∈ 𝐿∞(𝐴1,𝑅) such that 𝑓(𝑟𝑒𝑖𝜃) =
∑𝑀

𝑘=−∞ 𝑓𝑘(𝑟)𝑒𝑖𝑘𝜃 and
𝑔(𝑟𝑒𝑖𝜃) =∑𝑁

𝑘=−∞ 𝑔𝑘(𝑟)𝑒𝑖𝑘𝜃 for some𝑀,𝑁 ∈ ℤ. Assume 𝑛0 ∈ ℤ to be the smallest
integer such that 𝑔𝑁(2𝑛+𝑁+2) ≠ 0 (where 𝑔𝑁 is the Mellin transform of 𝑔𝑁) for
all 𝑛 ≥ 𝑛0. If 𝑇𝑓𝑇𝑔 = 0 then 𝑓 = 0.

2. Toeplitz operators on𝑯𝟐(𝝏𝑨)
In this section, we prove Theorem 1.3. Recall that, for 𝑓 ∈ 𝐿∞(𝜕𝐴), the

Toeplitz operator𝑇𝑓 is defined on𝐻2(𝜕𝐴) by𝑇𝑓ℎ = 𝑃𝑅(𝑓ℎ), for all ℎ ∈ 𝐻2(𝜕𝐴)
where 𝑃𝑅 is the orthogonal projection from 𝐿2(𝜕𝐴) onto𝐻2(𝜕𝐴).
For 𝑓 ∈ 𝐿∞(𝜕𝐴), 𝑇𝑓 is always bounded ([10]). A simple computation reveals

([10], page 51),

⟨𝑇𝑓𝑒𝑘, 𝑒𝑗⟩𝜕𝐴 =
1

√
1 + 𝑅2𝑗

√
1 + 𝑅2𝑘

(
𝑓𝐶(𝑗 − 𝑘) + 𝑅𝑗+𝑘𝑓𝐶0(𝑗 − 𝑘)

)
. (3)

Equation (3) helps us to write the matrix representation [𝑇𝑓] of the Toeplitz
operator 𝑇𝑓 with respect to the orthonormal basis {𝑒𝑛}𝑛∈ℤ on 𝐻2(𝜕𝐴). Indeed,
[𝑇𝑓] = [𝑎𝑗,𝑘]∞𝑗,𝑘=−∞ is the following matrx:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ 𝑓𝐶(0)+𝑅−4𝑓𝐶0 (0)

1+𝑅−4
𝑎−2,−1 𝑎−2,0 𝑎−2,1 𝑎−2,2 ⋮

⋮ 𝑎−1,−2
𝑓𝐶(0)+𝑅−2𝑓𝐶0 (0)

1+𝑅−2
𝑎−1,0 𝑎−1,1 𝑎−1,2 ⋮

⋮ 𝑎0,−2 𝑎0,−1
𝑓𝐶(0)+𝑓𝐶0 (0)

2
𝑎0,1 𝑎0,2 ⋮

⋮ 𝑎1,−2 𝑎1,−1 𝑎1,0
𝑓𝐶(0)+𝑅2𝑓𝐶0 (0)

1+𝑅2
𝑎1,2 ⋮

⋮ 𝑎2,−2 𝑎2,−1 𝑎2,0 𝑎2,1
𝑓𝐶(0)+𝑅4𝑓𝐶0 (0)

1+𝑅4
⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where
𝑎𝑗,𝑘 =

1
√
1 + 𝑅2𝑗

√
1 + 𝑅2𝑘

(
𝑓𝐶(𝑗 − 𝑘) + 𝑅𝑗+𝑘𝑓𝐶0(𝑗 − 𝑘)

)
. (4)

For𝑛 ∈ ℤ, we refer to the subdiagonal containing the entries𝑎𝑛,𝑛 =
𝑓𝐶(0)+𝑅2𝑛𝑓𝐶0 (0)

1+𝑅2𝑛
as themain diagonal of [𝑇𝑓]. Based on thismatrix representation, wenowprove
the following lemma:
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Lemma 2.1. 𝑇𝑓 is zero if and only if any two columns of [𝑇𝑓] are zero.

Proof. It suffices to prove the “if" part. Let 𝑝 ∈ ℤ, and 𝐶𝑝 denote 𝑝-th column
(that is the column whose entries are 𝑎𝑛,𝑝, 𝑛 ∈ ℤ). For 𝑝 ∈ ℤ, let 𝐷𝑝 denote
the 𝑝-th subdiagonal (that is the subdiagonal whose entries are 𝑎𝑛,𝑛+𝑝) of [𝑇𝑓].
Now, consider two columns𝐶𝑟 and𝐶𝑠 of [𝑇𝑓] for 𝑟 ≠ 𝑠. Then, for each 𝑛 ∈ ℤ,

there exist𝑚, 𝑡 ∈ ℤ such that 𝑎𝑚,𝑟 ∈ 𝐷𝑛 ∩ 𝐶𝑟 and 𝑎𝑡,𝑠 ∈ 𝐷𝑛 ∩ 𝐶𝑠 such that
𝑚 − 𝑟 = 𝑡 − 𝑠 = 𝑛

and by (4), we can write

𝑎𝑚,𝑟 =
1

√
1 + 𝑅2𝑚

√
1 + 𝑅2𝑟

(
𝑓𝐶(𝑛) + 𝑅𝑚+𝑟𝑓𝐶0(𝑛)

)
,

and

𝑎𝑡,𝑠 =
1

√
1 + 𝑅2𝑡

√
1 + 𝑅2𝑠

(
𝑓𝐶(𝑛) + 𝑅𝑡+𝑠𝑓𝐶0(𝑛)

)
.

Since 𝑟 ≠ 𝑠, we have 𝑚 + 𝑟 ≠ 𝑡 + 𝑠, and since 𝑎𝑚,𝑟 = 𝑎𝑡,𝑠 = 0, we get from
the above that 𝑓𝐶(𝑛) = 𝑓𝐶0(𝑛) = 0 for every 𝑛 and so 𝑓 = 0. □

Remark 2.2. Clearly, similar proof works if any two rows are zero.

Now, we are ready to prove Theorem 1.3.

Proof. Let 𝑔 ≠ 0 and assume without loss of generality, at least one of the
Fourier coefficients 𝑔𝐶(𝑁) or 𝑔𝐶0(𝑁) is nonzero. Then, with respect to {𝑒𝑛}𝑛∈ℤ,
the matrix [𝑇𝑔] of 𝑇𝑔 has an upper triangular form, as the (𝑗, 𝑘)-th entry 𝑎𝑗𝑘 is a
combination of 𝑔𝐶(𝑗−𝑘) and 𝑔𝐶0(𝑗−𝑘)which is zero provided 𝑗−𝑘 > 𝑁.Notice
that the first nonzero subdiagonal from the bottom left corner has entries

𝑎𝑚,𝑛 =
𝑔𝐶(𝑁) + 𝑅𝑚+𝑛𝑔𝐶0(𝑁)√
1 + 𝑅2𝑚

√
1 + 𝑅2𝑛

,

with𝑁 = 𝑚− 𝑛. Moreover, in this subdiagonal, 𝑎𝑚,𝑛 can vanish at most at one
position. Because, if there exist distinct (𝑚1, 𝑛1), (𝑚2, 𝑛2) such that 𝑎𝑚1,𝑛1 =
𝑎𝑚2,𝑛2 = 0, where𝑚2 = 𝑚1 + 𝑘1 and 𝑛2 = 𝑛1 + 𝑘1 for some 𝑘1(≠ 0) ∈ ℤ, then

𝑔𝐶(𝑁) + 𝑅𝑚1+𝑛1𝑔𝐶0(𝑁) = 0 (5)
𝑔𝐶(𝑁) + 𝑅𝑚2+𝑛2𝑔𝐶0(𝑁) = 0. (6)

Since𝑚2+𝑛2 = 𝑚1+𝑛1+2𝑘1 ≠ 𝑚1+𝑛1, it follows that 𝑔𝐶(𝑁) = 𝑔𝐶0(𝑁) = 0,
which contradicts our assumption. Hence, we can choose 𝑛0 ∈ ℕ such that,

𝑔𝐶(𝑁) + 𝑅2𝑛+𝑁𝑔𝐶0(𝑁) ≠ 0 for all 𝑛 ≥ 𝑛0. (7)

Now, for any 𝑛 ∈ ℤ (using the equation (4) for 𝑔),

𝑇𝑔(𝑧𝑛) =
𝑔𝐶(𝑁) + 𝑅2𝑛+𝑁𝑔𝐶0(𝑁)

(1 + 𝑅2(𝑛+𝑁))
𝑧𝑛+𝑁 +

𝑁−1∑

𝑘=−∞

𝑔𝐶(𝑘) + 𝑅2𝑛+𝑘𝑔𝐶0(𝑘)
(1 + 𝑅2(𝑛+𝑘))

𝑧𝑘+𝑛. (8)
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Let 𝑇𝑓𝑇𝑔 = 0. Then for all 𝑛 ∈ ℤ, the equation (8) reduces to

𝑔𝐶(𝑁) + 𝑅2𝑛+𝑁𝑔𝐶0(𝑁)
(1 + 𝑅2(𝑛+𝑁))

𝑇𝑓(𝑧𝑛+𝑁)+
𝑁−1∑

𝑘=−∞

𝑔𝐶(𝑘) + 𝑅2𝑛+𝑘𝑔𝐶0(𝑘)
(1 + 𝑅2(𝑛+𝑘))

𝑇𝑓(𝑧𝑘+𝑛) = 0 (9)

Then for 𝑛 = 𝑛0, the relation (7) and equation (9) together yield
𝑇𝑓(𝑧𝑛0+𝑁) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…}. (10)

Similarly, for 𝑛 = 𝑛0 + 1 it follows by (7) and (9)
𝑇𝑓(𝑧𝑛0+𝑁+1) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁), 𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…}, (11)

and further (10) and (11) together imply

𝑇𝑓(𝑧𝑛0+𝑁+1) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…}. (12)

Claim: For 𝑙 ≥ 0,

𝑇𝑓(𝑧𝑛0+𝑁+𝑙) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…}. (13)

We prove the claim by induction on 𝑙 ≥ 0. The proof when 𝑙 = 0, 1 follows by
the equations (10) and (12). For the induction step, assume the claim to be true
for all 0 ≤ 𝑙 < 𝑚, for some𝑚 ≥ 2. Then for 𝑙 = 𝑚, it follows by (7), and (9)

𝑇𝑓(𝑧𝑛0+𝑁+𝑚) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁+𝑚−1),… , 𝑇𝑓(𝑧𝑛0+𝑁), 𝑇𝑓(𝑧𝑛0+𝑁−1),…}, (14)

and hence the claim follows as by the induction hypothesis,

𝑇𝑓(𝑧𝑛0+𝑁+𝑚−1),… , 𝑇𝑓(𝑧𝑛0+𝑁) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…}.
Suppose 𝑓 ≠ 0 (equivalently, 𝑇𝑓 ≠ 0). Then

span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…} ≠ 0,
otherwise the matrix of 𝑇𝑓 will have two columns equal to zero implying 𝑓 = 0
(see Lemma 2.1). Since 𝑓 ≠ 0, there exists an integer 𝑘0 ≤ 𝑁′ such that at
least one of 𝑓𝐶(𝑘0) or 𝑓𝐶0(𝑘0) is nonzero. Note that the matrix of 𝑇𝑓 also has
an upper triangular form, and the subdiagonal involving 𝑓𝐶(𝑘0), 𝑓𝐶0(𝑘0) can
vanish at most at one position. Since

𝑇𝑓(𝑧𝑛) =
𝑁′∑

𝑘=−∞

𝑓𝐶(𝑘) + 𝑅2𝑛+𝑘𝑓𝐶0(𝑘)
1 + 𝑅2(𝑛+𝑘)

𝑧𝑘+𝑛, (15)

we have

span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…} = span{𝑧𝑛0+𝑁+𝑁′−1, 𝑧𝑛0+𝑁+𝑁′−2,…}. (16)
Now corresponding to 𝑘0, there exists 𝑛𝑘0 such that

𝑛𝑘0 > 𝑛0 +𝑁 and 𝑛𝑘0 + 𝑘0 > 𝑛0 +𝑁 +𝑁′ − 1.
By (15), we can write

𝑇𝑓(𝑧𝑛𝑘0 ) =⋯⋯ +
𝑓𝐶(𝑘0) + 𝑅2𝑛𝑘0+𝑘0𝑓𝐶0(𝑘0)

1 + 𝑅2(𝑛𝑘0+𝑘0)
𝑧𝑛𝑘0+𝑘0 +⋯⋯ . (17)
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More generally (again by (15)), for all 𝑙′ ≥ 1

𝑇𝑓(𝑧𝑛𝑘0+𝑙
′) =⋯⋯ +

𝑓𝐶(𝑘0) + 𝑅2(𝑛𝑘0+𝑙′)+𝑘0𝑓𝐶0(𝑘0)

1 + 𝑅2(𝑛𝑘0+𝑙′)+2𝑘0
𝑧𝑛𝑘0+𝑙′+𝑘0 +⋯⋯ . (18)

Clearly, for any 𝑙′ ≥ 1
𝑛𝑘0 + 𝑘0 + 𝑙′ > 𝑛𝑘0 + 𝑘0 > 𝑛0 +𝑁 +𝑁′ − 1. (19)

Now (13) and (15)—(19) altogether imply

𝑓𝐶(𝑘0) + 𝑅2𝑛𝑘0+𝑘0𝑓𝐶0(𝑘0) = 0 (20)

𝑓𝐶(𝑘0) + 𝑅2(𝑛𝑘0+𝑙′)+𝑘0𝑓𝐶0(𝑘0) = 0, (21)

which yield 𝑓𝐶(𝑘0) = 𝑓𝐶0(𝑘0) = 0, contradicting our assumption. Hence, we
must have 𝑓 = 0.
For the other case, assume 𝑇𝑓𝑇𝑔 = 0 and 𝑓 is nonzero. If 𝑔 ≠ 0, then as we

have just shown, 𝑓 must be zero—which is a contradiction. Hence, 𝑔 must be
zero. □

3. Compactness of Hankel operators
In this section, we prove Theorem 1.4 and Theorem 1.5. We begin with the

following lemma (see Lemma 2.18 in [1]).

Lemma 3.1. If 𝜑 ∈ 𝐿∞(𝜕𝐴) vanishes on a set of positive measure, but is not
identically zero, then Ker 𝑇𝜑 = 0.

With the help of above lemma, we now prove the following result which will
be used later.

Lemma 3.2. Let 𝜙, 𝜓 ∈ 𝐿∞(𝜕𝐴) and 𝑇𝜙𝑇𝜓 = 0. If 𝜙𝜓 = 0 on a set 𝐵 ⊆ 𝜕𝐴 of
positive measure, then either 𝜙 or 𝜓 is identically zero.

Proof. If 𝜙𝜓 = 0 on 𝐵 ⊆ 𝜕𝐴 with 𝜎(𝐵) > 0, then there exists 𝐵′ ⊆ 𝐵 with
𝜎(𝐵′) > 0 such that at least one of 𝜙 or 𝜓 vanishes on 𝐵′. Two cases can arise:
Case 1: 𝜙 = 0 on 𝐵′. If 𝜙 ≠ 0 on 𝜕𝐴, then by Lemma 3.1, ker𝑇𝜙 = {0}. Now

𝑇𝜙𝑇𝜓 = 0 implies Ran𝑇𝜓 ⊆ ker𝑇𝜙 = {0}. Hence, 𝑇𝜓 = 0 and consequently
𝜓 = 0.
Case 2: 𝜓 = 0 on 𝐵′. Since (𝑇𝜙𝑇𝜓)∗ = 𝑇�̄�𝑇�̄�, it follows by case 1, �̄� = 𝜙 =

0. □

For the domain𝒟 either 𝔻 or 𝐴, we know that for 𝜙 ∈ 𝐿∞(𝜕𝒟), the Hankel
operator 𝐻𝜙 is bounded. We need the following lemma from [14] (see Lemma
1 in [14] ) and [10] (see the proof of Lemma 3.2.1 in [10]).

Lemma 3.3. For 𝜙, 𝜓 ∈ 𝐿∞(𝜕𝒟), 𝑇𝜙𝜓 = 𝑇𝜙𝑇𝜓 +𝐻∗
𝜙
𝐻𝜓.

We also need the following theorem of Hartman (see [9] and [3]) on compact
Hankel operators for the disc, which will be used.
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Theorem 3.4. 𝐻𝜙 ∶ 𝐻2(𝔻)→ 𝐻2(𝔻)⟂ is compact if and only if 𝜙 ∈ 𝐻∞ +𝐶 on
𝕋, where

𝐻∞ + 𝐶 = {𝑓 + 𝑔 ∶ 𝑓 ∈ 𝐻∞(𝕋), 𝑔 ∈ 𝐶(𝕋)},
𝐶(𝕋) being the set of all continuous functions on 𝕋.
Now, we move towards proving the main results using the reduction theo-

rem. To state the reduction theorem,we briefly recall the settings in [1] (see Part
III). As earlier, let𝐴 = 𝐴1,𝑅 stand for the annulus {𝑧 ∶ 𝑅 < |𝑧| < 1}. Boundary,
𝜕𝐴 consist of the two circles 𝐶 = {𝑧 ∶ |𝑧| = 1} and 𝐶0 = {𝑧 ∶ |𝑧| = 𝑅}. Interior
of 𝐶 is the unit disc 𝔻, and let us denote the exterior of 𝐶0 including the point
∞ by 𝐷0. Thus 𝐷0 = {𝑧 ∶ |𝑧| > 𝑅} ∪ {∞}. Then, by the Caratheodory exten-
sion of the Riemann mapping theorem, we get two homeomorphisms 𝜋 and
𝜋0,mapping 𝔻 ∪ 𝕋 onto 𝔻 ∪ 𝐶 and 𝐷0 ∪ 𝐶0 respectively, which are conformal
equivalences between the interiors. Clearly, we can take

𝜋(𝑧) = 𝑧, and 𝜋0(𝑧) = 𝑅∕𝑧.
Associated with the function 𝜙 ∈ 𝐿∞(𝜕𝐴) are the functions 𝜙𝐶(𝑧) = 𝜙◦𝜋(𝑧) =
𝜙(𝑧) and 𝜙𝐶0(𝑧) = 𝜙◦𝜋0(𝑧) = 𝜙(𝑅∕𝑧), in 𝐿∞(𝕋). The reduction theorem relates
the Toeplitz operator 𝑇𝜙 with the Toeplitz operators 𝑇𝜙𝐶 and 𝑇𝜙𝐶0 on𝐻

2(𝔻). Let
ℐ(𝐻2(𝜕𝐴)) be the𝐶∗-algebra generated by {𝑇𝜙 ∶ 𝜙 ∈ 𝐿∞(𝜕𝐴)}, and let ℐ(𝐻2(𝔻))
be the 𝐶∗-algebra on 𝐻2(𝔻) generated by {𝑇𝑓 ∶ 𝑓 ∈ 𝐿∞(𝕋)}. For any Hilbert
spaceℋ, letℬ(ℋ) be the Banach algebra of all bounded operators,𝒦(ℋ) be the
closed ideal of compact operators, and for𝑇 ∈ ℬ(ℋ), [𝑇] be the coset𝑇+𝒦(ℋ).
Two operators 𝑆 and 𝑇 in the same coset are said to be equivalent modulo the
compact operators, denoted 𝑆 ≡ 𝑇. We now state the reduction theorem for
Toeplitz operators on annulus as follows ([1], see Theorem 3.1):

Theorem 3.5. There is a ∗-isometric isomorphism between the 𝐶∗-algebras
ℐ(𝐻2(𝜕𝐴))∕𝒦(𝐻2(𝜕𝐴)) and ℐ(𝐻2(𝔻))∕𝒦(𝐻2(𝔻))⊕ ℐ(𝐻2(𝔻))∕𝒦(𝐻2(𝔻))

which takes [𝑇𝜙] to [𝑇𝜙𝐶 ]⊕ [𝑇𝜙𝐶0 ].
To prove the main results of this section, we need some lemmas.

Lemma 3.6. 𝑒𝑛 =
2𝑅𝑛

1+𝑅2𝑛
𝑒−𝑛 +

1−𝑅2𝑛

1+𝑅2𝑛
𝑓−𝑛 on 𝐿2(𝜕𝐴).

Proof. Since the set {𝑒𝑛, 𝑓𝑛}𝑛∈ℤ is an orthonormal basis of 𝐿2(𝜕𝐴), it follows
for any 𝑛 ∈ ℤ,

𝑒𝑛 =
∑

𝑚∈ℤ
⟨𝑒𝑛, 𝑒𝑚⟩𝜕𝐴 𝑒𝑚 +

∑

𝑚∈ℤ
⟨𝑒𝑛, 𝑓𝑚⟩𝜕𝐴 𝑓𝑚. (22)

The proof now follows by a direct computation after substituting 𝑒𝑚 and 𝑓𝑚
(from (1), (2)) in the above relation (22). □

Lemma 3.7. For 𝜙, 𝜓 ∈ 𝐿∞(𝜕𝐴),
[𝑇𝜙𝜓] ≡ [𝑇𝜙𝐶𝜓𝐶 ]⊕ [𝑇𝜙𝐶0𝜓𝐶0 ]

if and only if𝐻∗
𝜙𝐶
𝐻𝜓𝐶 and𝐻

∗
𝜙𝐶0
𝐻𝜓𝐶0 are compact.
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Proof. Note that, for 𝜙, 𝜓 ∈ 𝐿∞(𝜕𝐴) we have 𝜙𝐶 , 𝜙𝐶0 , 𝜓𝐶 , 𝜓𝐶0 ∈ 𝐿∞(𝕋). By
Theorem 3.5 above

[𝑇𝜙]⟶ [𝑇𝜙𝐶 ]⊕ [𝑇𝜙𝐶0 ], [𝑇𝜓]⟶ [𝑇𝜓𝐶 ]⊕ [𝑇𝜓𝐶0 ] and

[𝑇𝜙][𝑇𝜓] ≡ [𝑇𝜙𝑇𝜓] ≡ [𝑇𝜙𝐶𝑇𝜓𝐶 ]⊕ [𝑇𝜙𝐶0𝑇𝜓𝐶0 ]. (23)
By Lemma 3.3, the relation (23) further reduces to

[𝑇𝜙𝑇𝜓] ≡ [𝑇𝜙𝐶𝜓𝐶 −𝐻∗
𝜙𝐶
𝐻𝜓𝐶 ]⊕ [𝑇𝜙𝐶0𝜓𝐶0 −𝐻∗

𝜙𝐶0
𝐻𝜓𝐶0 ]. (24)

Again for 𝑇𝜙𝜓 with 𝜙, 𝜓 ∈ 𝐿∞(𝜕𝐴), [𝑇𝜙𝜓] ≡ [𝑇(𝜙𝜓)𝐶 ] ⊕ [𝑇(𝜙𝜓)𝐶0 ] (by Theorem
3.5) and hence

[𝑇𝜙𝜓] ≡ [𝑇𝜙𝐶𝜓𝐶 ]⊕ [𝑇𝜙𝐶0𝜓𝐶0 ], (25)
where the second relation follows from (𝜙𝜓)𝐶 = 𝜙𝐶𝜓𝐶 , and (𝜙𝜓)𝐶0 = 𝜓𝐶0𝜓𝐶0 .
Now by (24) and (25), [𝑇𝜙𝑇𝜓] ≡ [𝑇𝜙𝜓] if and only if 𝐻∗

𝜙𝐶
𝐻𝜓𝐶 and 𝐻

∗
𝜙𝐶0
𝐻𝜓𝐶0 are

compact. □

To achieve our goal, we now investigate the compactness of the Hankel op-
erators on𝐴1,𝑅. Recall that the boundary 𝜕𝐴 of𝐴1,𝑅 consist of the circles 𝐶 and
𝐶0 with𝔻 and𝐷0 being corresponding interior, and exterior including the point
at∞ respectively.
Let 𝐴 and 𝐴0 be the algebra of continuous functions on 𝔻 ∪ 𝐶 and 𝐷0 ∪ 𝐶0

which are holomorphic in 𝔻 and 𝐷0 respectively. Also, let 𝑌 and 𝑌0 be the
closure of 𝐴 and 𝐴0 in 𝐿2(𝐶) and 𝐿2(𝐶0) respectively. Clearly, 𝑌 = 𝐻2(𝐶) and
𝑌0 = 𝐻2(𝐶0). Since 𝐿2(𝐶), 𝐿2(𝐶0) ⊆ 𝐿2(𝜕𝐴) are closed, the subspaces 𝑌, and
𝑌0 are also closed in 𝐿2(𝜕𝐴). Note that, 𝐿2(𝜕𝐴) = 𝐻2(𝜕𝐴)⊕𝐻2(𝜕𝐴)⟂ and for
𝜙 ∈ 𝐿∞(𝜕𝐴), 𝐻𝜙 ∶ 𝐻2(𝜕𝐴) → 𝐻2(𝜕𝐴)⟂ is compact if and only if the operator

𝐻𝜙 = ( 0 0
𝐻𝜙 0) on 𝐻

2(𝜕𝐴)⊕𝐻2(𝜕𝐴)⟂ is compact. Note by Lemma 3.10 in [1],

𝐻2(𝜕𝐴) = 𝑌 + 𝑌0 and hence by Lemma 3.9 in [1], 𝐻𝜙 is compact if 𝐻𝜙𝑃𝑌 and
𝐻𝜙𝑃𝑌0 are compact, where 𝑃𝑌 , 𝑃𝑌0 are orthogonal projections of 𝐿

2(𝜕𝐴) onto 𝑌
and 𝑌0 respectively. This is equivalent to𝐻𝜙𝑃𝑌 and𝐻𝜙𝑃𝑌0 being compact.
For 𝜙 ∈ 𝐿∞(𝜕𝐴), 𝜙◦𝜋, 𝜙◦𝜋0 ∈ 𝐿∞(𝕋) and so one can consider the Hankel

operators 𝐻𝑌
𝜙 ∶ 𝑌 → 𝑌⟂(= 𝐿2(𝐶)⊖ 𝑌) and 𝐻𝑌0

𝜙 ∶ 𝑌0 → 𝑌⟂
0 (= 𝐿2(𝐶0)⊖ 𝑌0)

defined by𝐻𝑌
𝜙 (𝑓) = 𝑃𝑌⟂𝜙𝑓, 𝑓 ∈ 𝑌 and𝐻𝑌0

𝜙 (𝑔) = 𝑃𝑌⟂
0
𝜙𝑔 𝑔 ∈ 𝑌0; 𝑃𝑌⟂ , 𝑃𝑌⟂

0
being

the orthogonal projections of 𝐿2(𝐶), 𝐿2(𝐶0) onto 𝑌⟂ and 𝑌⟂
0 respectively. Our

goal is to relate the components 𝐻𝜙𝑃𝑌 , 𝐻𝜙𝑃𝑌0 with 𝐻
𝑌
𝜙 and 𝐻𝑌0

𝜙 respectively

and find the criteria for compactness of𝐻𝑌
𝜙 and𝐻

𝑌0
𝜙 .

Lemma3.8. 𝐻𝑌0
𝜙 and𝐻𝑌

𝜙 are compact if and only if𝜙𝐶0 and𝜙𝐶 belong to𝐻
∞+𝐶.

Proof. We will deal with the components 𝐻𝜙𝑃𝑌0 , and 𝐻
𝑌0
𝜙 only, as 𝐻𝜙𝑃𝑌 , 𝐻𝑌

𝜙
can be dealt with exactly in the same way. Corresponding to the homeomor-
phisms 𝜋, 𝜋0, define the maps 𝜋 and 𝜋0 from 𝐿2(𝐶) and 𝐿2(𝐶0) respectively to
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𝐿2(𝕋) by 𝜋(𝑓) = 𝑓◦𝜋 and 𝜋0(𝑔) = 𝑔◦𝜋0. Then {𝑒𝑛◦𝜋−1}𝑛∈ℤ and {𝑒𝑛◦𝜋−10 }𝑛∈ℤ
form orthonormal bases for 𝐿2(𝐶) and 𝐿2(𝐶0) respectively, where {𝑒𝑛}𝑛∈ℤ,with
𝑒𝑛(𝑧) = 𝑧𝑛, 𝑧 ∈ 𝕋, is the standard orthonormal basis for 𝐿2(𝕋). Note that,
the sets {𝑒𝑛◦𝜋−1}𝑛∈ℤ≥0 and {𝑒𝑛◦𝜋

−1
0 }𝑛∈ℤ≥0 form orthonormal bases for𝑌 and𝑌0

respectively.
Let us define 𝑈 ∶ 𝑌⟂ ⟶ 𝐻2(𝔻)⟂ and 𝑈0 ∶ 𝑌⟂

0 ⟶ 𝐻2(𝔻)⟂ by

𝑈
( ∑

𝑛≤−1
⟨𝑓, 𝑒𝑛◦𝜋−1⟩𝑒𝑛◦𝜋−1

)
=

∑

𝑛≤−1
⟨𝑓◦𝜋, 𝑒𝑛⟩𝑒𝑛, 𝑓 ∈ 𝑌 (26)

𝑈0
( ∑

𝑛≤−1
⟨𝑓, 𝑒𝑛◦𝜋−10 ⟩𝑒𝑛◦𝜋−10

)
=

∑

𝑛≤−1
⟨𝑓◦𝜋0, 𝑒𝑛⟩𝑒𝑛, 𝑓 ∈ 𝑌0. (27)

Clearly, 𝑈 and 𝑈0 are unitary maps. We show that the following diagram is
commutative.

𝑌0 𝐻2(𝔻)

𝑌⟂
0 𝐻2(𝔻)⟂

𝜋0

𝐻𝑌0
𝜙

𝐻𝜙𝐶0
(=𝐻𝜙◦𝜋0 )

𝑈0

Indeed, for 𝑓 ∈ 𝑌0, 𝜋0(𝑓) = 𝑓◦𝜋0 = 𝑓 (say), and hence

𝐻𝑌0
𝜙 𝜋0

−1(𝑓) = 𝐻𝑌0
𝜙 (𝑓) = 𝑃𝑌0⟂(𝜙𝑓). (28)

Since {𝑒𝑛◦𝜋−10 }𝑛≤−1 is an orthonormal basis of 𝑌⟂
0 ,

𝑃𝑌0⟂(𝜙𝑓) =
∑

𝑛≤−1
⟨𝜙𝑓, 𝑒𝑛◦𝜋−10 ⟩𝑒𝑛◦𝜋−10 . (29)

By equations (27), (28) and (29),

𝑈0𝐻
𝑌0
𝜙 𝜋0

−1(𝑓) =
∑

𝑛≤−1
⟨(𝜙𝑓)◦𝜋0, 𝑒𝑛⟩𝑒𝑛. (30)

Since 𝜙𝑓◦𝜋0 = (𝜙◦𝜋0)(𝑓◦𝜋0) and 𝜙◦𝜋0 = 𝜙𝐶0 , (30) becomes

𝑈0𝐻
𝑌0
𝜙 𝜋0

−1(𝑓) =
∑

𝑛≤−1
⟨𝜙𝐶0𝑓, 𝑒𝑛⟩𝑒𝑛 = 𝐻𝜙𝐶0 (𝑓). (31)

Since 𝑈0 and 𝜋0
−1 are invertible, by (31) 𝐻𝑌0

𝜙 is compact if and only if 𝐻𝜙𝐶0 is
compact, which is, by the result of Hartman (see Theorem 3.4) equivalent to
𝜙𝐶0 ∈ 𝐻∞ + 𝐶.

□

Wenow establish the following relation between𝐻𝜙𝑃𝑌0 , 𝐻𝜙𝑃𝑌 and𝐻
𝑌0
𝜙 , 𝐻𝑌

𝜙 .

Lemma 3.9. 𝐻𝜙𝑃𝑌0 is compact if and only if 𝐻
𝑌0
𝜙 is compact. 𝐻𝜙𝑃𝑌 is compact

if and only if𝐻𝑌
𝜙 is compact.
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Proof. We will prove the first statement. The second one can be proved simi-
larly. Note that, 𝜙 ∈ 𝐿∞(𝜕𝐴) implies 𝜙 ∈ 𝐿∞(𝐶0) and recall

𝐿2(𝐶0) = 𝑌0 ⊕𝑌⟂
0 = 𝐻2(𝐶0)⊕𝐻2(𝐶0)⟂ ⊆ 𝐻2(𝜕𝐴)⊕𝐻2(𝜕𝐴)⟂.

Then for 𝑓 ∈ 𝑌0 and 𝜙 ∈ 𝐿∞(𝜕𝐴), 𝜙𝑓 ∈ 𝐿2(𝐶0) and one can write
𝜙𝑓 = 𝑦1 ⊕ 𝑦2 for some 𝑦1 ∈ 𝑌0, 𝑦2 ∈ 𝑌⟂

0 . (32)

Again, as𝑌⟂
0 ⊆ 𝐻2(𝜕𝐴)⊕𝐻2(𝜕𝐴)⟂, there exist 𝑥1 ∈ 𝐻2(𝜕𝐴) and 𝑥2 ∈ 𝐻2(𝜕𝐴)⟂

such that
𝐻𝑌0
𝜙 𝑓 = 𝑦2 = 𝑥1 ⊕ 𝑥2. (33)

On the other hand, for the same 𝑓 in 𝑌0, it follows by equation (32)
𝐻𝜙𝑃𝑌0(𝑓) = 𝐻𝜙(𝑓) = 𝑃𝐻2(𝜕𝐴)⟂(𝜙𝑓) = 𝑃𝐻2(𝜕𝐴)⟂(𝑦1 ⊕ 𝑦2). (34)

Since 𝑦1 ∈ 𝑌0 ⊆ 𝐻2(𝜕𝐴), equations (33) and (34) together imply
𝐻𝜙𝑃𝑌0(𝑓) = 𝑥2, (35)

and finally by (33) and (35)

𝑃𝐻2(𝜕𝐴)⟂𝐻
𝑌0
𝜙 = 𝐻𝜙𝑃𝑌0 . (36)

Note that,𝐻𝑌0
𝜙 can be decomposed as

𝐻𝑌0
𝜙 = 𝑃𝐻2(𝜕𝐴)𝐻

𝑌0
𝜙 ⊕ 𝑃𝐻2(𝜕𝐴)⟂𝐻

𝑌0
𝜙 . (37)

We now show that the component 𝑃𝐻2(𝜕𝐴)𝐻
𝑌0
𝜙 can be written as the product

𝑇𝑃𝐻2(𝜕𝐴)⟂𝐻
𝑌0
𝜙 , for some suitable 𝑇 ∶ 𝐻2(𝜕𝐴)⟂ → 𝐻2(𝜕𝐴). Then the conclusion

of the theorem will follow by (36) and (37).
Since 𝑦2 ∈ 𝑌⟂

0 = 𝐿2(𝐶0)⊖𝐻2(𝐶0), we have 𝑦2◦𝜋0 ∈ 𝐻2(𝔻)⟂ (see the diagram
above) and hence 𝑦2◦𝜋0 ∈ 𝐻2(𝔻). Since 𝜋0 is a homeomorphism, 𝑦2 ∈ 𝑌0 ⊆
𝐻2(𝜕𝐴) and one can write

𝑦2 =
∑

𝑛∈ℤ
⟨𝑦2, 𝑒𝑛⟩𝐿2(𝜕𝐴)𝑒𝑛, (38)

where {𝑒𝑛}𝑛∈ℤ is as in (1). Then by (33) and (38)

𝑦2 =
∑

𝑛∈ℤ
⟨𝑒𝑛, 𝑦2⟩𝐿2(𝜕𝐴)𝑒𝑛 = 𝐻𝑌0

𝜙 𝑓. (39)

Clearly by Lemma 3.6 , the equation (39) further reduces to

𝑦2 =
∑

𝑛∈ℤ
⟨𝑒𝑛, 𝑦2⟩𝐿2(𝜕𝐴)

[ 2𝑅𝑛
1 + 𝑅2𝑛 𝑒−𝑛 +

1 − 𝑅2𝑛
1 + 𝑅2𝑛𝑓−𝑛

]
. (40)

Again by (39) and (40),

𝑃𝐻2(𝜕𝐴)𝐻
𝑌0
𝜙 𝑓 = 𝑃𝐻2(𝜕𝐴)𝑦2 =

∑

𝑛∈ℤ
⟨𝑒𝑛, 𝑦2⟩𝐿2(𝜕𝐴)

( 2𝑅𝑛
1 + 𝑅2𝑛

)
𝑒−𝑛, and (41)
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𝑃𝐻2(𝜕𝐴)⟂𝐻
𝑌0
𝜙 𝑓 = 𝑃𝐻2(𝜕𝐴)⟂𝑦2 =

∑

𝑛∈ℤ
⟨𝑒𝑛, 𝑦2⟩𝐿2(𝜕𝐴)

(1 − 𝑅2𝑛
1 + 𝑅2𝑛

)
𝑓−𝑛. (42)

Let us now define 𝑇 ∶ 𝐻2(𝜕𝐴)⟂ ⟶ 𝐻2(𝜕𝐴) by

𝑓−𝑛 ⟶
2𝑅𝑛

1 − 𝑅2𝑛 𝑒−𝑛, for all 𝑛 ∈ ℤ. (43)

Thenwehave𝑇 = 𝑇2𝑇1, where𝑇1 ∶ 𝐻2(𝜕𝐴)⟂ → 𝐻2(𝜕𝐴)⟂ and𝑇2 ∶ 𝐻2(𝜕𝐴)⟂ →
𝐻2(𝜕𝐴) are defined by

𝑇1(𝑓𝑛) =
2𝑅𝑛

1 − 𝑅2𝑛𝑓𝑛 for all 𝑛 ∈ ℤ,

and 𝑇2(𝑓𝑛) = 𝑒𝑛 ∀𝑛 ∈ ℤ. Then by (41), (42), and (43)
𝑃𝐻2(𝜕𝐴)𝐻

𝑌0
𝜙 𝑓 = 𝑃𝐻2(𝜕𝐴)𝑦2 = 𝑇𝑃𝐻2(𝜕𝐴)⟂𝑦2 = 𝑇𝑃𝐻2(𝜕𝐴)⟂𝐻

𝑌0
𝜙 𝑓. (44)

Since 𝑓 ∈ 𝑌0 is arbitrary, we finally have
𝑃𝐻2(𝜕𝐴)𝐻

𝑌0
𝜙 = 𝑇𝑃𝐻2(𝜕𝐴)⟂𝐻

𝑌0
𝜙 . (45)

□

Note that 𝑇1 and 𝑇 in the above proof are compact. As wementioned earlier,
one can proceed similarly to conclude that 𝐻𝜙𝑃𝑌 is compact if and only if 𝐻𝑌

𝜙
is compact. Now, we are in a position to complete the proof of Theorem 1.4.

Proof. We know that 𝐻𝜙 is compact if and only if 𝐻𝜙𝑃𝑌 and 𝐻𝜙𝑃𝑌0 are com-
pact. This, by Lemma 3.9, is equivalent to the compactness of 𝐻𝑌0

𝜙 and 𝐻𝑌
𝜙 . By

Lemma 3.8, this is equivalent to 𝜙𝐶0 and 𝜙𝐶 belonging to𝐻
∞ + 𝐶. □

The proof of Theorem 1.5 is now easy.

Proof. Assume that 𝜙 and 𝜓 are as in the statement of Theorem 1.5. If 𝑇𝜙𝑇𝜓 =
0, it follows from Lemma 3.7 that 𝑇𝜙𝜓 is compact. Since the only compact
Toeplitz operators on the Hardy space over any domain are the zero operators
([1], Corollary 2.12), we have 𝜙𝜓 = 0 on 𝜕𝐴 and further by Lemma 3.2, either
𝜙 ≡ 0 or 𝜓 ≡ 0. □

4. Toeplitz operators on the Bergman space of the annulus
Recall that, the Bergman space 𝐵2(𝐴1,𝑅) is the space of all square integrable

holomorphic functions on 𝐴1,𝑅 i.e.,

𝐵2(𝐴1,𝑅) = {𝑓 ∶ 𝐴1,𝑅 → ℂ, holomorphic and ∫
𝐴1,𝑅

|𝑓(𝑧)|2 𝑑𝐴(𝑧) <∞},

where 𝑑𝐴(𝑧) = 𝑑𝑥𝑑𝑦 is the area measure. For 𝑓, 𝑔 ∈ 𝐵2(𝐴1,𝑅), the norm and
inner product of the space are given by

‖𝑓‖2𝐵2(𝐴1,𝑅)
= 1
2𝜋 ∫

𝐴1,𝑅

|𝑓(𝑧)|2𝑑𝐴(𝑧),
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⟨𝑓, 𝑔⟩𝐵2(𝐴1,𝑅) =
1
2𝜋 ∫

𝐴1,𝑅

𝑓(𝑔)𝑔(𝑧)𝑑𝐴(𝑧).

It is well-known that 𝐵2(𝐴1,𝑅) is a closed subspace of 𝐿2(𝐴1,𝑅, 𝑑𝐴) and an or-
thonormal basis of the space is given by the following lemma.

Lemma 4.1. The set {
√

2(𝑛+1)
1−𝑅2(𝑛+1)

𝑧𝑛}𝑛∈ℤ⧵{−1}
⋃{ 𝑧−1

(log 1
𝑅
)1∕2

} is an orthonormal basis

of 𝐵2(𝐴1,𝑅).
Proof. Follows by an easy and straightforward computation. □

Wenow introduce theMellin transform, radial, and quasi-homogeneous func-
tions that will be useful in our context.

Definition 4.2. The Mellin transform 𝑓 of of a function 𝑓 ∈ 𝐿1([𝑅, 1], 𝑟𝑑𝑟) is
defined by

𝑓(𝑧) = ∫
1

𝑅
𝑓(𝑟)𝑟𝑧−1𝑑𝑟.

In fact, the Mellin transform is defined for suitable functions defined on
(0,∞). In the above, the function is considered to be zero on (0, 𝑅) ∪ (1,∞).
For a function 𝜓 ∈ 𝐿1([0, 1], 𝑟𝑑𝑟)

(
considered to be zero on (1,∞)

)
, the Mellin

transform 𝜓 is well-defined on {𝑧 ∈ ℂ ∶ Re 𝑧 ≥ 2} and analytic on {𝑧 ∈ ℂ ∶
Re 𝑧 > 2} (see [8],[11],[12]). Also, it is shown in ([8]) that, a function can be
determined by the values of a certain number of itsMellin coefficients. We state
it as the following lemma:

Lemma 4.3. Let 𝑓 ∈ 𝐿1([0, 1], 𝑟𝑑𝑟). If there exist 𝑛0, 𝑝 ∈ ℤ such that

𝑓(𝑛0 + 𝑝𝑘) = 0 for all 𝑘 ∈ ℕ,
then 𝑓 = 0.
Definition 4.4. A function 𝑓 ∈ 𝐿1(𝐴1,𝑅, 𝑑𝐴) is called radial if

𝑓(𝑧) = 𝑓1(|𝑧|) 𝑅 ≤ |𝑧| ≤ 1,
for a function 𝑓1 on [𝑅, 1]. A function 𝑓 defined on𝐴1,𝑅 is said to be quasi-homo-
geneous of degree 𝑝 ∈ ℤ if we can write it as 𝑒𝑖𝑝𝜃𝜙, where 𝜙 is a radial function.
Clearly, a radial function is a quasi-homogeneous function of degree zero.

Note that, any function 𝑓 ∈ 𝐿2(𝐴1,𝑅) has the polar decomposition
𝑓(𝑟𝑒𝑖𝜃) =

∑

𝑘∈ℤ
𝑓𝑘(𝑟)𝑒𝑖𝑘𝜃,

where 𝑓𝑘 are radial in 𝐿2([𝑅, 1], 𝑟𝑑𝑟). Below, we define the Toeplitz operator on
𝐵2(𝐴1,𝑅).
A Toeplitz operator 𝑇𝑓 is called a quasi-homogeneous, if its symbol 𝑓 quasi-

homogeneous. We show that a quasi-homogeneousToeplitz operator on𝐵2(𝐴1,𝑅)
is either a weighted shift or a diagonal operator.
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Let 𝑓(𝑟𝑒𝑖𝜃) = 𝑓1(𝑟)𝑒𝑖𝑝𝜃, where 𝑓1 is radial and 𝑝 ∈ ℤ. Set

𝑡𝑛 =
⎧

⎨
⎩

1
(log 1

𝑅
)1∕2

if 𝑛 = −1
√

2(𝑛+1)
1−𝑅2(𝑛+1)

if 𝑛 ≠ −1.
(46)

Then, we have the following lemma:

Lemma 4.5. For 𝑛 ∈ ℤ,
𝑇𝑓(𝑧𝑛) = 𝑡2𝑝+𝑛𝑓1(𝑝 + 2𝑛 + 2)𝑧𝑝+𝑛.

Proof. Note byLemma4.1, and equation (46), an orthonormal basis of𝐵2(𝐴1,𝑅)
is given by {𝑡𝑛𝑧𝑛}𝑛∈ℤ. Then for𝑓 = 𝑒𝑖𝑝𝜃𝑓1(𝑟)with𝑝 ∈ ℤ, it follows that∀𝑛 ∈ ℤ,

𝑇𝑓(𝑧𝑛) = 𝑃𝐵2(𝐴1,𝑅)(𝑓𝑧
𝑛) =

∑

𝑚∈ℤ
⟨𝑓𝑧𝑛, 𝑡𝑚𝑧𝑚⟩𝐴1,𝑅 𝑡𝑚𝑧

𝑚, where (47)

⟨𝑓𝑧𝑛, 𝑡𝑚𝑧𝑚⟩𝐴1,𝑅 =
1
2𝜋 ∫

𝐴1,𝑅

𝑡𝑚𝑓(𝑧)𝑧𝑛𝑧
𝑚𝑑𝐴(𝑧)

= 1
2𝜋𝑡𝑚 ∫

1

𝑅
𝑓1(𝑟)𝑟𝑚+𝑛+1𝑑𝑟 ∫

2𝜋

0
𝑒𝑖(𝑝+𝑛−𝑚)𝑑𝜃

= 𝑡𝑚𝑓1(𝑛 +𝑚 + 2) 12𝜋 ∫
2𝜋

0
𝑒𝑖(𝑝+𝑛−𝑚)𝜃𝑑𝜃, and hence

⟨𝑓𝑧𝑛, 𝑡𝑚𝑧𝑚⟩𝐴1,𝑅 = {𝑡𝑝+𝑛𝑓1(𝑝 + 2𝑛 + 2), if𝑚 = 𝑝 + 𝑛
0, if𝑚 ≠ 𝑝 + 𝑛.

Therefore, it follows by (47)

𝑇𝑓(𝑧𝑛) = 𝑡2𝑝+𝑛𝑓1(𝑝 + 2𝑛 + 2)𝑧𝑝+𝑛.
□

Remark 4.6. 𝑇𝑓 is a forward (backward) shift if𝑝 > 0 (𝑝 < 0), and a diagonal
operator if 𝑝 = 0, i.e., 𝑓 is radial.

We are now ready to prove Theorem 1.6

Proof. By Lemma 4.5, for all 𝑛 ∈ ℤ

𝑇𝑔(𝑧𝑛) = 𝑡2𝑁+𝑛𝑔𝑁(𝑁 + 2𝑛 + 2)𝑧𝑛+𝑁 +
𝑁−1∑

𝑘=−∞
𝑡2𝑘+𝑛𝑔𝑘(𝑘 + 2𝑛 + 2)𝑧𝑘+𝑛. (48)

Since 𝑔𝑁(2𝑛0 +𝑁 + 2) ≠ 0,
𝑧𝑛0+𝑁 ∈ span{𝑇𝑔(𝑧𝑛0), 𝑧𝑛0+𝑁−1, 𝑧𝑛0+𝑁−2,…}. (49)

Similarly for 𝑛 = (𝑛0 + 1), 𝑔𝑁(2𝑛0 +𝑁 + 4) ≠ 0, and equation (48) implies
𝑧𝑛0+𝑁+1 ∈ span{𝑇𝑔(𝑧𝑛0+1), 𝑧𝑛0+𝑁 , 𝑧𝑛0+𝑁−1, 𝑧𝑛0+𝑁−2,…}. (50)
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Hence, (49) and (50) together yield
𝑧𝑛0+𝑁+1 ∈ span{𝑇𝑔(𝑧𝑛0+1), 𝑇𝑔(𝑧𝑛0), 𝑧𝑛0+𝑁−1, 𝑧𝑛0+𝑁−2,…}. (51)

Proceeding exactly in the same way, it follows by induction that, for all 𝑙 ≥ 0
𝑧𝑛0+𝑁+𝑙 ∈ span{𝑇𝑔(𝑧𝑛0+𝑙),… , 𝑇𝑔(𝑧𝑛0), 𝑧𝑛0+𝑁−1, 𝑧𝑛0+𝑁−2,…}. (52)

Let 𝑇𝑓𝑇𝑔 = 0. Then the relation 52 reduces to
𝑇𝑓(𝑧𝑛0+𝑁+𝑙) ∈ span{𝑇𝑓(𝑧𝑛0+𝑁−1), 𝑇𝑓(𝑧𝑛0+𝑁−2),…} for all 𝑙 ≥ 0. (53)

We now consider 𝑇𝑓. for all 𝑛 ∈ ℤ, Lemma 4.5 implies

𝑇𝑓(𝑧𝑛) =
𝑀∑

𝑘=−∞
𝑡2𝑘+𝑛𝑓𝑘(𝑘 + 2𝑛 + 2)𝑧𝑘+𝑛, (54)

and hence for all 𝑛 ∈ ℤ,
𝑇𝑓(𝑧𝑛) ∈ span{𝑧𝑀+𝑛, 𝑧𝑀+𝑛−1,……}. (55)

Now for 𝑙 ≥ 0, equations 53 and 55 together imply
𝑇𝑓(𝑧𝑛0+𝑁+𝑙) ∈ span{𝑧𝑀+(𝑛0+𝑁−1), 𝑧𝑀+(𝑛0+𝑁−2), 𝑧𝑀+(𝑛0+𝑁−3),…}. (56)

For𝑀 ∈ ℤ, there exists 𝑙𝑀 ∈ ℕ such that
𝑀 + 2(𝑛0 +𝑁 + 𝑙𝑀 + 1) ∈ ℕ

and
𝑀 + 𝑛0 +𝑁 + 𝑙𝑀 > 𝑀 + 𝑛0 +𝑁 − 1.

Then by 54,

𝑇𝑓(𝑧𝑛0+𝑁+𝑙𝑀 ) =
𝑀∑

𝑘=−∞
𝑡2𝑘+(𝑛0+𝑁+𝑙𝑀)𝑓𝑘

(
𝑘+2(𝑛0+𝑁+ 𝑙𝑀)+2

)
𝑧𝑘+(𝑛0+𝑁+𝑙𝑀). (57)

Now for any 𝑙 ≥ 0, we have
𝑀 + 𝑛0 +𝑁 + 𝑙𝑀 + 𝑙 > 𝑀 + 𝑛0 +𝑁 − 1 (58)

and again by 54, for all 𝑙 ≥ 0,

𝑇𝑓(𝑧𝑛0+𝑁+𝑙𝑀+𝑙) =
𝑀∑

𝑘=−∞
𝑡2𝑘+(𝑛0+𝑁+𝑙𝑀+𝑙)𝑓𝑘(𝑘+2(𝑛0+𝑁+𝑙𝑀+𝑙)+2)𝑧

𝑘+(𝑛0+𝑁+𝑙𝑀+𝑙).

(59)
Hence, it follows by (56), (58), and (59)

𝑓𝑀(𝑀 + 2(𝑛0 +𝑁 + 𝑙𝑀 + 𝑙) + 2) = 0, ∀𝑙 ≥ 0. (60)
Now for the radial function 𝑓𝑀(∈ (𝐿1[𝑅, 1], 𝑟𝑑𝑟)),𝑀+2(𝑛0+𝑁+ 𝑙𝑀+1), 2 ∈ ℕ
such that

𝑓𝑀(𝑀 + 2(𝑛0 +𝑁 + 𝑙𝑀 + 1) + 2𝑙) = 0 ∀𝑙 ≥ 0 ( by (60)).
Hence by Lemma 4.3, 𝑓𝑀 = 0. Similarly, for any 𝑘 ∈ (−∞,𝑀) and for any
radial function 𝑓𝑘(𝑟), there exists 𝑙𝑘 ∈ ℕ such that

𝑘 + 2(𝑛0 +𝑁 + 𝑙𝑘 + 1) ∈ ℕ
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and
𝑘 + 𝑛0 +𝑁 + 𝑙𝑘 > 𝑀 + 𝑛0 +𝑁 − 1,

and again, by a similar argument as above, we have

𝑓𝑘(𝑘 + 2(𝑛0 +𝑁 + 𝑙𝑘 + 1) + 2𝑙) = 0 for all 𝑙 ≥ 0,

and hence by Lemma 4.3, 𝑓𝑘 = 0. Since 𝑘 ∈ (−∞,𝑀) is an arbitrary integer, it
follows that 𝑓𝑘 = 0 for all 𝑘 ∈ (−∞,𝑀) ∩ℤ and hence 𝑓 = 0. □
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