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Isometric pairs with compact and normal
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Abstract. We represent and classify pairs of commuting isometries (𝑉1, 𝑉2)
acting on Hilbert spaces that satisfy the condition

[𝑉∗
1 , 𝑉2] = compact and normal,

where [𝑉∗
1 , 𝑉2] ∶= 𝑉∗

1𝑉2 − 𝑉2𝑉∗
1 is the cross-commutator of (𝑉1, 𝑉2). The

precise description of such pairs also gives a complete and concrete set of
unitary invariants. The basic building blocks of representations of such pairs
consist of four distinguished pairs of commuting isometries. One of them re-
lies on some peculiar examples of invariant subspaces tracing back to Rudin’s
intricate constructions of analytic functions on the bidisc. Along the way, we
present a rank formula for a general pair of commuting isometries that looks
to be the first of its kind.
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1. Introduction
A linear operator𝑉 on a Hilbert spaceℋ (all our Hilbert spaces are complex

and separable) is said to be an isometry if

‖𝑉ℎ‖ = ‖ℎ‖ (ℎ ∈ℋ).

Isometries are of essential importance in the field of linear analysis. In the con-
text of infinite-dimensional spaces and even in the realm of the basic theory
of linear operators, they serve as a building block for bounded linear opera-
tors as well as in the construction of elementary 𝐶∗-algebras. The structure
of isometries is simple; they are either shift operators or unitary operators or
direct sums of them. More specifically, the classical von Neumann-Wold de-
composition theorem says [vN29, Wol38]: If 𝑉 is an isometry onℋ, then there
exist unique 𝑉-reducing closed subspaces ℋ𝑢 and ℋ𝑠 of ℋ (one may be the
zero space) such that

ℋ =ℋ𝑢 ⊕ℋ𝑠, (1.1)
where 𝑉|ℋ𝑢

is a unitary and 𝑉|ℋ𝑠
is a shift. Therefore,

𝑉 = [unitary 0
0 shift] ,

onℋ = ℋ𝑢 ⊕ℋ𝑠. We recall that an isometry 𝑉 is said to be a shift if 𝑉 does
not have a unitary summand, equivalently

𝑆𝑂𝑇 − lim
𝑛→∞

𝑉∗𝑛 = 0. (1.2)

It is now natural to look into the structure of pairs of commuting isometries.
A pair of commuting isometries, or simply an isometric pair, refers to isometries
𝑉1 and 𝑉2 acting on some Hilbert space such that

𝑉1𝑉2 = 𝑉2𝑉1.

We write this as (𝑉1, 𝑉2). Despite the fact that this programme was initiated a
long time ago, progress on this problem has been rather sluggish, due in part to
the vastly more convoluted structure of such objects. In terms of situations, we
note that the 𝐶∗-algebras generated by isometric pairs are uncharted territory
(however, see [BCL78, Dou72, JPS05, Muh72, Set04]). Second, the structure
of isometric pairs would also disclose the complex and mysterious structure
of shift-invariant subspaces of the Hardy space over the bidisc [Yang19, Theo-
rem 3.1]. Finally, isometric pairs represent all contractive linear operators on
Hilbert spaces, which is a notoriously complex and year-old field of research.
Because of this, it is desirable to set conditions on isometric pairs and look into
the classification and computable invariants that can be found between them.
In this paper, we identify a large class of isometric pairs and then represent and
classify them in terms of concrete (or model) isometric pairs. The model also
exhibits complete unitary invariants that are numerical in nature.
To demonstrate the conditions we will put on the isometric pairs under

lookup, it is necessary to explain one of the simplest examples of isometric pairs,
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namely, doubly commuting pairs. A doubly commuting pair is an isometric pair
(𝑉1, 𝑉2) such that

[𝑉∗
1 , 𝑉2] = 0,

where
[𝑉∗

1 , 𝑉2] ∶= 𝑉∗
1𝑉2 − 𝑉2𝑉∗

1 ,
is the cross-commutator of the pair (𝑉1, 𝑉2). These pairs are notably among
the most accessible, as a precise analogue of the Wold decomposition theorem
is applicable to them: Let (𝑉1, 𝑉2) be a doubly commuting pair on ℋ. Then
there exist four closed subspaces {ℋ𝑖𝑗}𝑖,𝑗=𝑢,𝑠 of ℋ (some of the spaces might
potentially be zero) such that

ℋ =ℋ𝑢𝑢 ⊕ℋ𝑢𝑠 ⊕ℋ𝑠𝑢 ⊕ℋ𝑠𝑠, (1.3)
where ℋ𝑖𝑗 reduces 𝑉𝑘 for all 𝑖, 𝑗 = 𝑢, 𝑠, and 𝑘 = 1, 2, and 𝑉1|ℋ𝑝𝑞

is a shift
if 𝑝 = 𝑠 and unitary if 𝑝 = 𝑢, and 𝑉2|ℋ𝑝𝑞

is a shift if 𝑞 = 𝑠 and unitary if
𝑞 = 𝑢. This result is due to Słociński [Slo80] (also, see [JS14] for a more recent
account). We will refer to this as theWold decomposition for doubly commuting
pairs. Evidently, similar to the case of single isometries, the structure of doubly
commuting pairs is explicit and simple (compare (1.3) with (1.1)).
The objective of this paper is to examine the structure of the next-best iso-

metric pairs that are more nontrivial in nature. Particularly, we obtain explicit
representations as well as a complete set of unitary invariants (numerical in
nature) of isometric pairs (𝑉1, 𝑉2) for which

[𝑉∗
1 , 𝑉2] = compact and normal.

At this point it is worth mentioning that even the characterization of submod-
ules ℳ of the Hardy space over the bidisc 𝐻2(𝔻2), for which the cross com-
mutator

[
(𝑀𝑧|ℳ)∗,𝑀𝑤|ℳ

]
has rank one, is still unknown and remains an open

problem-let alone for cases involving finite rank or general compact cross com-
mutators (see Problem 9 in [Yang19, Page 246]). In the process of our study,
we acquire precise surgery of the delicate structure of isometric pairs as well
as many results of independent interest. The outcomes of this paper will not
only provide a complete understanding of the above class but also highlight the
intricate nature of isometric pairs.
An immediate simplification of the aforementioned class of isometric pairs is

achieved by assuming, without any loss of generality, that the products of these
pairs are shift operators (see the end of Section 2 for justification). We note that
Berger, Coburn, and Lebow [BCL78, BCL75] also looked into such pairs in the
context of Fredholm theory and 𝐶∗-algebras. We formalise the pairs examined
by them for future reference:
Definition 1.1. A BCL pair is an isometric pair (𝑉1, 𝑉2) such that the product
𝑉1𝑉2 is a shift operator.
After this reduction, the following subcategory of isometric pairs emerges as

especially compelling in terms of representations and complete unitary invari-
ants.
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Definition 1.2. A compact normal pair is an isometric pair (𝑉1, 𝑉2) such that
(1) (𝑉1, 𝑉2) is a BCL pair, and
(2) [𝑉∗

2 , 𝑉1] = compact and normal.

In the above definition, we consider [𝑉∗
2 , 𝑉1] instead of [𝑉

∗
1 , 𝑉2]. Without

question, this is an unimportant alteration. Our revised objective now is to
represent and then compute a complete set of unitary invariants of compact
normal pairs. To that end, we show how compact normal pairs are made up
of four distinguished building blocks. Each of the four building blocks is non-
unitarily equivalent to the others. However, there is a common hallmark; they
bear some connection to the Hardy space over the bidisc. Denote by 𝔻 = {𝑧 ∈
ℂ ∶ |𝑧| < 1} the open unit disc in ℂ. The Hardy space 𝐻2(𝔻2) over the bidisc
𝔻2 is defined by

𝐻2(𝔻2) = ℂ[𝑧, 𝑤]
𝐿2(𝕋2)

,
where 𝕋2 = 𝜕𝔻2 is the distinguished boundary of 𝔻2. In view of radial lim-
its, square-summable analytic functions on𝔻2 can be identified with functions
in 𝐻2(𝔻2). Moreover, the pair of multiplication operators (𝑀𝑧,𝑀𝑤) by the co-
ordinate functions 𝑧 and 𝑤, respectively, on 𝐻2(𝔻2) satisfy the following key
properties:

(1) (𝑀𝑧,𝑀𝑤) is a BCL pair.
(2) [𝑀∗

𝑤,𝑀𝑧] = 0.
(3) Denote by𝑃ℂ the orthogonal projection onto the space of constant func-

tions of𝐻2(𝔻2). Then
𝐼 −𝑀𝑧𝑀∗

𝑧 −𝑀𝑤𝑀∗
𝑤 +𝑀𝑧𝑀𝑤𝑀∗

𝑧𝑀∗
𝑤 = 𝑃ℂ.

The first and second properties of (𝑀𝑧,𝑀𝑤) above already appeared in the
definition of compact normal pairs (seeDefinition 1.2). The final identity is also
an inherent characteristic of (𝑀𝑧,𝑀𝑤) and serves as the driving force behind
the concept of defect operators [GY04]:

Definition 1.3. The defect operator of an isometric pair (𝑉1, 𝑉2) is the operator
𝐶(𝑉1, 𝑉2) defined by

𝐶(𝑉1, 𝑉2) = 𝐼 − 𝑉1𝑉∗
1 − 𝑉2𝑉∗

2 + 𝑉1𝑉2𝑉∗
1𝑉

∗
2 .

We are now ready to elucidate the main results of this paper. Our first main
result is rather general and related to compact self-adjoint operators that are the
differences of two projections. This is a subject in its own right [DJS16]. Within
this context, in Theorem 2.4, we prove the following result, which is a substan-
tial generalization of the central result of the paper by He et. al. [HQY15, Theo-
rem 4.3]. Given a bounded linear operator 𝑇 on some Hilbert space, we denote
by 𝜎(𝑇) the spectrum of 𝑇.

Theorem 1.4. Let𝐴 be a compact self-adjoint contraction on a Hilbert spaceℋ.
Suppose 𝐴 is the difference of two projections. If 𝜆 ∈ 𝜎(𝐴) ⧵ {0,±1}, then

−𝜆 ∈ 𝜎(𝐴),
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and
dimker(𝐴 − 𝜆𝐼ℋ) = dimker(𝐴 + 𝜆𝐼ℋ).

Now we turn to a rank formula for isometric pairs. Let (𝑉1, 𝑉2) be an iso-
metric pair. We note that, as a difference of two projections, 𝐶(𝑉1, 𝑉2) is a self-
adjoint contraction (see (2.2)). Letℋ0 be generic part of 𝐶(𝑉1, 𝑉2) (in the sense
of Halmos [Hal69]; see Section 3 formore details). Thenℋ0 is known to reduce
𝐶(𝑉1, 𝑉2). Consider the spectral decomposition of 𝐶(𝑉1, 𝑉2)|ℋ0

as

𝐶(𝑉1, 𝑉2)|ℋ0
= ∫

𝜎(𝐶(𝑉1,𝑉2)|ℋ0 )
𝜆 𝑑𝐸𝜆,

where 𝐸 denotes the spectral measure of 𝐶(𝑉1, 𝑉2). The positive generic part
of (𝑉1, 𝑉2) is the closed subspace 𝒦+ defined by (see Definition 3.3 for more
details)

𝒦+ = 𝐸[0, 1]ℋ0.
Also, we define the eigenspaces 𝐸±1 by

𝐸±1 = ker(𝐶(𝑉1, 𝑉2) ∓ 𝐼ℋ).

Now we are ready to state the rank theorem (see Theorem 3.5).

Theorem 1.5. Let (𝑉1, 𝑉2) be an isometric pair. Then

rank𝐶(𝑉1, 𝑉2) = rank[𝑉∗
2 , 𝑉1] + dim𝐸1 + dim𝒦+.

If, in addition, dim𝐸−1 <∞, then

rank𝐶(𝑉1, 𝑉2) = 2rank[𝑉∗
2 , 𝑉1] + dim𝐸1 − dim𝐸−1.

The above rank formula is at the centre of the paper and will be one of the
most effective tools for describing compact normal pairs. In fact, the above
theorem will be mostly used for isometric pairs with compact defect operators.
And note that the condition dim𝐸−1 <∞ is automatically satisfied for isomet-
ric pairs with compact defects (see Corollary 3.6). Given that the rank formula
applies to any isometric pair, we believe that the above result is independently
relevant.
Now we turn to representations of compact normal pairs. Our strategy is to

split a compact normal pair into smaller pieces of distinguished building blocks.
Unquestionably, and at the very least, a distinguished building block must pos-
sess the property of irreducibility:

Definition 1.6. Let (𝑇1, 𝑇2) be a pair of bounded linear operators on ℋ, and
let 𝒮 ⊆ ℋ be a closed subspace. We say that 𝒮 reduces (𝑇1, 𝑇2) (or 𝒮 is (𝑇1, 𝑇2)-
reducing) if

𝑇𝑖𝒮, 𝑇∗𝑖 𝒮 ⊆ 𝒮 (𝑖 = 1, 2).
We say that (𝑇1, 𝑇2) is irreducible if there is no non-trivial (that is, nonzero and
proper) (𝑇1, 𝑇2)-reducing subspace ofℋ.
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Our distinguished building blocks are irreducible (except for shift-unitary
pairs; see Definition 1.9 below) and also compact normal pairs. They exhibit
a correlation with property (3) from the list that came before Definition 1.3,
which concerns the finite rank of the defect operator. This correlation also
serves as a motivation to introduce the following class of isometric pairs:

Definition 1.7. Let 𝑛 ∈ ℕ. An 𝑛-finite pair is an isometric pair (𝑉1, 𝑉2) acting
on some Hilbert space that meets the following conditions:

(1) (𝑉1, 𝑉2) is a compact normal pair, and
(2) rank𝐶(𝑉1, 𝑉2) = 𝑛.

We remark that the above definition and Definition 1.1 also have some bear-
ing on some classical theories as well as relatively contemporary results of in-
dependent interest. We will explain these connections at the end of this section
(see the discussion following Theorem 1.14).
We prove that irreducible 𝑛-finite pairs are the fundamental building blocks

of compact normal pairs. Evenmore strongly, the following is a fact (see Corol-
lary 8.12):

Theorem 1.8. An irreducible 𝑛-finite pair is either 1, 2, or 3-finite.

Subsequently, irreducible 𝑛-finite pairs, 𝑛 = 1, 2, 3, serve as the fundamental
building blocks for compact normal pairs. This observation, along with numer-
ous others, is a result of the robust rank formula that is found in Theorem 1.5.
There will be, however, one more building block (not necessarily irreducible)
made up of a simpler class of doubly commuting pairs. To explain this, we recall
from (1.3) that there are four summands in the Wold decomposition of doubly
commuting pairs. In the present situation, there will be only two summands.
More formally:

Definition 1.9. An isometric pair (𝑉1, 𝑉2) on ℋ is said to be shift-unitary if
(𝑉1, 𝑉2) is doubly commuting and the Wold decomposition (1.3) of the pair re-
duces to

ℋ =ℋ𝑢𝑠 ⊕ℋ𝑠𝑢.

InRemark 9.3, we argued that the shift-unitary pairs are indeed simple. There,
we will also observe that unitary operators fairly parameterize shift-unitary
pairs.
Among 𝑛-finite pairs, invariant subspaces of𝐻2(𝔻2)will also play an impor-

tant role. A closed subspace 𝒮 of𝐻2(𝔻2) is an invariant subspace if

𝑀𝑧𝒮,𝑀𝑤𝒮 ⊆ 𝒮. (1.4)

Before delving into the representations of compact normal pairs, we note that
the equality in the category of isometric pairs that we observe will be unitary
equivalent. Two isometric pairs (𝑆1, 𝑆2) onℋ1 and (𝑇1, 𝑇2) onℋ2 are said to be
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unitarily equivalent if there exists a unitary operator 𝑈 ∶ ℋ1 → ℋ2 such that
𝑈𝑆𝑖 = 𝑇𝑖𝑈 for all 𝑖 = 1, 2. We often denote this by

(𝑆1, 𝑆2) ≅ (𝑇1, 𝑇2). (1.5)
The following result yields concrete representations of compact normal pairs
(see Theorem 8.11):

Theorem 1.10. Let (𝑉1, 𝑉2) be a compact normal pair onℋ. Define

𝑘 ∶= dim
[
ker

(
𝐶(𝑉1, 𝑉2) − 𝐼ℋ

)]
∈ [0,∞].

Then there exist closed (𝑉1, 𝑉2)-reducing subspaces {ℋ𝑖}𝑘𝑖=0 ofℋ such that

ℋ =
𝑘⨁

𝑖=0
ℋ𝑖.

If we define

(𝑉1,𝑗, 𝑉2,𝑗) = (𝑉1|ℋ𝑗
, 𝑉2|ℋ𝑗

) (𝑗 = 0, 1,… , 𝑘),

then (𝑉1,𝑖, 𝑉2,𝑖) on ℋ𝑖 is irreducible for all 𝑖 = 1,… , 𝑘. Moreover, we have the
following:

(1) (𝑉1,0, 𝑉2,0) onℋ0 is a shift-unitary type.
(2) For each 𝑖 = 1,… , 𝑘, the pair (𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 is unitarily equivalent to

one of the following three pairs:
(a) (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).
(b) (𝑀𝑧, 𝛼𝑀𝑧) on𝐻2(𝔻) for some unimodular constant 𝛼.
(c) (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) on 𝒮𝜆, where

𝒮𝜆 = 𝜑
(
𝐻2(𝔻2)

⨁( ∞⨁

𝑗=0
𝑧𝑗span

{ �̄�
1 − 𝜆𝑧�̄�

}))
, (1.6)

for some 𝜆 ∈ (0, 1), unimodular constant 𝛾, and some inner function
𝜑 ∈ 𝐻∞(𝔻2).

The pairs in (a), (b), and (c) in the above theorem represent irreducible 𝑛-
finite pairs, for 𝑛 = 1, 2, and 3, respectively. First, we comment on irreducible
3-finite pairs. The invariant subspace 𝒮𝜆 mentioned in part (c) above is attrib-
uted to Izuchi and Izuchi [II06]. This particular invariant subspace leans more
towards the existential than the construction. In this case, the inner function 𝜑,
which solely depends on 𝜆, is derived from Rudin’s construction [Rud69, Theo-
rem5.4.5]. Weprove that pairs of type (c) above, that is, the Izuchi-Izuchi-Ohno
examples, are all irreducible 3-finite pairs (see Theorem 4.9 as well as Theorem
5.6):

Theorem 1.11. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair on a Hilbert spaceℋ.
Then the following hold:

(1) There exists 𝜆 ∈ (0, 1) such that
𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆}.
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(2) There exists a unimodular constant 𝛾 such that

𝜎([𝑉∗
2 , 𝑉1]) ⧵ {0} = {𝛾𝜆}.

(3) There exists an inner function 𝜑 ∈ 𝐻∞(𝔻2) (depending on 𝜆) such that

(𝑉1, 𝑉2) ≅ (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆),

where 𝒮𝜆 is the invariant subspace of𝐻2(𝔻2) as in (1.6).

In this case, one can prove that (see Proposition 4.3)

dim𝐸1(𝐶(𝑉1, 𝑉2)) = 1,

and
dim𝐸−1(𝐶(𝑉1, 𝑉2)) = 0,

and hence, Theorem 1.5 implies that

rank[𝑉∗
2 , 𝑉1] = 1.

Moreover, part (2) of the above theorem says that

𝛽 ∶= 𝛾𝜆,

is the unique nonzero eigenvalue of the cross-commutator [𝑉∗
2 , 𝑉1]. Clearly

0 < |𝛽| < 1.

We prove that this number is a complete unitary invariant (see Theorem 5.3):
Let (𝑉1, 𝑉2) onℋ and (�̃�1, �̃�2) on ℋ̃ be irreducible 3-finite pairs. Then

(𝑉1, 𝑉2) ≅ (�̃�1, �̃�2),

if and only if
𝛽 = 𝛽,

where 𝛽 and 𝛽 are the unique nonzero eigenvalues of [𝑉∗
2 , 𝑉1] and [�̃�

∗
2 , �̃�1],

respectively.
Next, we turn to irreducible 2-finite pairs. As in the 3-finite case, here also

we have precise spectral synthesis and a complete representation (see Theorem
6.3):

Theorem 1.12. Let (𝑉1, 𝑉2) be an irreducible 2-finite pair. Then the following
hold:

(1) {±1} are the only nonzero eigenvalues of 𝐶(𝑉1, 𝑉2).
(2) rank[𝑉∗

2 , 𝑉1] = 1.
(3) There exists a unimodular constant 𝛼 such that

𝜎([𝑉∗
2 , 𝑉1]) ⧵ {0} = {𝛼}.

(4) (𝑉1, 𝑉2) ≅ (𝑀𝑧, 𝛼𝑀𝑧).
Conversely, if 𝛼 is unimodular constant, then (𝑀𝑧, 𝛼𝑀𝑧) on 𝐻2(𝔻) is an irre-
ducible 2-finite pair with {±1} as the only nonzero eigenvalues of 𝐶(𝑀𝑧, 𝛼𝑀𝑧).
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As in the case of 3-finite pairs, the nonzero eigenvalue 𝛼 in part (3) above is
also a complete unitary invariant. More specifically, if (𝑉1, 𝑉2) on ℋ̃ is another
irreducible 2-finite pair, then

(𝑉1, 𝑉2) ≅ (𝑉1, 𝑉2),

if and only if
𝛼 = �̃�,

where �̃� is the unique nonzero eigenvalue of [𝑉2
∗, 𝑉1] (see Theorem 6.4).

Finally, we discuss irreducible 1-finite pairs. This class, in contrast to irre-
ducible 3 and 2-finite pairs, is relatively simple and precisely one in nature (see
Theorem 7.1):

Theorem 1.13. Let (𝑉1, 𝑉2) be an irreducible isometric pair. Then (𝑉1, 𝑉2) is
1-finite if and only if

(𝑉1, 𝑉2) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

In this case, it is trivial that

rank[𝑉∗
2 , 𝑉1] = 0,

because (𝑉1, 𝑉2) in particular is a doubly commuting pair.
As pointed out in Theorem 1.8, this exhausts the inventory of irreducible 𝑛-

finite pairs. The representations of all irreducible 𝑛-finite pairs also yield an
explicit set of unitary invariants for compact normal pairs: Let (𝑉1, 𝑉2) onℋ
be a compact normal pair. For simplicity, assume that

𝑘 ∶= dim𝐸1(𝐶(𝑉1, 𝑉2)) > 0.

We follow the outcome of Theorem 1.10 and call the pair (𝑉1,0, 𝑉2,0) on ℋ0
obtained there the shift-unitary part of (𝑉1, 𝑉2). We show that (see, for instance,
Section 9) for each 𝑖 = 1,… , 𝑘, the cross-commutator [𝑉∗

2,𝑖, 𝑉1,𝑖] is normal and
has rank 0 or 1. We define the fundamental sequence corresponding to the pair
(𝑉1, 𝑉2) to be the sequence of scalars {𝛼𝑖}𝑘𝑖=1 constructed as follows:

𝛼𝑖 ∶= {
0 if rank[𝑉∗

2,𝑖, 𝑉1,𝑖] = 0
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} if rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1.

In Theorem 9.2, we prove that the above sequence, along with the shift-unitary
part (which is simple; see Remark 9.3), is essentially a complete set of unitary
invariants. In fact, we prove much more (see Theorem 9.2 for more details and
the complete version):

Theorem 1.14. Let (𝑉1, 𝑉2) be a compact normal pair onℋ with (𝑉1,0, 𝑉2,0) on
ℋ0 as the shift-unitary part. We have the following:
(i) (𝑉1|ℋ⟂

0
, 𝑉2|ℋ⟂

0
) ≅ 𝑀1 ⊕𝑀2 ⊕𝑀3, where𝑀𝑖 is a direct sum of irreducible

𝑖-finite pairs, 𝑖 = 1, 2, 3.
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(ii) Let (�̃�1, �̃�2) on ℋ̃ be another compact normal pair with the shift-unitary
part (�̃�1,0, �̃�2,0) on ℋ̃0. Suppose {�̃�𝑖}�̃�𝑖=1 is the associated fundamental sequence
with

�̃� = dim𝐸1(𝐶(�̃�1, �̃�2)) > 0.

Then the following are equivalent:
(1) (𝑉1, 𝑉2) ≅ (𝑉1, 𝑉2).
(2) (𝑉1,0, 𝑉2,0) ≅ (�̃�1,0, �̃�2,0), and [𝑉∗

2 , 𝑉1]|ℋ0
⟂ ≅ [�̃�∗

2 , �̃�1]|ℋ̃⟂
0
.

(3) (𝑉1,0, 𝑉2,0) ≅ (�̃�1,0, �̃�2,0), 𝑘 = �̃�, and there exists a permutation 𝜎 of
{1, 2,⋯ , 𝑘} such that

𝛼𝑖 = �̃�𝜎(𝑖) (𝑖 = 1, 2,⋯ , 𝑘).

Let us comment on part (3) above. The verification of the unitary equiva-
lence of the shift-unitary part is simple to do (cf. Remark 9.3). Hence, the de-
termination of the numerical invariant, specifically the fundamental sequence,
constitutes the most intricate aspect of the complete unitary invariant.
Now we provide an analysis of the historical context and relevant connec-

tions that also underpin the assumptions of 𝑛-finite pairs and compact normal
pairs. As pointed out prior to Definition 1.1, BCL pairs were studied by Berger,
Coburn, and Lebow [BCL78] in the context of 𝐶∗-algebras generated by iso-
metric pairs. One of the keys to their approach was identifying BCL pairs with
triples

(ℰ, 𝑈, 𝑃),

where ℰ is a Hilbert space, 𝑈 is a unitary, and 𝑃 is a projection on ℰ. The work
pointed out the difficulties of the structure of isometric pairs while answering
a number of questions along the lines of 𝐶∗-algebras. While unitary and pro-
jection operators are individually among the simplest operators and lack direct
interdependence, their interplay gives rise to considerable generality. As such,
the structural challenges inherent in isometric pairs persist, though in a trans-
formed guise. Classifying isometric pairs and figuring out computable invari-
ants can still be done with the Berger, Coburn, and Lebow model, but it does
so by delving considerably deeper into the realm of linear operator theory and
function theory. In this paper, we specifically do so.
Condition (2) in Definition 1.2 bears some historical resonance. Let 𝐿𝑧 and

𝐿𝑤 denote (following Laurent operators) the multiplication by the coordinate
functions 𝑧 and 𝑤 on 𝐿2(𝕋2), respectively. As in (1.4), an invariant subspace of
𝐿2(𝕋2) is a closed subspaceℳ ⊆ 𝐿2(𝕋2) that is invariant under both 𝐿𝑧 and 𝐿𝑤.
Letℳ be an invariant subspace of 𝐿2(𝕋2). Clearly, (𝐿𝑧|ℳ , 𝐿𝑤|ℳ) is an isometric
pair onℳ. Nakazi speculated in [Nak94] that

[(𝐿𝑤|ℳ)∗, 𝐿𝑧|ℳ] = [(𝐿𝑤|ℳ)∗, 𝐿𝑧|ℳ]∗,

if and only if
[(𝐿𝑤|ℳ)∗, 𝐿𝑧|ℳ] = 0.
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However, in [IO94], Izuchi and Ohno provided concrete examples (and hence
repudiate Nakazi’s conjecture) of invariant subspacesℳ of 𝐿2(𝕋2) for which

[(𝐿𝑤|ℳ)∗, 𝐿𝑧|ℳ] = [(𝐿𝑤|ℳ)∗, 𝐿𝑧|ℳ]∗ ≠ 0.
In fact, they fully characterized invariant subspaces of𝐿2(𝕋2)with these charac-
teristics in the same paper. Then Nakazi restricted his question to the analytic
part of 𝐿2(𝕋2). This time,ℳ is an invariant subspace of𝐻2(𝔻2) (see Definition
1.4 for the notion of invariant subspaces). Set

𝑅𝑧 = 𝑀𝑧|ℳ and 𝑅𝑤 = 𝑀𝑤|ℳ . (1.7)

Then (𝑅𝑧, 𝑅𝑤) is a BCL pair onℳ (see the closing remark in Section 3). Nakazi
refinedhis question in terms of the existence of invariant subspacesℳ of𝐻2(𝔻2)
for which

[𝑅∗𝑤, 𝑅𝑧] = [𝑅∗𝑤, 𝑅𝑧]∗ ≠ 0.
Eventually, K. J. Izuchi and K. H. Izuchi showed intricate examples of such
invariant subspaces in [II06]. Their construction relied heavily on Rudin’s de-
scription of a specific class of inner functions [Rud69, Theorem 5.4.5]. Curi-
ously, all of the cross-commutators provided as examples by Izuchi-Ohno and
Izuchi-Izuchi are rank one. In our case, condition (2) ismore broad; it needs the
cross-commutator to be compact normal rather than rank-one self-adjoint. On
the other hand, as demonstrated in Theorem 1.10, the representations of irre-
ducible 3-finite pairs and the construction of examples by Izuchi and Izuchi
serve as one of the fundamental building blocks in the representation of com-
pact normal pairs. For more on not-so-standard invariant subspaces of𝐻2(𝔻2),
we refer the reader to [ACD86, AC70, Rud85].
We now make some remarks about defect operators (see Definition 1.3). In

the context of isometric dilations for pairs of commuting contractions, defect
operators were studied decades ago. However, in the context of Beurling-type
properties of invariant subspaces of 𝐻2(𝔻2) this was analyzed more closely in
[GY04]. Defect operators have been a useful tool in the theory of invariant sub-
spaces of𝐻2(𝔻2). However, see [ACD86] for some deviations.
The remaining part of the paper is organized as follows: Section 2 collects

some well-known results and fixes notations for future uses of the paper. In
this section, we briefly recall the analytic models of BCL pairs. The model that
is presented here [MSS19], which will also be extensively used, differs slightly
from the original model of Berger, Coburn, and Lebow. The present model is
more explicit and, hence, more useful. Here we also prove a result concerning
the eigenspaces of compact self-adjoint contractions that are the differences
of two projections. This yields a generalization of one of the main results of
[HQY15]. Section 3 is the heart of this paper, in which we establish a very use-
ful rank formula for isometric pairs.
As previously mentioned, there are only three irreducible 𝑛-finite pairs: 𝑛 =

1, 2, and 3. Out of all the pairs, irreducible 3-finite pairs are the most complex.
Section 4 presents an overview of the characteristics of irreducible 3-finite pairs.
This encompasses an extensive spectral synthesis of irreducible 3-finite pairs.
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In Section 5, we proceed with irreducible 3-finite pairs and explicitly represent
themby using the results from the previous section, coupledwith additional ob-
servations. We also point out that a certain scalar, namely, the unique nonzero
eigenvalue of the pairs’ cross-commutator, is the complete unitary invariant of
3-finite pairs. In Section 6, we represent and classify irreducible 2-finite pairs.
The representation of irreducible 1-finite pairs is the easiest, and that has been
completely explored in the short section, namely Section 7.
Section 8 provides an in-depth description of compact normal pairs. This

section compiles all of the machinery developed in previous sections and cre-
ates the building blocks required for constructing compact normal pairs. The
representation also requires some structural results that have also been devel-
oped in this section. Section 9 uses the representations of compact normal pairs
obtained in the preceding section to present a complete set of unitary invariants.
This section, and hence the paper, concludes with some natural questions for
future investigation.

2. Preliminaries
This section serves to establish some notation and refresh the reader’s mem-

ory of some well-known results that will be applied throughout the remainder
of the paper. Along the way, in Theorem 2.4, we prove a result concerning the
eigenspace of certain compact self-adjoint operators that generalizes a result
earlier proved in [HQY15, Theorem 4.3]. We begin with the analytic represen-
tations of shift operators. The defect operator of an isometry 𝑇 acting on some
Hilbert space is defined by the operator 𝐼 − 𝑇𝑇∗. Observe that the defect oper-
ator of 𝑇 is a measure of 𝑇 not being unitary. Let 𝑇 be an isometry onℋ. The
wandering subspace of 𝑇 is defined by

ℰ ∶= ker𝑇∗.

Clearly, ℰ = ran(𝐼 − 𝑇𝑇∗). It is easy to see that

𝑇𝑛ℰ ⟂ 𝑇𝑚ℰ,

for all 𝑚 ≠ 𝑛, 𝑚, 𝑛 ∈ ℤ+. If, in addition, 𝑇 is a shift (that is, 𝑇∗𝑚 → 0 in SOT;
cf. (1.2)), then we have the orthogonal decomposition ofℋ as

ℋ =
∞⨁

𝑛=0
𝑇𝑛ℰ. (2.1)

This amounts to saying that 𝑇 is unitarily equivalent to 𝑀𝑧 on 𝐻2
ℰ(𝔻), where

𝑀𝑧 is the operator of multiplication by the coordinate function 𝑧, and 𝐻2
ℰ(𝔻)

denotes the ℰ-valued Hardy space over 𝔻. We will often identify 𝐻2
ℰ(𝔻) with

the Hilbert space tensor product𝐻2(𝔻)⊗ ℰ. Bearing this in mind, we will also
often identify𝑀𝑧 on𝐻2

ℰ(𝔻) with𝑀𝑧 ⊗ 𝐼ℰ on𝐻2(𝔻)⊗ ℰ.
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Now we turn to isometric pairs. Given an isometric pair (𝑉1, 𝑉2) onℋ, we
will use the following notational convention throughout this paper:

𝑉 = 𝑉1𝑉2,
and

𝒲𝑖 = ker𝑉∗
𝑖 ,

for all 𝑖 = 1, 2. We also set
𝒲 = ker𝑉∗.

Therefore,𝒲 and𝒲𝑖 are wandering subspaces corresponding to the isometries
𝑉 and𝑉𝑖, 𝑖 = 1, 2, respectively. Recall that the defect operator is defined by (see
Definition 1.3)

𝐶(𝑉1, 𝑉2) = 𝐼 − 𝑉1𝑉∗
1 − 𝑉2𝑉∗

2 + 𝑉1𝑉2𝑉∗
1𝑉

∗
2 .

Since the right side of the above equals
(𝐼 − 𝑉1𝑉∗

1 ) − 𝑉2(𝐼 − 𝑉1𝑉∗
1 )𝑉

∗
2 = (𝐼 − 𝑉2𝑉∗

2 ) − 𝑉1(𝐼 − 𝑉2𝑉∗
2 )𝑉

∗
1 ,

it follows that
𝐶(𝑉1, 𝑉2) = 𝑃𝒲1

− 𝑃𝑉2𝒲1
= 𝑃𝒲2

− 𝑃𝑉1𝒲2
. (2.2)

Given a Hilbert space𝒦 and a closed subspace 𝒮, denote by 𝑃𝒮 the orthogonal
projection onto 𝒮. It is useful to note that 𝐶(𝑉1, 𝑉2) is a self-adjoint operator,
that is

𝐶(𝑉1, 𝑉2)∗ = 𝐶(𝑉1, 𝑉2).
Furthermore, as a difference of projections, it is readily apparent that 𝐶(𝑉1, 𝑉2)
is a contraction.
We will now discuss the analytic structure of BCL pairs (see Definition 1.1).

We start with a definition:

Definition 2.1. A BCL triple is an ordered triple (ℰ, 𝑈, 𝑃) consisting of a Hilbert
space ℰ, and a unitary𝑈 and a projection 𝑃 acting on ℰ.

BCL pairs and BCL triples are interchangeable; the explanation is as follows:
Let (ℰ, 𝑈, 𝑃) be a BCL triple. Consider Toeplitz operators 𝑀Φ1 and 𝑀Φ2 with
polynomial analytic symbols

Φ1(𝑧) = (𝑃⟂ + 𝑧𝑃)𝑈∗, and Φ2(𝑧) = 𝑈(𝑃 + 𝑧𝑃⟂) (𝑧 ∈ 𝔻),
where 𝑃⟂ ∶= 𝐼 − 𝑃. It is easy to see that (𝑀Φ1 ,𝑀Φ2) is a BCL pair on 𝐻

2
ℰ(𝔻).

Since, up to unitary equivalence, a shift operator is the multiplication operator
𝑀𝑧 on some vector-valued Hardy space (see (2.1) above), an application of the
Beurling-Lax-Halmos theorem yields the converse of the above construction.
That is, if (𝑉1, 𝑉2) is a BCL pair on ℋ, then there exist a BCL triple (ℰ, 𝑈, 𝑃)
and a unitary 𝜂 ∶ ℋ → 𝐻2

ℰ(𝔻) such that 𝜂𝑉𝑖 = 𝑀Φ𝑖𝜂 for all 𝑖 = 1, 2. The
notation for this is (see (1.5))

(𝑉1, 𝑉2) ≅ (𝑀Φ1 ,𝑀Φ2).
This provides an analytic representation of the class of BCL pairs (see [BCL78]
for complete details).
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Theorem 2.2. Up to joint unitary equivalence, BCL pairs are of the form
(𝑀Φ1 ,𝑀Φ2) on𝐻

2
ℰ(𝔻) for BCL triples (ℰ, 𝑈, 𝑃).

Given a BCL pair, following [MSS19], one can construct the corresponding
BCL triple more explicitly. The analytic model of BCL pairs presented below is
an explicit reformulation of the original result of Berger, Coburn, and Lebow,
which will play an influential role in our analysis.

Theorem 2.3. [MSS19, Lemma 3.1 and Theorem 3.3] Let (𝑉1, 𝑉2) be an isomet-
ric pair. Then

𝒲 =𝒲1 ⊕𝑉1𝒲2 =𝒲2 ⊕𝑉2𝒲1,
and the operator

𝑈 = [𝑉2|𝒲1
𝑉∗
1 |𝑉1𝒲2

] ∶𝒲1 ⊕𝑉1𝒲2 → 𝑉2𝒲1 ⊕𝒲2,

defines a unitary on𝒲 . Moreover, if (𝑉1, 𝑉2) is a BCL pair, then (𝒲, 𝑈, 𝑃𝒲1
) is

the BCL triple corresponding to (𝑉1, 𝑉2). In particular, (𝑉1, 𝑉2, 𝑉1𝑉2) onℋ and
(𝑀Φ1 ,𝑀Φ2 ,𝑀𝑧) on𝐻2

𝒲(𝔻) are unitarily equivalent, where

Φ1(𝑧) = (𝑃⟂𝒲1
+ 𝑧𝑃𝒲1

)𝑈∗, and Φ2(𝑧) = 𝑈(𝑃𝒲1
+ 𝑧𝑃⟂𝒲1

) (𝑧 ∈ 𝔻).

Because of this, in what follows, given a BCL pair (𝑉1, 𝑉2), we will use the
representation (𝑀Φ1 ,𝑀Φ2) of (𝑉1, 𝑉2), which corresponds to the BCL triple
(𝒲, 𝑈, 𝑃𝒲1

).
Let (𝑉1, 𝑉2) = (𝑀Φ1 ,𝑀Φ2) be a BCL pair on 𝐻

2
𝒲(𝔻). A simple computation

yields
𝐼 −𝑀Φ1𝑀

∗
Φ1
= 𝑃ℂ ⊗ 𝑃𝒲1

,

and
𝐼 −𝑀Φ2𝑀

∗
Φ2
= 𝑃ℂ ⊗𝑈𝑃⟂𝒲1

𝑈∗.

With respect to the orthogonal decomposition𝐻2
𝒲(𝔻) =𝒲 ⊕ 𝑧𝐻2

𝒲(𝔻), it also
follows that

𝐶(𝑉1, 𝑉2) = 𝐶(𝑀Φ1 ,𝑀Φ2) = [𝑃𝒲1
−𝑈𝑃𝒲1

𝑈∗ 0
0 0] .

Consequently
(ker𝐶(𝑉1, 𝑉2))⟂ ⊆𝒲,

and hence, it suffices to study 𝐶(𝑉1, 𝑉2) only on𝒲.
At this moment, we need to pause and relook at (2.2), which says that the

defect operator of an isometric pair is a difference of two projections. We also
pointed out that the defect operator is a contraction and a self-adjoint opera-
tor. This viewpoint was employed in [HQY15, Theorem 4.3] to examine the
eigenspace structure of defect operators of isometric pairs. With this as motiva-
tion, we now explore the eigenspace structure of compact self-adjoint contrac-
tions that can be represented as a difference of pairs of projections. First, we set
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up a notation for eigenspace. For each 𝜇 ∈ ℂ and bounded linear operator 𝑋
on some Hilbert space𝒦, we define the eigenspace

𝐸𝜇(𝑋) ∶= ker
(
𝑋 − 𝜇𝐼𝒦

)
. (2.3)

Suppose𝐴 is a self-adjoint contraction acting on aHilbert spaceℋ. Then ker𝐴,
𝐸1(𝐴), and 𝐸−1(𝐴) reduce 𝐴, and hence there exists a closed 𝐴-reducing sub-
spaceℋ0 ⊆ℋ such that [Hal69]

ℋ = ker𝐴⊕ 𝐸1(𝐴)⊕𝐸−1(𝐴)⊕ℋ0. (2.4)

The part𝐴0 ∶= 𝐴|ℋ0
is known as the generic part of𝐴 (see Halmos [Hal69] for

more details). Let 𝐸 denote the spectral measure of 𝐴. Then

𝐴0 = ∫
𝜎(𝐴0)

𝜆𝑑𝐸𝜆,

is the spectral representation of 𝐴0. Define closed 𝐴0-reducing subspaces 𝒦+
and𝒦− by

𝒦+ = 𝐸[0, 1]ℋ0,
and

𝒦− = 𝐸[−1, 0]ℋ0.
Now, we prove the eigenspace property for 𝐴 by assuming that it is the differ-
ence of two projections. Although this result is a consequence of [DJS16, Propo-
sition 2.1], we provide a proof here for the sake of completeness and readers
convenience. The spectral theorem of compact self-adjoint operators, certain
projection methods from [DJS16], and the above-mentioned Halmos construc-
tions provide the foundation of the proof.

Theorem 2.4. Let𝐴 be a compact self-adjoint contraction on a Hilbert spaceℋ.
Suppose 𝐴 is the difference of two projections. If 𝜆 ∈ 𝜎(𝐴) ⧵ {0,±1}, then

−𝜆 ∈ 𝜎(𝐴),

and
dim𝐸𝜆(𝐴) = dim𝐸−𝜆(𝐴).

Proof. We proceed with the orthogonal decomposition ofℋ, the spectral rep-
resentation of 𝐴, and the notations𝒦+ and𝒦− introduced prior to stating this
theorem. Define the restriction operators

{
𝐴0+ = 𝐴0|𝒦+

𝐴0− = −𝐴0|𝒦−
.

Observe that𝐴0+ and𝐴0− are the positive and negative parts of𝐴0, respectively.
We have the matrix representation

𝐴0 = [𝐴0+
−𝐴0−

] ,

on
ℋ0 = 𝒦+ ⊕𝒦−.
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Suppose further that𝐴 is a difference of twoprojections. By [DJS16, Proposition
2.1] and [DJS16, Remark 3.1], there is a unitary operator 𝑢 ∶ 𝒦+ → 𝒦− such
that

𝐴0− = 𝑢𝐴0+𝑢
∗.

We also define Hilbert spaces

ℋ+ = ker𝐴⊕ 𝐸1(𝐴)⊕𝐸−1(𝐴)⊕𝒦+ ⊕𝒦+,

and
ℋ− = ker𝐴⊕ 𝐸1(𝐴)⊕𝐸−1(𝐴)⊕𝒦+ ⊕𝒦−.

Then
𝑈 ∶= 𝐼ker𝐴 ⊕ 𝐼𝐸1(𝐴) ⊕ 𝐼𝐸−1(𝐴) ⊕ 𝐼𝒦+

⊕ 𝑢,
defines a unitary operator 𝑈 ∶ℋ+ →ℋ−. Therefore, the operator

�̃� ∶= 𝑈∗𝐴𝑈 ∶ℋ+ →ℋ+,

admits the following block-diagonal operator matrix representation

�̃� =

⎡
⎢
⎢
⎢
⎢
⎣

0
𝐼

−𝐼
𝐴0+

−𝐴0+

⎤
⎥
⎥
⎥
⎥
⎦

. (2.5)

Since 𝐴 is compact, it then follows from the spectral theorem for compact self-
adjoint operators that the spectrum

𝜎(𝐴) ⊆ [−1, 1],

is a countable set, and

𝜎(𝐴0) = 𝜎(𝐴) ∩ (−1, 1) ⧵ {0}.

From the definitions of𝒦+ and𝒦−, it follows that

𝒦+ =
⨁

𝜆∈𝜎(𝐴0)∩(0,1)
𝐸𝜆(𝐴0),

and
𝒦− =

⨁

𝜆∈𝜎(𝐴0)∩(−1,0)
𝐸𝜆(𝐴0).

Therefore,
𝒦+ =

⨁

𝜆∈𝜎(𝐴)∩(0,1)
𝐸𝜆(𝐴),

and
𝒦− =

⨁

𝜆∈𝜎(𝐴)∩(−1,0)
𝐸𝜆(𝐴).

Also, it follows from the unitary equivalence of𝐴0+ on𝒦+ and𝐴0− on𝒦− that

𝜎(𝐴0+) = 𝜎(𝐴0−),
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and consequently
𝜎(𝐴0) = 𝜎(𝐴0|𝒦+

) ∪ 𝜎(𝐴0|𝒦−
)

= 𝜎(𝐴0+) ∪ 𝜎(−𝐴0−)
= 𝜎(𝐴0+) ∪ −𝜎(𝐴0−)
= 𝜎(𝐴0+) ∪ −𝜎(𝐴0+).

We conclude that
𝜆 ∈ 𝜎(𝐴0) if and only if − 𝜆 ∈ 𝜎(𝐴0). (2.6)

Moreover, for each 𝜆 ∈ 𝜎(𝐴0+), the unitary equivalence of𝐴0+ on𝒦+ and𝐴0−
on𝒦− yields

dim𝐸𝜆(𝐴0+) = dim𝐸𝜆(𝐴0−).
Therefore, for 𝜆 ∈ 𝜎(𝐴0+), we have

dim𝐸𝜆(𝐴) = dim𝐸𝜆(𝐴0+)
= dim𝐸𝜆(𝐴0−)
= dim𝐸𝜆(−𝐴0|𝒦−

)
= dim𝐸−𝜆(𝐴0|𝒦−

)
= dim𝐸−𝜆(𝐴).

This completes the proof of the theorem. □

Note that using (2.6), we also have that
𝒦+ = ⊕

𝜆∈𝜎(𝐴)∩(0,1)
𝐸𝜆(𝐴) (2.7)

and
𝒦− = ⊕

𝜆∈𝜎(𝐴)∩(0,1)
𝐸−𝜆(𝐴). (2.8)

Theorem 2.4 significantly unifies a result previously established in [HQY15,
Theorem 4.3] within the framework of isometric pairs. Since we will be need-
ing the particular version of [HQY15, Theorem 4.3], we elaborate on it in full
detail. Let (𝑉1, 𝑉2) be a BCL pair onℋ. Assume, in addition, that 𝐶(𝑉1, 𝑉2) is
a compact operator. Note that 𝐶(𝑉1, 𝑉2) is a self-adjoint contraction since it is
the difference of two projections (see the remarks following (2.2)). Therefore,
as observed earlier

𝜎(𝐶(𝑉1, 𝑉2)) ⊆ [−1, 1].
Recall from (2.3), for a bounded linear operator 𝑋 on a Hilbert space 𝒦, the
eigenspace corresponding to 𝜇 ∈ ℂ is denoted by

𝐸𝜇(𝑋) ∶= ker
(
𝑋 − 𝜇𝐼𝒦

)
.

In the case of our isometric pair (𝑉1, 𝑉2), we simplify the notation as

𝐸𝜇 ∶= 𝐸𝜇(𝐶(𝑉1, 𝑉2)) = ker
(
𝐶(𝑉1, 𝑉2) − 𝜇𝐼

)
. (2.9)

Set
Λ = 𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1).
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Note thatΛ is at most a countable set. Let 𝜆 ∈ (0, 1). By Theorem 2.4, it follows
that if 𝜆 ∈ Λ, then −𝜆 ∈ 𝜎(𝐶(𝑉1, 𝑉2)), and

dim𝐸𝜆 = dim𝐸−𝜆.

Since 𝐶(𝑉1, 𝑉2) is a compact self-adjoint operator, this implies

(ker𝐶(𝑉1, 𝑉2))⟂ = 𝐸1
⨁

𝜆∈Λ
𝐸𝜆

⨁
𝐸−1

⨁

𝜆∈Λ
𝐸−𝜆, (2.10)

and 𝐶(𝑉1, 𝑉2)|(ker𝐶(𝑉1,𝑉2))⟂ is unitarily equivalent to the diagonal block matrix:

𝐶(𝑉1, 𝑉2)|(ker𝐶(𝑉1,𝑉2))⟂ ≅
⎡
⎢
⎢
⎢
⎣

𝐼ℂ𝑙1 0 0 0
0 𝐷 0 0
0 0 −𝐼ℂ𝑙−1 0
0 0 0 −𝐷

⎤
⎥
⎥
⎥
⎦

, (2.11)

where 𝑙1 = dim𝐸1, 𝑙−1 = dim𝐸−1, 𝐷 =
⨁

𝜆 𝜆𝐼ℂ𝑘𝜆 , and

𝑘𝜆 = dim𝐸𝜆 = dim𝐸−𝜆.

Note that 𝑙1, 𝑙−1 ∈ ℤ+. Combining the results mentioned above yields the fol-
lowing, which recovers [HQY15, Theorem 4.3]. This result will be another im-
portant tool for what we do in the next sections.

Theorem 2.5. Let (𝑉1, 𝑉2) be a BCL pair with a compact defect operator. Then
for each

𝜆 ∈ 𝜎(𝐶(𝑉1, 𝑉2)) ⧵ {0,±1},
we have −𝜆 ∈ 𝜎(𝐶(𝑉1, 𝑉2)), and

dim𝐸𝜆 = dim𝐸−𝜆.

Moreover, the nonzero part of the defect operator𝐶(𝑉1, 𝑉2) is unitarily equivalent
to a block diagonal matrix of the form (2.11).

We conclude this section by elucidating the rationale behind the study of
BCL pairs among the set of isometric pairs. In fact, the primary obstacle to
the characterization problem of isometric pairs is the characterization of BCL
pairs. For if (𝑉1, 𝑉2) is an isometric pair onℋ, then applying the vonNeumann-
Wold theorem to

𝑉 ∶= 𝑉1𝑉2,
one finds unique orthogonal decomposition (see (1.1))

ℋ =ℋ𝑢 ⊕ℋ𝑠,

whereℋ𝑢 andℋ𝑠 are closed 𝑉-reducing subspaces, and 𝑉|ℋ𝑢
is a unitary, and

𝑉|ℋ𝑠
is a shift. One can easily show thatℋ𝑢 andℋ𝑠 are (𝑉1, 𝑉2)-reducing sub-

spaces [MSS19, Lemma 6.1]. Therefore, (𝑉1|ℋ𝑢
, 𝑉2|ℋ𝑢

) is a commuting pair of
unitaries and (𝑉1|ℋ𝑠

, 𝑉2|ℋ𝑠
) is a BCL pair. As we have a fair understanding of

pairs of commuting unitaries (like a definite spectral theorem for tuples of com-
muting unitaries or even normal operators), it is natural to shift our attention
solely to the category of BCL pairs.
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3. A rank formula
The goal of this section is to link the ranks of defect operators and cross-

commutators of isometric pairs. This result will be extensively used thereafter.
The rank result might be interesting by itself.
First, we again consider the problem of representing self-adjoint contrac-

tions, which are the differences of two projections. Recall from the proof of
Theorem 2.4 that if 𝐴 is a self-adjoint contraction on a Hilbert spaceℋ, which
is the difference of two projections, then up to unitary equivalence,ℋ admits
the orthogonal decomposition

ℋ = ker𝐴⊕ ker(𝐴 − 𝐼)⊕ ker(𝐴 + 𝐼)⊕𝒦 ⊕𝒦,
for some closed subspace𝒦 ofℋ, and with respect to this decomposition ofℋ,
𝐴 admits the block-diagonal operator matrix representation (see (2.5))

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

0
𝐼

−𝐼
𝐷

−𝐷

⎤
⎥
⎥
⎥
⎥
⎦

,

where 𝐷 is a positive contraction on 𝒦. In other words, the operator 𝐴 is an
example of an operator that can be represented as the difference of pairs of pro-
jections. Moreover, the pair of projections can be completely parameterized.
More specifically [DJS16, Theorem 3.2]:

Theorem 3.1. With notations as above, the diagonal operator𝐴 is a difference of
two projections. Moreover, if 𝐴 = 𝑃 − 𝑄 for some projections 𝑃 and 𝑄, then there
exist a projection 𝑅 defined on ker𝐴 and a unitary𝑈 on𝒦 commuting with𝐷 on
𝒦 such that

𝑃 = 𝑅 ⊕ 𝐼 ⊕ 0⊕ 𝑃𝑈 and 𝑄 = 𝑅 ⊕ 0⊕ 𝐼 ⊕ 𝑄𝑈 ,
where 𝑃𝑈 and 𝑄𝑈 are projections on𝒦 ⊕𝒦 defined by

𝑃𝑈 = 1
2
⎡
⎢
⎣

𝐼 + 𝐷 𝑈(𝐼 − 𝐷2)
1
2

𝑈∗(𝐼 − 𝐷2)
1
2 𝐼 − 𝐷

⎤
⎥
⎦
,

and

𝑄𝑈 = 1
2
⎡
⎢
⎣

𝐼 − 𝐷 𝑈(𝐼 − 𝐷2)
1
2

𝑈∗(𝐼 − 𝐷2)
1
2 𝐼 + 𝐷

⎤
⎥
⎦
.

The above result is one of the tools that will be utilized for proving the rank
formula. We also need to compute the ranks of 𝑃𝑈 and 𝑄𝑈 that we do in the
following lemma. Part of the proof of the lemma is motivated by [DSPS24, The-
orem 3.3].

Lemma 3.2. In the setting of Theorem 3.1, we have the following identity:

rank 𝑃𝑈 = rank 𝑄𝑈 = dim𝒦.
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Proof. For each 𝑥 ∈ 𝒦, the representations of 𝑃𝑈 and 𝑄𝑈 imply

𝑃𝑈(𝑥 ⊕ 0) = 𝐼 + 𝐷
2 𝑥 ⊕ 𝑈∗ (𝐼 − 𝐷2)

1
2

2 𝑥,

and

𝑄𝑈(0⊕ 𝑥) = 𝑈
(𝐼 − 𝐷2)

1
2

2 𝑥 ⊕ 𝐼 + 𝐷
2 𝑥.

Note that 𝐷 is a positive contraction, and hence

𝑥 = 0,

whenever
𝑃𝑈(𝑥 ⊕ 0) = 0,

or
𝑄𝑈(0⊕ 𝑥) = 0.

Consequently
𝑃𝑈|𝒦⊕{0} ∶ 𝒦 ⊕ {0}→ 𝒦 ⊕𝒦,

and
𝑄𝑈|{0}⊕𝒦 ∶ {0}⊕𝒦 → 𝒦 ⊕𝒦,

are injective operators. Therefore, if

dim𝒦 = ∞,

we clearly have
rank 𝑃𝑈 = rank 𝑄𝑈 = dim𝒦(= ∞).

Now assume that
dim𝒦 <∞.

In this case, 𝐷 as well as 𝐼 − 𝐷 are positive and invertible operators. If 𝑥 ∈ 𝒦,
then, as in the first part of the proof of this lemma, we compute

𝑃𝑈(𝑥 ⊕ 0) = 𝐼 + 𝐷
2 𝑥 ⊕ 𝑈∗ (𝐼 − 𝐷2)

1
2

2 𝑥

= 𝑃𝑈
(
0⊕𝑈∗

√
𝐼 + 𝐷
𝐼 − 𝐷𝑥

)
,

and by duality

𝑄𝑈(0⊕ 𝑥) = 𝑈
(𝐼 − 𝐷2)

1
2

2 𝑥 ⊕ 𝐼 + 𝐷
2 𝑥

= 𝑄𝑈
(
𝑈
√

𝐼 + 𝐷
𝐼 − 𝐷𝑥 ⊕ 0

)
.

So we find
ran𝑃𝑈 = {𝑃𝑈(𝑥 ⊕ 0) ∶ 𝑥 ∈ 𝒦},

and
ran𝑄𝑈 = {𝑄𝑈(0⊕ 𝑥) ∶ 𝑥 ∈ 𝒦}.
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Moreover, the vectors on the right-hand sides of 𝑃𝑈(𝑥 ⊕ 0) and 𝑄𝑈(0 ⊕ 𝑥) in
the above pair of equalities readily imply that 𝜏 ∶ ran𝑃𝑈 → ran𝑄𝑈 defined by

𝜏(𝑃𝑈(𝑥 ⊕ 0)) = 𝑄𝑈(0⊕ 𝑥) (𝑥 ∈ 𝒦),

is a linear isomorphism. In particular

rank𝑃𝑈 = rank𝑄𝑈 .

Also, the map
𝒦 ∋ 𝑥 ↦ 𝑃𝑈(𝑥 ⊕ 0) ∈ ran𝑃𝑈 ,

is clearly a linear isomorphism, which yields

dim𝒦 = rank𝑃𝑈 .

Thus, we have proved that dim𝒦 = rank𝑃𝑈 = rank𝑄𝑈 . This completes the
proof of the lemma. □

Now we return to isometric pairs. Let (𝑉1, 𝑉2) be an isometric pair on ℋ.
In the upcoming discussion, we will closely adhere to the strategy laid out in
the proof of Theorem 2.4. Additionally, we will use all the notations that were
presented at the outset of Section 2 for isometric pairs. As an example, recall
that𝒲 = ker(𝑉1𝑉2)∗. Let

𝒩 =𝒲 ⊖
(
ker𝐶(𝑉1, 𝑉2)

)⟂
,

and also set
ℋ0 =𝒲 ⊖

(
𝒩 ⊕𝐸1 ⊕𝐸−1

)
.

Therefore,
𝒲 =𝒩 ⊕𝐸1 ⊕𝐸−1 ⊕ℋ0.

This decomposition is comparable with (2.4). Therefore, following the discus-
sion preceding Theorem 2.4, we recognize that 𝐶(𝑉1, 𝑉2)|ℋ0

is the generic part
of 𝐶(𝑉1, 𝑉2), and then we consider the spectral decomposition of 𝐶(𝑉1, 𝑉2)|ℋ0
as

𝐶(𝑉1, 𝑉2)|ℋ0
= ∫

𝜎
(
𝐶(𝑉1,𝑉2)|ℋ0

) 𝜆𝑑𝐸𝜆.

Similarly, we also set
𝒦+ = 𝐸[0, 1]ℋ0,

and
𝒦− = 𝐸[−1, 0]ℋ0.

We take a brief break in order to offer a definition for later usage.

Definition 3.3. Let (𝑉1, 𝑉2) be an isometric pair. The positive generic part of
(𝑉1, 𝑉2) is the closed subspace𝒦+ defined by

𝒦+ = 𝐸[0, 1]ℋ0.
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In otherwords, the generic part of (𝑉1, 𝑉2) is the closed subspace correspond-
ing to the positive part of the generic part of 𝐶(𝑉1, 𝑉2).
Returning to our setting of isometric pair (𝑉1, 𝑉2), we therefore have

𝒲 =𝒩 ⊕𝐸1 ⊕𝐸−1 ⊕𝒦+ ⊕𝒦−. (3.1)

With respect to this decomposition, we represent 𝐶(𝑉1, 𝑉2)|𝒲 as

𝐶(𝑉1, 𝑉2)|𝒲 =

⎡
⎢
⎢
⎢
⎢
⎣

0𝒩
𝐼𝐸1

−𝐼𝐸−1
𝐶(𝑉1, 𝑉2)|𝒦+

𝐶(𝑉1, 𝑉2)|𝒦−

⎤
⎥
⎥
⎥
⎥
⎦

. (3.2)

As 𝐶(𝑉1, 𝑉2) is a difference of two projections, as in the proof of Theorem 2.4,
there is a unitary 𝑢 ∶ 𝒦+ → 𝒦− such that

𝑢𝐶(𝑉1, 𝑉2)|𝒦+
𝑢∗ = −𝐶(𝑉1, 𝑉2)|𝒦−

. (3.3)

Define
ℰ̃ ∶=𝒩 ⊕𝐸1 ⊕𝐸−1 ⊕𝒦+ ⊕𝒦+. (3.4)

Consequently, we have the unitary operator (recall the representation of𝒲 in
(3.1))

𝑈 ∶= 𝐼𝒩 ⊕ 𝐼𝐸1 ⊕ 𝐼𝐸−1 ⊕ 𝐼𝒦+
⊕ 𝑢 ∶ ℰ̃⟶𝒲. (3.5)

Set
�̃� ∶= 𝑈∗𝐶(𝑉1, 𝑉2)𝑈 ∶ ℰ̃ → ℰ̃.

With respect to the decomposition of ℰ̃ as in (3.4), we have

�̃� =

⎡
⎢
⎢
⎢
⎢
⎣

0𝒩
𝐼𝐸1

−𝐼𝐸−1
𝐷

−𝐷

⎤
⎥
⎥
⎥
⎥
⎦

where
𝐷 = 𝐶(𝑉1, 𝑉2)|𝒦+

.
Now, by (2.2), we know that 𝐶(𝑉1, 𝑉2) can be expressed as a difference of pro-
jections:

𝐶(𝑉1, 𝑉2) = 𝑃𝒲1
− 𝑃𝑉2𝒲1

= 𝑃𝒲2
− 𝑃𝑉1𝒲2

,
and hence

�̃� = 𝑈∗𝑃𝒲1
𝑈 −𝑈∗𝑃𝑉2𝒲1

𝑈 = 𝑈∗𝑃𝒲2
𝑈 −𝑈∗𝑃𝑉1𝒲2

𝑈.

By the difference of projection formulae, Theorem 3.1, there exist a projection
𝑅 on𝒩 and a unitary 𝑤 on𝒦+ that commutes with 𝐷 such that

𝑈∗𝑃𝒲1
𝑈 = 𝑅 ⊕ 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤

𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

, (3.6)
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and

𝑈∗𝑃𝑉2𝒲1
𝑈 = 𝑅 ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

√
𝐼−𝐷2

2
𝑤

𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

. (3.7)

Using the definition of the unitary 𝑈 in (3.5), we also obtain from the above
that:

𝑃𝒲1
= 𝑅 ⊕ 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼−𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

, (3.8)

and

𝑃𝑉2𝒲1
= 𝑅 ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼+𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

. (3.9)

Moreover, since𝒲 =𝒲1⊕𝑉1𝒲2, we have that 𝐼𝒲 = 𝑃𝒲1
+𝑃𝑉1𝒲2

, and hence
𝑈∗𝑃𝑉1𝒲2

𝑈 = 𝐼ℰ̃ −𝑈∗𝑃𝒲1
𝑈. Similarly,𝑈∗𝑃𝒲2

𝑈 = 𝐼ℰ̃ −𝑈∗𝑃𝑉2𝒲1
𝑈. Therefore,

we conclude, by using (3.6) and (3.7), that

𝑈∗𝑃𝑉1𝒲2
𝑈 = 𝑅⟂ ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

, (3.10)

and

𝑈∗𝑃𝒲2
𝑈 = 𝑅⟂ ⊕ 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

. (3.11)

Remark 3.4. Particular attention must be paid to isometric pairs with compact
defect operators, as they will be utilized frequently in the subsequent sections. Let
(𝑉1, 𝑉2) be an isometric pair. Suppose that 𝐶(𝑉1, 𝑉2) is compact. By (2.7) and
(2.8), it follows that

𝒦+ = ⊕
𝜆∈𝜎(𝐶(𝑉1,𝑉2))∩(0,1)

𝐸𝜆,

and
𝒦− = ⊕

𝜆∈𝜎(𝐶(𝑉1,𝑉2))∩(0,1)
𝐸−𝜆.

Consequently

𝐷 =
⨁

𝜆∈𝜎(𝐶(𝑉1,𝑉2))∩(0,1)
𝜆𝐼𝐸𝜆 .

Moreover, in this case, it is evident from the description of the unitary 𝑢 ∶ 𝒦+ →
𝒦− (see (3.3)) that

𝑢(𝐸𝜆) = 𝐸−𝜆
for all 𝜆 ∈ 𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1).
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We are now ready to establish the desired relation between the rank of
𝐶(𝑉1, 𝑉2) and the rank of the cross-commutator [𝑉∗

2 , 𝑉1] (see (2.9) for the def-
inition of 𝐸±1 and Definition 3.3 for the meaning of𝒦+).

Theorem 3.5. If (𝑉1, 𝑉2) is an isometric pair, then

rank𝐶(𝑉1, 𝑉2) = rank[𝑉∗
2 , 𝑉1] + dim𝐸1 + dim𝒦+,

where𝒦+ ⊆ℋ is the positive generic part of (𝑉1, 𝑉2). If, in addition

dim𝐸−1 <∞,

then
rank𝐶(𝑉1, 𝑉2) = 2rank[𝑉∗

2 , 𝑉1] + dim𝐸1 − dim𝐸−1.

Proof. Observe that
[𝑉∗

2 , 𝑉1]𝑉1𝑉2 = 𝑉∗
2𝑉1𝑉1𝑉2 − 𝑉1𝑉∗

2𝑉2𝑉1
= 0,

and similarly
𝑉∗
1𝑉

∗
2 [𝑉

∗
2 , 𝑉1] = 0.

Since 𝑉 = 𝑉1𝑉2, we conclude that

[𝑉∗
2 , 𝑉1] = 0 on ran𝑉,

and
ran[𝑉∗

2 , 𝑉1] ⊆𝒲.
Since (ran𝑉)⟂ =𝒲, it follows that

rank[𝑉∗
2 , 𝑉1] = rank[𝑉∗

2 , 𝑉1]
||||𝒲 .

By Theorem 2.3,𝒲 =𝒲2 ⊕𝑉2𝒲1, and hence

ran
(
[𝑉∗

2 , 𝑉1]
||||𝒲
)
= [𝑉∗

2 , 𝑉1](𝒲)

= [𝑉∗
2 , 𝑉1](𝒲2 ⊕𝑉2𝒲1)

= 𝑉∗
2𝑉1(𝒲2)

= ran
(
𝑉∗
2𝑃𝑉1𝒲2

)
,

so that
rank

(
[𝑉∗

2 , 𝑉1]
||||𝒲
)
= rank

(
𝑉∗
2𝑃𝑉1𝒲2

)
.

Since 𝑉2 is an isometry, it is clear that

rank
(
𝑉∗
2𝑃𝑉1𝒲2

)
= rank

(
𝑉2𝑉∗

2𝑃𝑉1𝒲2

)

= rank
(
𝑃ran𝑉2𝑃𝑉1𝒲2

)
.

Again, by Theorem 2.3, we know that𝒲 =𝒲2 ⊕𝑉2𝒲1, and hence
𝑉2𝑉∗

2𝒲 = 𝑉2𝑉∗
2 (𝒲2 ⊕𝑉2𝒲1)

= 𝑉2𝒲1,
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so that
rank(𝑉∗

2𝑃𝑉1𝒲2
) = rank(𝑃𝑉2𝒲1

𝑃𝑉1𝒲2
).

On one hand, by (3.7) and (3.10), we have

(
𝑈∗𝑃𝑉2𝒲1

𝑈
)(
𝑈∗𝑃𝑉1𝒲2

𝑈
)
=
(
𝑅 ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

√
𝐼−𝐷2

2
𝑤

𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

)

×
(
𝑅⟂ ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

)

= 0⊕ 0⊕ 𝐼𝐸−1 ⊕ [ 𝐷 0
0 𝐷 ] [ −𝐼 0

0 𝐼 ]

×
⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

.

Since 𝐷 is injective, it follows that

rank
((
𝑈∗𝑃𝑉2𝒲1

𝑈
)(
𝑈∗𝑃𝑉1𝒲2

𝑈
))
= dim𝐸−1+rank

⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

.

On the other hand, we know that �̃� = 𝑈∗𝑃𝒲2
𝑈 −𝑈∗𝑃𝑉1𝒲2

𝑈. Then (3.10) and
(3.11) yield

�̃� =
(
𝑅⟂ ⊕ 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

)

−
(
𝑅⟂ ⊕ 0⊕ 𝐼𝐸−1 ⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

)
.

This leads us to the setting of Theorem 3.1, and hence by Lemma 3.2, we con-
clude

dim𝒦+ = rank
⎡
⎢
⎢
⎣

𝐼−𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼+𝐷
2

⎤
⎥
⎥
⎦

.

Therefore,

rank[𝑉∗
2 , 𝑉1] = rank

(
𝑃𝑉2𝒲1

𝑃𝑉1𝒲2

)

= rank
((
𝑈∗𝑃𝑉2𝒲1

𝑈
)(
𝑈∗𝑃𝑉1𝒲2

𝑈
))

= dim𝐸−1 + dim𝒦+,
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and hence
rank[𝑉∗

2 , 𝑉1] = dim𝐸−1 + dim𝒦+. (3.12)
Since𝐶(𝑉1, 𝑉2)|𝒦+

and𝐶(𝑉1, 𝑉2)|𝒦−
are injective, in view of the representation

of 𝐶(𝑉1, 𝑉2) as in (3.2), we have

rank𝐶(𝑉1, 𝑉2) = dim𝐸1 + dim𝐸−1 + dim𝒦+ + dim𝒦−.

As 𝒦+ and 𝒦− are unitarily equivalent (see the remark preceding (3.3)), we
have

dim𝒦+ = dim𝒦−,
and hence

rank𝐶(𝑉1, 𝑉2) = dim𝐸1 + dim𝐸−1 + 2dim𝒦+. (3.13)
It now follows immediately from (3.12) that

rank𝐶(𝑉1, 𝑉2) = rank[𝑉∗
2 , 𝑉1] + dim𝐸1 + dim𝒦+.

This completes the proof of the first part of the theorem. Suppose further that

dim𝐸−1 <∞.

From (3.12), it follows that

2rank[𝑉∗
2 , 𝑉1] = 2 dim𝐸−1 + 2dim𝒦+,

and hence

2rank[𝑉∗
2 , 𝑉1] − dim𝐸−1 = dim𝐸−1 + 2dim𝒦+.

Finally, it follows from (3.13) that, by substituting the value ofdim𝐸−1+2dim𝒦+
obtained above

rank𝐶(𝑉1, 𝑉2) = 2rank[𝑉∗
2 , 𝑉1] + dim𝐸1 − dim𝐸−1.

This completes the proof of the theorem. □

From the spectral theorem for compact self-adjoint operators and the second
part of the preceding theorem, it follows immediately that:

Corollary 3.6. Let (𝑉1, 𝑉2) be an isometric pair such that 𝐶(𝑉1, 𝑉2) is compact.
Then

rank𝐶(𝑉1, 𝑉2) = 2rank[𝑉∗
2 , 𝑉1] + dim𝐸1 − dim𝐸−1.

We will apply this particular version of the rank formula in the upcoming
analysis. As an immediate consequence of the above theorem, we also obtain
that:

Corollary 3.7. Let (𝑉1, 𝑉2) be an isometric pair such that

dim𝐸1(𝐶(𝑉1, 𝑉2)) <∞.

Assume that [𝑉∗
2 , 𝑉1] is a finite-rank operator. Then 𝐶(𝑉1, 𝑉2) is a finite-rank

operator.
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Proof. Since rank[𝑉∗
2 , 𝑉1] <∞, it follows from (3.12) that

dim𝐸−1, dim𝒦+ <∞.

Moreover, since, by assumption, dim𝐸1 <∞, it follows from Theorem 3.5 that

rank𝐶(𝑉1, 𝑉2) = rank[𝑉∗
2 , 𝑉1] + dim𝐸1 + dim𝒦+ <∞,

which completes the proof of the corollary. □

We conclude the section with a dimension formula that is of independent
interest.

Proposition 3.8. Let (𝑉1, 𝑉2) be an isometric pair. Suppose
(
ker𝐶(𝑉1, 𝑉2)

)⟂
=𝒲.

Then

dim𝒲1 = dim𝒲2

where𝒲𝑖 = ker𝑉∗
𝑖 for 𝑖 = 1, 2. In particular, if𝒲 is finite-dimensional, then

dim𝒲 is even.

Proof. As
(
ker𝐶(𝑉1, 𝑉2)

)⟂
=𝒲, we have that𝒩 =𝒲⊖

(
ker𝐶(𝑉1, 𝑉2)

)⟂
=

0, and consequently, by (3.6) and (3.11), it follows that

𝑈∗𝑃𝒲2
𝑈 = 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

,

and

𝑈∗𝑃𝒲1
𝑈 = 𝐼𝐸1 ⊕ 0⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤

𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

,

where 𝑤 is a unitary on𝒦+ that commutes with 𝐷. By Lemma 3.2, we have

dim𝒦+ = rank
⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤

𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

= rank
⎡
⎢
⎢
⎣

𝐼+𝐷
2

−
√
𝐼−𝐷2

2
𝑤

−𝑤∗
√
𝐼−𝐷2

2
𝐼−𝐷
2

⎤
⎥
⎥
⎦

,

and hence
dim𝒲1 = rank(𝑈∗𝑃𝒲1

𝑈)
= dim𝐸1 + dim𝒦+

= rank(𝑈∗𝑃𝒲2
𝑈)

= dim𝒲2.
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In particular, if dim𝒲 <∞, then
dim𝒲 = dim𝒲1 + dim𝒲2

= 2 × dim𝒲1

= 2 × dim𝒲2,

which completes the proof of the proposition. □

The challenge of formulating rank identities for invariant subspaces is well
recognized as a complex and difficult field of study. It not only reveals the struc-
ture of invariant subspaces but also entails identities involving numbers. We
anticipate that the rank formula established in Theorem 3.5 possesses inherent
value and will be applicable in various different contexts. For instance, con-
sider a closed invariant subspaceℳ of 𝐻2(𝔻2) (see (1.4)). As in (1.7), define
the restriction operators

𝑅𝑧 = 𝑀𝑧|ℳ and 𝑅𝑤 = 𝑀𝑤|ℳ .
Clearly, (𝑅𝑧, 𝑅𝑤) is an isometric pair onℳ. Moreover

𝑅𝑧𝑅𝑤 = 𝑀𝑧𝑀𝑤|ℳ ,
and hence (𝑅𝑧, 𝑅𝑤) is a BCL pair onℳ. Consequently, Theorem 3.5 applies to
ℳ and hence invariant subspaces of 𝐻2(𝔻2). In the present context, the rank
formula in Theorem 3.5 should be compared with the rank formula of Yang
[Yang05, Theorem 2.7].
In the literature, there appear to be very intricate rank formulae for Hilbert-

Schmidt invariant (as well as co-invariant) subspaces of 𝐻2(𝔻2) (see [CDS14]
and references therein).

4. On 𝟑-finite pairs
The purpose of this section is to isolate key properties of irreducible 3-finite

pairs. Some of the results do not require all the assumptions of 3-finite pairs,
and we will point out the needed properties for such results. For the conve-
nience of the subsequent discussion, we shall include an additional stratum of
notation: Given a separableHilbert spaceℋ, denote by𝐵ℋ the set of all ordered
orthonormal bases ofℋ. That is

𝐵ℋ = {{𝑒𝑗 ∶ 𝑗 ∈ Λ} ∶ {𝑒𝑗 ∶ 𝑗 ∈ Λ} is an orthonormal basis ofℋ},

where Λ denotes a countable set. Let (𝑉1, 𝑉2) be an isometric pair. For the
reader’s convenience, we recall that 𝑉 = 𝑉1𝑉2, and

𝒲 = ker𝑉∗ and𝒲𝑖 = ker𝑉∗
𝑖 ,

for 𝑖 = 1, 2. Recall also that
𝐸𝜆 ∶= {𝑓 ∈ℋ ∶ 𝐶(𝑉1, 𝑉2)𝑓 = 𝜆𝑓},

for all 𝜆 ∈ ℂ (see (2.9)). We begin with a useful property of BCL pairs, stated in
the following well-known lemma (see, for instance, [HQY15, Proposition 4.1]
for a proof).
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Lemma 4.1. Let (𝑉1, 𝑉2) be a BCL pair. Then

𝒲1 ∩𝒲2 = 𝐸1.

The following lemma, in particular, shows that the range of [𝑉∗
2 , 𝑉1] is con-

tained in𝒲1 ∩𝒲2 whenever [𝑉∗
2 , 𝑉1] is normal.

Lemma 4.2. Let (𝑉1, 𝑉2) be a BCL pair. If [𝑉∗
2 , 𝑉1] is normal, then

ran [𝑉∗
2 , 𝑉1] = ran [𝑉∗

1 , 𝑉2] ⊆ 𝐸1,

and
[𝑉∗

2 , 𝑉1]|𝐸⟂1 = [𝑉∗
1 , 𝑉2]|𝐸⟂1 = 0.

Proof. The normality of [𝑉∗
2 , 𝑉1] yields

ran[𝑉∗
2 , 𝑉1] = ran[𝑉∗

2 , 𝑉1]
∗ = ran[𝑉∗

1 , 𝑉2].

Observe that

𝑉∗
2 (𝑉

∗
1𝑉2 − 𝑉2𝑉∗

1 ) = 0 = 𝑉∗
1 (𝑉

∗
2𝑉1 − 𝑉1𝑉∗

2 ),

that is
𝑉∗
2 [𝑉

∗
1 , 𝑉2] = 0 = 𝑉∗

1 [𝑉
∗
2 , 𝑉1].

Clearly ran[𝑉∗
2 , 𝑉1] ⊆ 𝒲1 and ran[𝑉∗

1 , 𝑉2] ⊆ 𝒲2, and hence, by Lemma 4.1,
we conclude that

ran[𝑉∗
2 , 𝑉1] = ran[𝑉∗

1 , 𝑉2] ⊆𝒲1 ∩𝒲2 = 𝐸1.

For the second assertion, suppose 𝑔 ∈ 𝐸⟂1 and set

ℎ = [𝑉∗
2 , 𝑉1]𝑔.

Note that
||ℎ||2 = ⟨[𝑉∗

1 , 𝑉2][𝑉
∗
2 , 𝑉1]𝑔, 𝑔⟩.

But by the first assertion of this lemma, it is clear that

[𝑉∗
1 , 𝑉2][𝑉

∗
2 , 𝑉1]𝑔 ∈ 𝐸1,

and consequently, ||ℎ||2 = 0, that is, ℎ = 0. This completes the proof of the
lemma. □

From now on, throughout the section, we will deal with irreducible 3-finite
pairs (see Definition 1.6 for irreducible pairs).

Proposition 4.3. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair. Then

dim𝐸1 = 1 and dim𝐸−1 = 0.

Proof. By virtue of Lemmas 4.1 and 4.2, we already know that

ran[𝑉∗
2 , 𝑉1] = ran[𝑉∗

1 , 𝑉2] ⊆𝒲1 ∩𝒲2 = 𝐸1,

and
[𝑉∗

2 , 𝑉1]|𝐸⟂1 = [𝑉∗
2 , 𝑉1]

∗|𝐸⟂1 = 0.
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In particular, [𝑉∗
2 , 𝑉1]|𝐸1 is a normal operator on 𝐸1. If possible, let

dim𝐸1 > 1,

and let {𝑓, 𝑔} be an orthonormal set in 𝐸1 consisting of eigen vectors of the nor-
mal operator [𝑉∗

2 , 𝑉1]|𝐸1 . Set

𝒮 = span{𝑉𝑚
1 𝑉

𝑛
2𝑓 ∶ 𝑚, 𝑛 ≥ 0}.

We claim that 𝒮 reduces (𝑉1, 𝑉2). This would contradict the fact that (𝑉1, 𝑉2)
is irreducible. Clearly, 𝒮 is invariant under 𝑉1 and 𝑉2. Therefore, to prove the
claim, it suffices to show that

𝑉∗
1𝑉

𝑛
2𝑓,𝑉

∗
2𝑉

𝑛
1𝑓 ∈ 𝒮,

for all 𝑛 ≥ 1. We only prove that 𝑉∗
2𝑉

𝑛
1𝑓 ∈ 𝒮 for all 𝑛 ≥ 1 (the proof of the

remaining case is similar). We prove this by induction. For 𝑛 = 1, since 𝑓 ∈
𝒲1 ∩𝒲2 and 𝑓 is an eigen vector of [𝑉∗

2 , 𝑉1], it follows that

𝑉∗
2𝑉1𝑓 = [𝑉∗

2 , 𝑉1]𝑓 = 𝛼𝑓,

for some scalar 𝛼, and hence 𝑉∗
2𝑉1𝑓 ∈ 𝒮. Thus, the result is true for 𝑛 = 1.

Now, suppose that the result is true for𝑚 ≥ 1, that is, 𝑉∗
2𝑉

𝑚
1 𝑓 ∈ 𝒮. Write

𝑉∗
2𝑉

𝑚+1
1 𝑓 = [𝑉∗

2 , 𝑉1]𝑉
𝑚
1 𝑓 + 𝑉1𝑉∗

2𝑉
𝑚
1 𝑓.

Since 𝑚 ≥ 1, it is clear, in particular, that 𝑉𝑚
1 𝑓 ∈ (𝒲1 ∩ 𝒲2)⟂. Note that

Lemma 4.2 also implies that

[𝑉∗
2 , 𝑉1]|(𝒲1∩𝒲2)⟂ = 0.

Therefore, [𝑉∗
2 , 𝑉1]𝑉

𝑚
1 𝑓 = 0, and hence

𝑉∗
2𝑉

𝑚+1
1 𝑓 = 𝑉1𝑉∗

2𝑉
𝑚
1 𝑓. (4.1)

Since 𝒮 is invariant under 𝑉1, and by the induction hypothesis 𝑉∗
2𝑉

𝑚
1 𝑓 ∈ 𝒮, it

follows that
𝑉1𝑉∗

2𝑉
𝑚
1 𝑓 ∈ 𝒮,

that is,
𝑉∗
2𝑉

𝑚+1
1 𝑓 ∈ 𝒮.

Thus, the result is true for 𝑛 = 𝑚+ 1. Hence, by the principle of mathematical
induction, the result is true for all 𝑛 ≥ 1. This proves the claim and then the fact
that dim𝐸1 ≤ 1. Since rank𝐶(𝑉1, 𝑉2) = 3, the desired equality dim𝐸1 = 1 fol-
lows immediately by an appeal to Lemma 4.2 and the rank formula in Corollary
3.6.
Now we prove that dim𝐸−1 = 0. Since dim𝐸1 = 1 and ran[𝑉∗

2 , 𝑉1] ⊆ 𝐸1, it
follows that

rank[𝑉∗
2 , 𝑉1] ≤ 1.
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As rank𝐶(𝑉1, 𝑉2) = 3, it follows by the rank formula in Corollary 3.6 that

3 = rank𝐶(𝑉1, 𝑉2)
= 2rank[𝑉∗

2 , 𝑉1] + dim𝐸1 − 𝐸−1
≤ 2 + 1 − dim𝐸−1
= 3 − dim𝐸−1.

This proves that dim𝐸−1 = 0. □

The following observation is now straight:

Corollary 4.4. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair. Then

rank[𝑉∗
2 , 𝑉1] = 1.

In particular, ran[𝑉∗
2 , 𝑉1] = 𝐸1.

We continuewith an irreducible 3-finite pair (𝑉1, 𝑉2). Recall that the symbol
≅ stands for unitary equivalence of operators.

Proposition 4.5. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair. Then there is a
unique 𝜆(𝑉1,𝑉2) ∈ (0, 1) such that

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆(𝑉1,𝑉2)}.

Moreover
𝐶(𝑉1, 𝑉2)|(ker𝐶(𝑉1,𝑉2))⟂ ≅ 𝐷𝜆(𝑉1 ,𝑉2) ,

where 𝐷𝜆(𝑉1 ,𝑉2) is the diagonal matrix

𝐷𝜆(𝑉1 ,𝑉2) =
⎡
⎢
⎣

1
𝜆(𝑉1,𝑉2)

−𝜆(𝑉1,𝑉2)

⎤
⎥
⎦
.

Proof. By Proposition 4.3, we know that dim𝐸1 = 1, dim𝐸−1 = 0. Since
rank𝐶(𝑉1, 𝑉2) = 3, it is evident from Theorem 2.5 that there exists 𝜆(𝑉1,𝑉2) ∈
(0, 1) such that

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆(𝑉1,𝑉2)},
and 𝐶(𝑉1, 𝑉2)|(ker𝐶(𝑉1,𝑉2))⟂ is unitarily equivalent to 𝐷𝜆(𝑉1 ,𝑉2) . □

Let (𝑉1, 𝑉2) be an irreducible 3-finite pair. Then

ker(𝐶(𝑉1, 𝑉2))⟂ = 𝐸1 ⊕𝐸𝜆(𝑉1 ,𝑉2) ⊕𝐸−𝜆(𝑉1 ,𝑉2) ,

where 𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆(𝑉1,𝑉2)}. As usual, we set

𝒩 =𝒲 ⊖ ker(𝐶(𝑉1, 𝑉2))⟂.

Then
𝒲 = 𝐸1 ⊕𝐸𝜆(𝑉1 ,𝑉2) ⊕𝐸−𝜆(𝑉1 ,𝑉2) ⊕𝒩,
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and with respect to this decomposition, we have

𝐶(𝑉1, 𝑉2)|𝒲 = 𝑃𝒲1
− 𝑃𝑉2𝒲1

=
⎡
⎢
⎢
⎢
⎣

1
𝜆(𝑉1,𝑉2)

−𝜆(𝑉1,𝑉2)
0𝒩

⎤
⎥
⎥
⎥
⎦

.

On the other hand, since [𝑉∗
2 , 𝑉1] is normal, and byCorollary 4.4, rank[𝑉

∗
2 , 𝑉1] =

1 with ran[𝑉∗
2 , 𝑉1] = 𝐸1, there exist a nonzero scalar 𝛽(𝑉1,𝑉2) such that

𝜎([𝑉∗
2 , 𝑉1]) ⧵ {0} = {𝛽(𝑉1,𝑉2)},

and
[𝑉∗

2 , 𝑉1]𝑓 = 𝛽(𝑉1,𝑉2)𝑓 (𝑓 ∈ 𝐸1).
Fix a unit vector 𝑓(𝑉1,𝑉2) ∈ 𝐸1. Clearly

{𝑓(𝑉1,𝑉2)} ∈ 𝐵𝐸1 .

Thus, in summary, we have the following:

⎧

⎨
⎩

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆(𝑉1,𝑉2)}
𝜎([𝑉∗

2 , 𝑉1]) ⧵ {0} = {𝛽(𝑉1,𝑉2)}
{𝑓(𝑉1,𝑉2)} ∈ 𝐵𝐸1 .

At this juncture, we standardize some notation that will be used throughout
the rest of the paper. Given an irreducible 3-finite pair (𝑉1, 𝑉2), we set

⎧

⎨
⎩

𝛽(𝑉1,𝑉2) = unique nonzero eigenvalue of [𝑉∗
2 , 𝑉1]

𝜆(𝑉1,𝑉2) = unique eigenvalue of 𝐶(𝑉1, 𝑉2) in (0, 1)
𝑓(𝑉1,𝑉2) = a unit vector in 𝐸1.

(4.2)

Furthermore, for notational convenience, if the pair (𝑉1, 𝑉2) is clear from the
context, then we simply write

𝜆 = 𝜆(𝑉1,𝑉2), 𝛽 = 𝛽(𝑉1,𝑉2), and 𝑓 = 𝑓(𝑉1,𝑉2). (4.3)

Also, for any 𝑔, ℎ inℋ, we denote by 𝑔 ⊗ ℎ the rank one operator onℋ where

(𝑔 ⊗ ℎ)(𝑘) = ⟨𝑘, ℎ⟩𝑔 (𝑘 ∈ℋ).

Thus, in the case of the present scenario, we can write

[𝑉∗
2 , 𝑉1] = 𝛽𝑓 ⊗ 𝑓,

and hence
[𝑉∗

1 , 𝑉2] = 𝛽𝑓 ⊗ 𝑓. (4.4)
Thus, we have

[𝑉∗
2 , 𝑉1]𝑓 = 𝑉∗

2𝑉1𝑓 = 𝛽𝑓,
and

[𝑉∗
1 , 𝑉2]𝑓 = 𝑉∗

1𝑉2𝑓 = 𝛽𝑓.
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Therefore,

{
𝑉∗
2𝑉1𝑓 = 𝛽𝑓

𝑉∗
1𝑉2𝑓 = 𝛽𝑓.

(4.5)

Since 𝑓 ∈𝒲1 ∩𝒲2, it follows that 𝐶(𝑉1, 𝑉2)𝑓 = 𝑓, and hence,

{𝑓, 𝑒𝜆, 𝑒−𝜆} ∈ 𝐵𝐸1⊕𝐸𝜆⊕𝐸−𝜆 ,

where
{𝑒𝜆} ∈ 𝐵𝐸𝜆 and {𝑒−𝜆} ∈ 𝐵𝐸−𝜆 .

Set
𝐸𝜆 = 𝐸𝜆 ⊕𝐸−𝜆.

Nowwe follow the construction as given in Section 3. By applying Remark 3.4,
in this particular situation, we find

𝒦± = 𝐸±𝜆,

and
𝐷 = 𝜆𝐼𝐸𝜆 .

Therefore, following the representation of𝒲 as in (3.1), we have

𝒲 = 𝐸1 ⊕𝐸𝜆 ⊕𝒩,

and so, by (3.8) and (3.9), it follows that

𝑃𝒲1
= 𝐼𝐸1 ⊕

⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼−𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

⊕𝑄,

and

𝑃𝑉2𝒲1
= 0⊕

⎡
⎢
⎢
⎣

𝐼−𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼+𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

⊕𝑄,

where 𝑢 ∶ 𝐸𝜆 → 𝐸−𝜆 and 𝑤 ∶ 𝐸𝜆 → 𝐸𝜆 are unitary operators, and 𝑄 ∶𝒩 →𝒩
is a projection. Consequently

𝑤𝑢∗ ∶ 𝐸−𝜆 → 𝐸𝜆,

is a unitary, and so, there exists a unimodular constant 𝛼 such that

𝑤𝑢∗(𝑒−𝜆) = 𝛼𝑒𝜆.

Define

𝑄𝜆 =
⎡
⎢
⎢
⎣

𝐼+𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼−𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

,

and

�̃�𝜆 =
⎡
⎢
⎢
⎣

𝐼−𝐷
2

√
𝐼−𝐷2

2
𝑤𝑢∗

𝑢𝑤∗
√
𝐼−𝐷2

2
𝑢 𝐼+𝐷

2
𝑢∗

⎤
⎥
⎥
⎦

.
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Therefore,𝑄𝜆 and �̃�𝜆 are projections defined on𝐸𝜆. Thematrix representations
of 𝑄𝜆 and �̃�𝜆 with respect to

{𝑒𝜆, 𝑒−𝜆} ∈ 𝐵𝐸𝜆 ,
are given by

𝑄𝜆 =
1
2
⎡
⎢
⎣

1 + 𝜆 𝛼(1 − 𝜆2)
1
2

�̄�(1 − 𝜆2)
1
2 1 − 𝜆

⎤
⎥
⎦
,

and

�̃�𝜆 =
1
2
⎡
⎢
⎣

1 − 𝜆 𝛼(1 − 𝜆2)
1
2

�̄�(1 − 𝜆2)
1
2 1 + 𝜆

⎤
⎥
⎦
.

Thus, with respect to the decomposition𝒲 = 𝐸1 ⊕𝐸𝜆 ⊕𝒩, we have

𝑃𝒲1
=
⎡
⎢
⎣

𝐼𝐸1
𝑄𝜆

𝑄

⎤
⎥
⎦
and 𝑃𝑉2𝒲1

=
⎡
⎢
⎣

0
�̃�𝜆

𝑄

⎤
⎥
⎦
, (4.6)

where 𝑄𝜆 and �̃�𝜆 are given as above. As
𝒲 =𝒲1 ⊕𝑉1𝒲2 =𝒲2 ⊕𝑉2𝒲1,

it follows that 𝑃𝒲2
= 𝐼𝒲 − 𝑃𝑉2𝒲1

and 𝑃𝑉1𝒲2
= 𝐼𝒲 − 𝑃𝒲1

, and hence,

𝑃𝒲2
=
⎡
⎢
⎢
⎣

𝐼𝐸1
�̃�⟂
𝜆

𝑄⟂

⎤
⎥
⎥
⎦

and 𝑃𝑉1𝒲2
=
⎡
⎢
⎢
⎣

0
𝑄⟂
𝜆

𝑄⟂

⎤
⎥
⎥
⎦

. (4.7)

Finally, to find a suitable orthonormal basis of 𝐸𝜆, we define

𝑓1 =
√

1 + 𝜆
2 𝑒𝜆 + �̄�

√
1 − 𝜆
2 𝑒−𝜆 and 𝑓4 =

√
1 + 𝜆
2 𝑒𝜆 − �̄�

√
1 − 𝜆
2 𝑒−𝜆, (4.8)

and
𝑓2 =

𝑓1 − 𝜆𝑓4√
1 − 𝜆2

and 𝑓3 =
𝑓4 − 𝜆𝑓1√
1 − 𝜆2

.

Then, as easy computation reveals that

⎧

⎨
⎩

𝑓2 =
√

1−𝜆
2
𝑒𝜆 + �̄�

√
1+𝜆
2
𝑒−𝜆

𝑓3 =
√

1−𝜆
2
𝑒𝜆 − �̄�

√
1+𝜆
2
𝑒−𝜆.

(4.9)

At this point, we recall the following useful result concerning the orthonor-
mal basis of the range of projections of our interest (see [DSPS24, Lemma 3.2]):

Lemma 4.6. Letℋ and𝒦 be Hilbert spaces, 𝑈 ∶ ℋ → 𝒦 a unitary operator,
and let 𝜆 ∈ [−1, 1]. Define the projection 𝑃 ∶ℋ ⊕𝒦 →ℋ ⊕𝒦 by

𝑃 =
⎡
⎢
⎢
⎣

1+𝜆
2
𝐼ℋ

√
1−𝜆2

2
𝑈∗

√
1−𝜆2

2
𝑈 1−𝜆

2
𝐼𝒦

⎤
⎥
⎥
⎦

.
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If {𝑒𝑖 ∶ 𝑖 ∈ Λ} ∈ 𝐵ℋ , then
{√ 1+𝜆

2
𝑒𝑖 ⊕

√
1−𝜆
2
𝑈𝑒𝑖 ∶ 𝑖 ∈ Λ

}
∈ 𝐵ran𝑃.

Returning to our setting, in particular, we have the following:

Corollary 4.7. Let {𝑓𝑖}4𝑖=1 be as in (4.8) and (4.9). Then

ran𝑄𝜆 = ℂ𝑓1, ran�̃�𝜆 = ℂ𝑓2, ran𝑄⟂
𝜆 = ℂ𝑓3, and ran�̃�⟂

𝜆 = ℂ𝑓4.

In particular
{𝑓1, 𝑓3}, {𝑓2, 𝑓4} ∈ 𝐵𝐸𝜆 .

By Theorem 2.3, we know that (𝒲, 𝑈, 𝑃𝒲1
) is a BCL triple associated to

(𝑉1, 𝑉2), where the unitary 𝑈 on𝒲 is given by

𝑈 = [𝑉2|𝒲1
𝑉∗
1 |𝑉1𝒲2

] ∶𝒲1 ⊕𝑉1𝒲2 → 𝑉2𝒲1 ⊕𝒲2. (4.10)

Our goal is now to reveal the action of 𝑈 on a basis of 𝒲. We need some
preparatory calculations. It follows immediately from the representations of
𝑃𝒲𝑖

and 𝑃𝑉𝑗𝒲𝑖
, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2 (see (4.6) and (4.7)) that

𝒲1 = 𝐸1 ⊕ ran𝑄𝜆 ⊕ ran𝑄, 𝑉2𝒲1 = ran�̃�𝜆 ⊕ ran𝑄,

and
𝒲2 = 𝐸1 ⊕ ran�̃�⟂

𝜆 ⊕ ran𝑄⟂, 𝑉1𝒲2 = ran𝑄⟂
𝜆 ⊕ ran𝑄⟂.

Consequently, by Corollary 4.7, we have
𝒲1 = 𝐸1 ⊕ ℂ𝑓1 ⊕ ran𝑄,
𝑉2𝒲1 = ℂ𝑓2 ⊕ ran𝑄,

𝒲2 = 𝐸1 ⊕ ℂ𝑓4 ⊕ ran𝑄⟂,

𝑉1𝒲2 = ℂ𝑓3 ⊕ ran𝑄⟂.

(4.11)

Now we are ready to explore the action of the unitary 𝑈 on𝒲.

Lemma 4.8. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair. With notations as above,
we have the following:

(a) 𝑈𝑓3 ∈ ℂ𝑓,
(b) 𝑈𝑓 ∈ ℂ𝑓2,
(c) 𝑈𝑓1 ∈ ran𝑄,
(d) 𝑈∗𝑓4 ∈ ran𝑄⟂,
(e) 𝑈∗(ran𝑄⟂) ⊂ ran𝑄⟂, and𝑈

(
ran𝑄

)
⊂ ran𝑄.

Proof. First, we prove part (a). Since 𝑓 ∈𝒲1, it follows that

𝑈𝑓 = 𝑉2𝑓 ∈ 𝑉2𝒲1.

By (4.11), we know that𝑉2𝒲1 = ℂ𝑓2⊕ ran𝑄, and hence, there exists 𝑔 ∈ ran𝑄
such that

𝑉2𝑓 = ⟨𝑉2𝑓, 𝑓2⟩𝑓2 + 𝑔.
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As ran𝑄 ⊂ 𝒲1, applying 𝑉∗
1 to both sides of the preceding equation and then

using (4.5), we see that
𝛽𝑓 = ⟨𝑉2𝑓, 𝑓2⟩𝑉∗

1𝑓2.
Now we compute 𝑉∗

1𝑓2. By Corollary 4.7, we know that {𝑓1, 𝑓3} ∈ 𝐵𝐸𝜆 . As
𝑓2 ∈ 𝐸𝜆(= 𝐸𝜆 ⊕𝐸−𝜆), we have

𝑓2 = ⟨𝑓2, 𝑓1⟩𝑓1 + ⟨𝑓2, 𝑓3⟩𝑓3.
By (4.11), we know that 𝑓1 ∈ 𝒲1. Applying 𝑉∗

1 to both sides of the preceding
identity we obtain that

𝑉∗
1𝑓2 = ⟨𝑓2, 𝑓3⟩𝑉∗

1𝑓3.
Since 𝑓3 ∈ 𝑉1𝒲2 (see (4.11)), the definition of 𝑈 as given by (4.10) yields

𝑉∗
1𝑓2 = ⟨𝑓2, 𝑓3⟩𝑈𝑓3,

and hence
𝛽𝑓 = ⟨𝑉2𝑓, 𝑓2⟩⟨𝑓2, 𝑓3⟩𝑈𝑓3.

It is clear from (4.9) and the fact that 𝛼 is a unimodular constant that ⟨𝑓2, 𝑓3⟩ =
−𝜆. Finally, by the definition of 𝑈, it follows that 𝑉2𝑓 = 𝑈𝑓 and hence

𝑈𝑓3 = −
𝛽

𝜆⟨𝑈𝑓, 𝑓2⟩
𝑓.

For (b), we observe, similarly, that 𝑈∗𝑓 = 𝑉1𝑓 ∈ 𝑉1𝒲2. By (4.11), we know
that

𝑉1𝒲2 = ℂ𝑓3 ⊕ ran𝑄⟂,
and hence, there exists ℎ ∈ ran𝑄⟂ such that

𝑉1𝑓 = ⟨𝑉1𝑓, 𝑓3⟩𝑓3 + ℎ.
Now we follow the steps in (a) precisely to conclude that

𝑈∗𝑓2 = −
𝛽

𝜆⟨𝑈∗𝑓, 𝑓3⟩
𝑓. (4.12)

Next, we proceed to prove (c). As 𝐸1(= ℂ𝑓) and ran𝑄𝜆(= ℂ𝑓1) are orthogonal,
we have that ⟨𝑓, 𝑓1⟩ = 0. Therefore,

⟨𝑈𝑓,𝑈𝑓1⟩ = 0.
Since𝑈𝑓 ∈ ℂ𝑓2 (see part (b)), it follows that ⟨𝑈𝑓1, 𝑓2⟩ = 0. As 𝑓1 ∈𝒲1, (4.10)
together with (4.11) imply

𝑈𝑓1 ∈ 𝑉2𝒲1 = ℂ𝑓2 ⊕ ran𝑄.
Therefore, ⟨𝑈𝑓1, 𝑓2⟩ = 0 implies that 𝑈𝑓1 ∈ ran𝑄. Since the proof of (d)
is analogous to that of (c), the specifics are omitted. Finally, we turn to (e).
Clearly (4.11) implies 𝐸1(= ℂ𝑓) and ran𝑄⟂ are orthogonal subspaces of 𝒲2.
Consequently

𝑈∗𝑓 ⟂ 𝑈∗(ran𝑄⟂).
By part (a), 𝑈∗𝑓 ∈ ℂ𝑓3 and hence

𝑓3 ⟂ 𝑈∗(ran𝑄⟂).
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The definition of 𝑈 as in (4.10) together with (4.11) yield that

𝑈∗(ran𝑄⟂) ⊆ 𝑈∗𝒲2 = 𝑉1𝒲2 = ℂ𝑓3 ⊕ ran𝑄⟂,
and consequently, 𝑈∗(ran 𝑄⟂) ⊆ ran𝑄⟂. The proof of 𝑈(ran 𝑄) ⊆ ran𝑄 is
similar. □

The following theorem provides a summary of the major findings concern-
ing irreducible 3-finite pairs of isometries so far. The final claim is an addi-
tion that states that the absolute value of the nonzero eigenvalue of the cross-
commutator is same as the second largest eigenvalue of the defect operator.

Theorem 4.9. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair of isometries. Then
(1) rank[𝑉∗

2 , 𝑉1] = 1 and ran[𝑉∗
2 , 𝑉1] = 𝐸1.

(2) 𝐸−1 = {0}.
(3) There exist unique 𝛽(𝑉1,𝑉2) ∈ ℂ ⧵ {0} and a unit vector 𝑓(𝑉1,𝑉2) ∈ 𝐸1 such

that
𝐸1 = ℂ𝑓(𝑉1,𝑉2),

and
[𝑉∗

2 , 𝑉1]𝑓(𝑉1,𝑉2) = 𝛽(𝑉1,𝑉2)𝑓(𝑉1,𝑉2).
(4) There is a unique 𝜆(𝑉1,𝑉2) ∈ (0, 1) such that

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆(𝑉1,𝑉2)},
and

𝐶(𝑉1, 𝑉2)|(ker𝐶(𝑉1,𝑉2))⟂ ≅
⎡
⎢
⎣

1
𝜆(𝑉1,𝑉2)

−𝜆(𝑉1,𝑉2)

⎤
⎥
⎦
.

(5) |𝛽(𝑉1,𝑉2)| = 𝜆(𝑉1,𝑉2).

Proof. We only need to prove (5). Keeping the foregoing notational conven-
tion, we use 𝜆, 𝛽, and 𝑓 for 𝜆(𝑉1,𝑉2), 𝛽(𝑉1,𝑉2), and 𝑓(𝑉1,𝑉2) respectively. It follows
from (4.5) that 𝑉∗

2𝑉1𝑓 = 𝛽𝑓. Since 𝑓 is a unit vector in 𝐸1, we have
𝛽 = ⟨𝛽𝑓, 𝑓⟩ = ⟨𝑉∗

2𝑉1𝑓, 𝑓⟩ = ⟨𝑈∗𝑓,𝑈𝑓⟩,
where the last equality follows from the definition of 𝑈. By parts (a) and (b) of
Lemma 4.8, we then have

𝛽 =
⟨
⟨𝑈∗𝑓, 𝑓3⟩𝑓3, ⟨𝑈𝑓, 𝑓2⟩𝑓2

⟩

= −⟨𝑈∗𝑓, 𝑓3⟩⟨𝑓2, 𝑈𝑓⟩𝜆,

as ⟨𝑓3, 𝑓2⟩ = −𝜆. The result now follows from the fact that ⟨𝑈∗𝑓, 𝑓3⟩ and
⟨𝑓2, 𝑈𝑓⟩ are unimodular constants. □

We record the following particular but useful fact for convenient future re-
trieval:

ran[𝑉∗
2 , 𝑉1] = 𝐸1 = ℂ𝑓(𝑉1,𝑉2) =𝒲1 ∩𝒲2, (4.13)

where 𝐸1 = ker(𝐶(𝑉1, 𝑉2)−𝐼ℋ). The final equality is a consequence of Lemma
4.1.
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5. Classification of 𝟑-finite pairs
The purpose of this section is to present a complete classification of irre-

ducible 3-finite pairs in terms of computable unitary invariants. The structural
results of the preceding sectionwill be used thoroughly. Therefore, we continue
with (𝑉1, 𝑉2), an irreducible 3-finite pair on ℋ. We adhere to the notational
convention established in Section 4 (more specifically, see (4.2) and (4.3)):

𝛽 = 𝛽(𝑉1,𝑉2) = unique nonzero eigenvalue of [𝑉∗
2 , 𝑉1],

𝜆 = 𝜆(𝑉1,𝑉2) = unique eigenvalue of 𝐶(𝑉1, 𝑉2) in (0, 1),
𝑓 = 𝑓(𝑉1,𝑉2) = a unit vector in 𝐸1.

Recall that the unitary 𝑈 of the corresponding BCL triple (𝒲, 𝑈, 𝑃𝒲1
) is given

by (see Theorem 2.3 or (4.10))

𝑈 = [𝑉2|𝒲1
𝑉∗
1 |𝑉1𝒲2

] ∶𝒲1 ⊕𝑉1𝒲2 → 𝑉2𝒲1 ⊕𝒲2.

Also recall from Theorem 4.9 (or see (4.13)) that

ran[𝑉∗
2 , 𝑉1] = 𝐸1 = ℂ𝑓 =𝒲1 ∩𝒲2,

and [𝑉∗
2 , 𝑉1]𝑓 = 𝛽𝑓. For all 𝑖 = 1, 2, 3, 4, set

𝑔𝑖 =
1

⟨𝑓3, 𝑈∗𝑓⟩
𝑓𝑖. (5.1)

By (4.12) and the fact ⟨𝑓3, 𝑈∗𝑓⟩ is a unimodular constant, we have

⟨𝑈∗𝑓, 𝑔3⟩ = 1 and ⟨𝑈∗𝑔2, 𝑓⟩ = −
𝛽
𝜆
. (5.2)

By Corollary 4.7, we also have

{𝑔1, 𝑔3}, {𝑔2, 𝑔4} ∈ 𝐵𝐸𝜆 .

Further, it follows from Lemma 4.8 that

𝑈𝑚𝑓1 ∈ ran𝑄,

and
𝑈∗𝑚𝑓4 ∈ ran𝑄⟂,

for all𝑚 ≥ 1. Set

𝒲 = span{𝑓,𝑈𝑚𝑓1, 𝑈∗𝑚𝑓4 ∶ 𝑚 ≥ 0}.

We show that:

Lemma 5.1. 𝒲 reduces (𝑈, 𝑃𝒲1
).

Proof. Clearly, 𝑓, 𝑓1, 𝑓4 ∈ 𝒲. Recall that {𝑒±𝜆} ∈ 𝐵𝐸𝜆⊕𝐸−𝜆 , and then (4.8)
implies

𝑓1 ± 𝑓4 = a scalar multiple of 𝑒±𝜆,
and consequently

𝐸𝜆 ⊕𝐸−𝜆 = span{𝑓1 ± 𝑓4}.
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Thus,
𝐸1 ⊕𝐸𝜆 ⊕𝐸−𝜆 ⊂𝒲.

First, we claim that𝒲 reduces𝑈. We know by Lemma 4.8 that𝑈𝑓 ∈ span{𝑓2}
and 𝑈∗𝑓 ∈ span{𝑓3}, and hence, by Corollary 4.7 we conclude that

𝑈𝑓,𝑈∗𝑓 ∈ 𝐸𝜆 ⊕𝐸−𝜆.

Therefore, 𝑈𝑓,𝑈∗𝑓 ∈ 𝒲. It just remains to show that 𝑈∗𝑓1, 𝑈𝑓4 ∈ 𝒲. To
this end, observe that Corollary 4.7 implies

𝑓1 ∈ ran𝑄𝜆 ⊂ 𝐸𝜆 ⊕𝐸−𝜆 = span{𝑓2, 𝑓4},

and consequently, it follows from Lemma 4.8 that

𝑈∗𝑓1 ∈ span{𝑈∗𝑓2, 𝑈∗𝑓4} = span{𝑓,𝑈∗𝑓4} ⊂𝒲.

Similarly, by Corollary 4.7, we have

𝑓4 ∈ 𝐸𝜆 ⊕𝐸−𝜆 = span{𝑓1, 𝑓3}.

By Lemma 4.8, we have

𝑈𝑓4 ∈ span{𝑈𝑓1, 𝑈𝑓3} = span{𝑈𝑓1, 𝑓} ⊂𝒲.

We have thus proved that𝒲 reduces 𝑈.
We now show that𝒲 reduces 𝑃𝒲1

. As 𝑓 ∈ 𝒲1, we have 𝑃𝒲1
(𝑓) = 𝑓. One

easily observes from (4.11) and Lemma 4.8 that

𝑈𝑚𝑓1 ∈𝒲1,

and hence,
𝑃𝒲1

(𝑈𝑚𝑓1) = 𝑈𝑚𝑓1,
for all𝑚 ≥ 0. By (4.11) and Lemma 4.8

𝑈∗𝑚𝑓4 ∈ ran𝑄⟂ ⊆ 𝑉1𝒲2,

and consequently
𝑃𝒲1

(𝑈∗𝑚𝑓4) = 0,
for all𝑚 ≥ 1. Finally, since

𝑓4 ∈ 𝐸𝜆 ⊕𝐸−𝜆 = span{𝑓1, 𝑓3},

and 𝑓3 ∈ 𝑉1𝒲2 (by Equation (4.11)), we have that

𝑃𝒲1
𝑓3 = 0,

and therefore
𝑃𝒲1

𝑓4 ∈ ℂ𝑓1 ⊂𝒲.

This shows that𝒲 reduces 𝑃𝒲1
. □

Note that a BCL pair (𝑉1, 𝑉2) on ℋ is irreducible if and only if (𝑈, 𝑃𝒲1
) is

irreducible [DSPS24, Corollary 2.2]. From the above lemma, we obtain:

Corollary 5.2. {𝑓, 𝑓1, 𝑓3, 𝑈𝑚𝑓1, 𝑈∗𝑚𝑓4 ∶ 𝑚 ≥ 1} ∈ 𝐵𝒲 .
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Proof. As (𝑉1, 𝑉2) is irreducible, there is nonon-trivial closed (𝑈, 𝑃𝒲1
)-reducing

subspace of𝒲 and hence, it follows immediately from the above lemma that

𝒲 =𝒲.
Since 𝑓 ∈ 𝐸1, and

span{𝑓1, 𝑓4} = 𝐸𝜆 ⊕𝐸−𝜆 = span{𝑓1, 𝑓3},
and 𝑈𝑚𝑓1 ∈ ran𝑄, 𝑈∗𝑚𝑓4 ∈ ran𝑄⟂ for all𝑚 ≥ 1, it follows that

{𝑓, 𝑓1, 𝑓3, 𝑈𝑚𝑓1, 𝑈∗𝑚𝑓4 ∶ 𝑚 ≥ 1}
is an orthonormal basis for𝒲. □

We are now ready to prove the main result of this section, which serves as a
foundational component of the article’s overall contribution. Recall (see Theo-
rem 4.9) again that for an irreducible 3-finite pair (𝑉1, 𝑉2),

𝛽(𝑉1,𝑉2) = unique nonzero eigenvalue of [𝑉∗
2 , 𝑉1].

Theorem 5.3. Let (𝑉1, 𝑉2) onℋ and (�̃�1, �̃�2) on ℋ̃ be irreducible 3-finite pairs.
Then (𝑉1, 𝑉2) and (�̃�1, �̃�2) are jointly unitarily equivalent if and only if

𝛽(𝑉1,𝑉2) = 𝛽(�̃�1,�̃�2).

Proof. If (𝑉1, 𝑉2) and (�̃�1, �̃�2) are unitarily equivalent, then clearly 𝛽(𝑉1,𝑉2) =
𝛽(�̃�1,�̃�2). For the non-trivial direction, assume that

𝛽 ∶= 𝛽(𝑉1,𝑉2) = 𝛽(�̃�1,�̃�2).
As usual, we define

𝒲 = ker(𝑉1𝑉2)∗, 𝒲𝑖 = ker𝑉∗
𝑖 ,

and
�̃� = ker(�̃�1�̃�2)∗, �̃�𝑖 = ker �̃�∗

𝑖 ,
for all 𝑖 = 1, 2. Define

𝜆 ∶= |𝛽|.
By Theorem 4.9, we have

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = 𝜎(𝐶(�̃�1, �̃�2)) ∩ (0, 1) = {𝜆}.
In viewof Theorem2.3, we consider theBCL triples (𝒲, 𝑈, 𝑃𝒲1

) and (�̃�, �̃�, 𝑃�̃�1
),

where 𝑈 is the unitary on𝒲 given by

𝑈 = [𝑉2|𝒲1
𝑉∗
1 |𝑉1𝒲2

] ∶𝒲1 ⊕𝑉1𝒲2 → 𝑉2𝒲1 ⊕𝒲2,

and �̃� is the unitary on �̃� given by

�̃� = [�̃�2|�̃�1
�̃�∗
1 |�̃�1�̃�2

] ∶ �̃�1 ⊕𝑉1�̃�2 → �̃�2�̃�1 ⊕ �̃�2.

It suffices to show that the triples (𝒲, 𝑈, 𝑃𝒲1
) and (�̃�, �̃�, 𝑃�̃�1

) are unitarily
equivalent, that is, we claim that there is a unitary Π ∶𝒲 → �̃� such that

Π𝑈Π−1 = �̃� and Π𝑃𝒲1
Π−1 = 𝑃�̃�1

.
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We recall that 𝐸𝜇 ∶= ker(𝐶(𝑉1, 𝑉2) − 𝜇𝐼ℋ) for a scalar 𝜇 (see (2.9)). Set

�̃�𝜇 = ker(𝐶(�̃�1, �̃�2) − 𝜇𝐼ℋ̃).

We know (see (4.13) or Theorem 4.9) that

ran[𝑉∗
2 , 𝑉1] = 𝐸1 = ℂ𝑓(𝑉1,𝑉2) =𝒲1 ∩𝒲2,

and
ran[�̃�∗

2 , �̃�1] = �̃�1 = ℂ𝑓(�̃�1,�̃�2) = �̃�1 ∩ �̃�2.
As in the construction of Section 4, suppose

{𝑒±𝜆} ∈ 𝐵𝐸𝜆⊕𝐸−𝜆 and {𝑒±𝜆} ∈ 𝐵�̃�𝜆⊕�̃�−𝜆 .

Also, as in Corollary 4.7 (or see (4.8) and (4.9)), define

𝑓1 =
√

1 + 𝜆
2 𝑒𝜆 + �̄�

√
1 − 𝜆
2 𝑒−𝜆, 𝑓4 =

√
1 + 𝜆
2 𝑒𝜆 − �̄�

√
1 − 𝜆
2 𝑒−𝜆,

and

𝑓2 =
𝑓1 − 𝜆𝑓4√
1 − 𝜆2

, and 𝑓3 =
𝑓4 − 𝜆𝑓1√
1 − 𝜆2

,

for some unimodular constant 𝛼. Clearly, 𝑓𝑖 ∈ 𝒲, 𝑖 = 1, 2, 3, 4. Following
(5.1), define

𝑔𝑖 ∶=
1

⟨𝑓3, 𝑈∗𝑓(𝑉1,𝑉2)⟩
𝑓𝑖,

for all 𝑖 = 1, 2, 3, 4. By (a) and (b) of Lemma 4.8 and (5.2), we conclude that

⎧

⎨
⎩

𝑈𝑓(𝑉1,𝑉2) = −𝛽
𝜆
𝑔2,

𝑈𝑔3 = 𝑓(𝑉1,𝑉2),
(5.3)

where the first equality follows from the fact that

𝑈𝑓(𝑉1,𝑉2) = ⟨𝑈𝑓(𝑉1,𝑉2), 𝑔2⟩𝑔2.

Corollary 5.2 yields

{𝑓(𝑉1,𝑉2), 𝑔1, 𝑔3, 𝑈
𝑚𝑔1, 𝑈∗𝑚𝑔4 ∶ 𝑚 ≥ 1} ∈ 𝐵𝒲 .

Similarly, we have the vectors 𝑓𝑖 ∈ �̃�, 𝑖 = 1, 2, 3, 4, defined by

𝑓1 =
√

1 + 𝜆
2 𝑒𝜆 + ̄̃𝛼

√
1 − 𝜆
2 𝑒−𝜆, 𝑓4 =

√
1 + 𝜆
2 𝑒𝜆 − ̄̃𝛼

√
1 − 𝜆
2 𝑒−𝜆,

and

𝑓2 =
𝑓1 − 𝜆𝑓4√
1 − 𝜆2

, and 𝑓3 =
𝑓4 − 𝜆𝑓1√
1 − 𝜆2

,

for some unimodular constant �̃�. Also, define

𝑔𝑖 ∶=
1

⟨𝑓3, �̃�∗𝑓(𝑉1,𝑉2)⟩
𝑓𝑖,
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for all 𝑖 = 1, 2, 3, 4. As above, we again have

⎧

⎨
⎩

�̃�𝑓(𝑉1,𝑉2) = −𝛽
𝜆
𝑔2

�̃�𝑔3 = 𝑓(𝑉1,𝑉2),
(5.4)

and
{𝑓(𝑉1,𝑉2), 𝑔1, 𝑔3, �̃�

𝑚𝑔1, �̃�∗𝑚𝑔4 ∶ 𝑚 ≥ 1} ∈ 𝐵�̃� .
A simple computation shows that

{
𝑔4 = (

√
1 − 𝜆2)𝑔3 + 𝜆𝑔1

𝑔4 = (
√
1 − 𝜆2)𝑔3 + 𝜆𝑔1.

(5.5)

Define the unitary Π ∶𝒲 → �̃� by

Π𝑓(𝑉1,𝑉2) = 𝑓(𝑉1,𝑉2),

and

Π𝑓 =
⎧

⎨
⎩

𝑔𝑗 if 𝑓 = 𝑔𝑗 for 𝑗 = 1, 3
�̃�𝑚𝑔1 if 𝑓 = 𝑈𝑚𝑔1
�̃�∗𝑚𝑔4 if 𝑓 = 𝑈∗𝑚𝑔4,

for𝑚 ≥ 1. It is clear from the definition of Π and the identity (5.5) that

Π𝑔4 = 𝑔4,

and consequently

Π𝑔2 = Π
(𝑔1 − 𝜆𝑔4√

1 − 𝜆2

)
=
𝑔1 − 𝜆𝑔4√
1 − 𝜆2

,

that is,
Π𝑔2 = 𝑔2. (5.6)

It is now easy to see that
(Π𝑈Π−1)𝑔1 = �̃�𝑔1.

Moreover

(Π𝑈Π−1)𝑔3 = Π𝑈𝑔3 = Π𝑓(𝑉1,𝑉2) = 𝑓(𝑉1,𝑉2) = �̃�𝑔3,

where the second and fourth equalities follow by an appeal to (5.3) and (5.4)
respectively. For all𝑚 ≥ 1, we also have

(Π𝑈Π−1)
(
�̃�𝑚𝑔1

)
= (Π𝑈)

(
𝑈𝑚𝑔1

)
= Π

(
𝑈𝑚+1𝑔1

)
= (�̃�)𝑚+1𝑔1 = �̃�

(
�̃�𝑚𝑔1

)
,

and similarly,

(Π𝑈Π−1)
(
�̃�∗𝑚𝑔4

)
= �̃�∗(𝑚−1)𝑔4 = �̃�(�̃�∗𝑚𝑔4).

Finally, by (5.3), (5.6), and (5.4), it follows that

(Π𝑈Π−1)𝑓(𝑉1,𝑉2) = Π𝑈𝑓(𝑉1,𝑉2) = Π
(
−
𝛽
𝜆
𝑔2
)
= −

𝛽
𝜆
𝑔2 = �̃�𝑓(𝑉1,𝑉2).
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This proves that Π𝑈Π−1 = �̃�. The verification of Π𝑃𝒲1
Π−1 = 𝑃�̃�1

is easy and
is left to the reader. This completes the proof of the theorem. □

Now it is important to furnish explicit examples of irreducible 3-finite pairs.
We start with invariant subspaces of 𝐿2(𝕋2). For each nonzero 𝑟 in (−1, 1) and
unimodular function 𝜑 ∈ 𝐿∞(𝕋2), define

ℒ𝜑,𝑟 = 𝜑
(
𝐻2(𝔻2)

⨁( ∞⨁

𝑗=0
𝑧𝑗span

{ �̄�
1 − 𝑟𝑧�̄�

}))

Then ℒ𝜑,𝑟 is (jointly) invariant under (𝐿𝑧, 𝐿𝑤), and

[(𝐿𝑤|ℒ𝜑,𝑟
)∗, 𝐿𝑧|ℒ𝜑,𝑟

] = [(𝐿𝑤|ℒ𝜑,𝑟
)∗, 𝐿𝑧|ℒ𝜑,𝑟

]∗ ≠ 0.

In fact, Izuchi and Ohno proved that ℒ𝜑,𝑟 are the only invariant subspaces of
𝐿2(𝕋2) that satisfies the above self-adjoint condition (see [IO94, Theorem 1 ]).
This observation was one of the keys to the construction of invariant subspaces
of𝐻2(𝔻2) with self-adjoint and nonzero cross-commutators [II06].

Example 5.4. For each nonzero 𝑟 in (−1, 1), there exists an inner function 𝜑 ∈
𝐻∞(𝔻2) such that [II06, Theorem 2]

𝒮𝑟 = 𝜑
(
𝐻2(𝔻2)

⨁( ∞⨁

𝑗=0
𝑧𝑗span

{ �̄�
1 − 𝑟𝑧�̄�

}))
. (5.7)

is an invariant subspace of 𝐻2(𝔻2) (see (1.4) for the definition of invariant sub-
spaces of𝐻2(𝔻2)) and

[(𝑀𝑤|𝒮𝑟)
∗,𝑀𝑧|𝒮𝑟 ]

∗ = [(𝑀𝑤|𝒮𝑟)
∗,𝑀𝑧|𝒮𝑟 ] ≠ 0,

and
rank[(𝑀𝑤|𝒮𝑟)

∗,𝑀𝑧|𝒮𝑟 ] = 1.
A simple computation reveals that (see [II06, proof of Theorem 3]) 𝑟 is the only
nonzero eigenvalue of [(𝑀𝑤|𝒮𝑟)

∗,𝑀𝑧|𝒮𝑟 ]. Moreover, the pair (𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟) is an
irreducible 3-finite pair (See [Yang19, Example 8.9, Page 246], and

𝜎(𝐶(𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟)) ∩ (0, 1) = {|𝑟|}.

That is, |𝑟| is the unique eigenvalue of the defect operator of (𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟) lying
in (0, 1).

Example 5.5. Let 𝛾 be a unimodular constant and let 𝑟 be a nonzero real number
in (−1, 1). Consider the submodule 𝒮𝑟 as in (5.7), and then, consider the isometric
pair (𝛾𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟) on 𝒮𝑟. It is easy to see that

𝐶
(
𝛾𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟

)
= 𝐶(𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟),

and
[(𝑀𝑤|𝒮𝑟)

∗, 𝛾𝑀𝑧|𝒮𝑟 ] = 𝛾[(𝑀𝑤|𝒮𝑟)
∗,𝑀𝑧|𝒮𝑟 ].
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It follows immediately from the discussion of Example 5.4 that (𝛾𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟) is
an irreducible 3-finite pair with

𝜎(𝐶(𝛾𝑀𝑧|𝒮𝑟 ,𝑀𝑤|𝒮𝑟)) ∩ (0, 1) = {|𝑟|},

and

𝜎([(𝑀𝑤|𝒮𝑟)
∗, 𝛾𝑀𝑧|𝒮𝑟 ]) ∩ (0, 1) = {𝛾𝑟}.

The above example, together with Theorem 5.3, immediately yields a com-
plete characterization of irreducible 3-finite pairs.

Theorem 5.6. Let (𝑉1, 𝑉2) be an irreducible 3-finite pair on a Hilbert spaceℋ.
Then there exist 𝜆 ∈ (0, 1), a unimodular constant 𝛾, and an inner function 𝜑 ∈
𝐻∞(𝔻2) (depending on 𝜆) such that

𝜎(𝐶(𝑉1, 𝑉2)) ∩ (0, 1) = {𝜆},

and

𝜎([𝑉∗
2 , 𝑉1]) ⧵ {0} = {𝛾𝜆},

and

(𝑉1, 𝑉2) ≅ (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆)

where 𝒮𝜆 is the invariant subspace of𝐻2(𝔻2) of the form

𝒮𝜆 = 𝜑
(
𝐻2(𝔻2)

⨁( ∞⨁

𝑗=0
𝑧𝑗span

{ �̄�
1 − 𝜆𝑧�̄�

}))
.

Proof. The existence of 𝜆 and 𝛾 follow from Theorem 4.9. Here, note that

[𝑉∗
2 , 𝑉1]𝑓 = 𝛽𝑓,

and 𝛾 is the unique unimodular constant such that 𝛽 = 𝛾𝜆 (compare with (3)
and (5) of Theorem 4.9). With this particular 𝜆 and 𝛾, we now apply Example
5.5 to conclude that

(𝑉1, 𝑉2) ≅ (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆),

for some inner function 𝜑 ∈ 𝐻∞(𝔻2). This completes the proof of the theorem.
□

The following intriguing and direct ramifications of Theorem 5.3 and Exam-
ple 5.5 are worth highlighting: Let 𝛾1 and 𝛾2 be unimodular constants, and let 𝑟
be a nonzero number in (−1, 1). Consider the invariant subspace 𝒮𝑟 of 𝐻2(𝔻2)
as defined in (5.7). Then:

(1) (𝛾1𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) ≅ (𝛾2𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) if and only if 𝛾1 = 𝛾2.
(2) (𝛾1𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) ≅ (𝑀𝑧|𝒮𝜆 , 𝛾2𝑀𝑤|𝒮𝜆) if and only if 𝛾1 = �̄�2.
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6. Classification of 𝟐-finite pairs
The focus of this section is a complete characterization of irreducible 2-finite

pairs. Let (𝑉1, 𝑉2) be an irreducible 2-finite pair on ℋ. First, we claim the
following crucial spectral property:

𝜎(𝐶(𝑉1, 𝑉2)) ⧵ {0} = {±1}.

Indeed, an argument similar to the proof of Proposition 4.3 yields that, in this
case also

dim𝐸1 = 1.
Since rank𝐶(𝑉1, 𝑉2) = 2, it follows immediately from Theorem 2.5 that

dim𝐸−1 = 1.

We conclude that the only nonzero eigenvalues of 𝐶(𝑉1, 𝑉2) are {±1}, and

dim𝐸1 = 1 = dim𝐸−1.

Therefore,
(ker𝐶(𝑉1, 𝑉2))⟂ = 𝐸1 ⊕𝐸−1.

Let 𝑒1 and 𝑒−1 denote unit vectors in 𝐸1 and 𝐸−1 respectively. Then Corollary
3.6 and Lemmas 4.1 and 4.2 imply that

rank[𝑉∗
2 , 𝑉1] = dim𝐸1 = 1,

and
ran[𝑉∗

2 , 𝑉1] = 𝐸1,
and

[𝑉∗
2 , 𝑉1]|𝐸⟂1 = 0.

In particular, there exists a nonzero scalar 𝛼 such that

[𝑉∗
2 , 𝑉1] = 𝛼𝑒1 ⊗ 𝑒1.

Same computation as in Section 4 (see, in particular, the equality (4.5)) yields
that

𝑉∗
2𝑉1𝑒1 = 𝛼𝑒1, and 𝑉∗

1𝑉2𝑒1 = 𝛼𝑒1.
Let

𝒩 =𝒲 ⊖ (ker𝐶(𝑉1, 𝑉2))⟂.
Clearly, with respect to the decomposition𝒲 = 𝐸1 ⊕𝐸−1 ⊕𝒩, we have

𝐶(𝑉1, 𝑉2)|𝒲 =
⎡
⎢
⎣

𝐼𝐸1
−𝐼𝐸−1

0

⎤
⎥
⎦
.

Recall that 𝐶(𝑉1, 𝑉2)|𝒲 = 𝑃𝒲1
− 𝑃𝑉2𝒲1

. Hence,

𝑃𝒲1
− 𝑃𝑉2𝒲1

=
⎡
⎢
⎣

𝐼𝐸1
−𝐼𝐸−1

0

⎤
⎥
⎦
.
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Thus, Theorem 3.1 implies

𝑃𝒲1
=
⎡
⎢
⎣

𝐼𝐸1
0

𝑄

⎤
⎥
⎦
,

and

𝑃𝑉2𝒲1
=
⎡
⎢
⎣

0
𝐼𝐸−1

𝑄

⎤
⎥
⎦
,

where 𝑄 ∶𝒩 →𝒩 is a projection. Then

𝑃𝒲2
= 𝐼𝒲 − 𝑃𝑉2𝒲1

=
⎡
⎢
⎣

𝐼𝐸1
0

𝑄⟂

⎤
⎥
⎦
,

and

𝑃𝑉1𝒲2
= 𝐼𝒲 − 𝑃𝒲1

=
⎡
⎢
⎣

0
𝐼𝐸−1

𝑄⟂

⎤
⎥
⎦
.

Consider the unitary 𝑈 on𝒲 as given by Theorem 2.3:

𝒲 =𝒲1 ⊕𝑉1𝒲2 =𝒲2 ⊕𝑉2𝒲1,

and
𝑈 = [𝑉2|𝒲1

𝑉∗
1 |𝑉1𝒲2

] ∶𝒲1 ⊕𝑉1𝒲2 → 𝑉2𝒲1 ⊕𝒲2.

Since
𝒲1 = 𝐸1 ⊕ ran𝑄,

and
𝑉2𝒲1 = 𝐸−1 ⊕ ran𝑄,

and since 𝑈 = 𝑉2 on𝒲1, it follows that

𝑉2𝑒1 = 𝑈𝑒1 = ⟨𝑈𝑒1, 𝑒−1⟩𝑒−1 + 𝑔,

for some 𝑔 ∈ ran𝑄. Since ran𝑄 ⊂𝒲1, applying 𝑉∗
1 on both sides of the preced-

ing equation and then using the definition of 𝑈, we obtain that

𝛼𝑒1 = 𝑉∗
1𝑉2𝑒1 = ⟨𝑈𝑒1, 𝑒−1⟩𝑉∗

1𝑒−1 = ⟨𝑈𝑒1, 𝑒−1⟩𝑈𝑒−1.

This shows that 𝑈(𝐸−1) = 𝐸1. Moreover, since ⟨𝑈𝑒1, 𝑒−1⟩ is a unimodular con-
stant, we have |𝛼| = 1. As

𝒲2 = 𝐸1 ⊕ ran𝑄⟂, 𝑉1𝒲2 = 𝐸−1 ⊕ ran𝑄⟂,

and 𝑈∗ = 𝑉1 on𝒲2, there exists ℎ ∈ ran𝑄⟂ such that

𝑉1𝑒1 = 𝑈∗𝑒1 = ⟨𝑈∗𝑒1, 𝑒−1⟩𝑒−1 + ℎ.

As before, since ran𝑄⟂ ⊂ 𝒲2, by applying 𝑉∗
2 on both sides of the preceding

equality and then using the definition of 𝑈 we find that

𝛼𝑒1 = 𝑉∗
2𝑉1𝑒1 = ⟨𝑈∗𝑒1, 𝑒−1⟩𝑉∗

2𝑒−1 = ⟨𝑈∗𝑒1, 𝑒−1⟩𝑈∗𝑒−1.
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This shows that
𝑈∗(𝐸−1) = 𝐸1,

and hence, 𝐸1⊕𝐸−1 reduces𝑈. On the other hand, we know that 𝐸1 ⊂𝒲1 and
𝐸−1(⊂ 𝑉1𝒲2) is orthogonal to𝒲1. It is now obvious that𝐸1⊕𝐸−1 reduces 𝑃𝒲1

.
In other words, 𝐸1⊕𝐸−1 ⊆𝒲 reduces (𝑈, 𝑃𝒲1

). But (𝑉1, 𝑉2) and equivalently
(𝑈, 𝑃𝒲1

) is irreducible. Therefore,

𝒲 = 𝐸1 ⊕𝐸−1.

Then𝒩 = {0} and hence
𝒲1 = 𝐸1 =𝒲2.

At this point, we recall the following result from Bercovici, Douglas, and Foias
[BDF06, Corollary 4.3]:

Theorem 6.1. Let (𝑇1, 𝑇2) be an irreducible isometric pair. Suppose

dim(ker𝑇∗𝑖 ) <∞ (𝑖 = 1, 2).

Then each 𝑇𝑖 , 𝑖 = 1, 2, is either shift, or a constant multiple of the identity.

Returning to our context, we immediately have the following:

Corollary 6.2. 𝑉1 and 𝑉2 are unilateral shifts.

Since
𝒲1 = ker𝑉∗

1 = span{𝑒1},
we conclude that 𝑉1 is a unilateral shift of multiplicity one, that is, 𝑉1 ≅ 𝑀𝑧 on
𝐻2(𝔻). More specifically

𝑊(𝑉𝑛
1 𝑒1) = 𝑧𝑛 (𝑛 ≥ 0),

defines a unitary𝑊 ∶ℋ → 𝐻2(𝔻) such that

𝑊𝑉1 = 𝑀𝑧𝑊.

Then (𝑉1, 𝑉2) onℋ is jointly unitarily equivalent to (𝑀𝑧,𝑊𝑉2𝑊∗) on 𝐻2(𝔻).
As𝑊𝑉2𝑊∗ commutes with𝑀𝑧, there exists an inner function 𝜃 ∈ 𝐻∞(𝔻) such
that

𝑊𝑉2𝑊∗ = 𝑀𝜃.
Again it follows from

dim(ker𝑀∗
𝜃) = dim(ker𝑊𝑉∗

2𝑊
∗)

= dim(ker𝑉∗
2 )

= dim𝒲2

= 1,

that
𝜃(𝑧) = 𝑐 𝑧 − 𝑎

1 − �̄�𝑧 (𝑧 ∈ 𝔻),

for some 𝑎 ∈ 𝔻 and unimodular constant 𝑐. Consequently,

ker𝑀∗
𝜃 = span{𝑘𝑎},
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where
𝑘𝑎(𝑧) =

1
1 − �̄�𝑧 (𝑧 ∈ 𝔻),

is the Szegö kernel on 𝔻. But
𝒲1 =𝒲2,

implies that
ℂ = ker𝑀∗

𝑧 = ker𝑀∗
𝜃 = span {𝑘𝑎},

which forces that 𝑎 = 0. We have thus proved that:
(𝑉1, 𝑉2) onℋ ≅ (𝑀𝑧, 𝑐𝑀𝑧) on𝐻2(𝔻),

for some unimodular constant 𝑐. Consequently
𝛼 = nonzero eigenvalue of the cross-commutator [𝑉∗

2 , 𝑉1] onℋ
= nonzero eigenvalue of the cross-commutator [(𝑐𝑀𝑧)∗,𝑀𝑧] on𝐻2(𝔻)
= 𝑐.

The summary of the above observations provides a complete classification of
irreducible 2-finite pairs:

Theorem 6.3. Let (𝑉1, 𝑉2) be an irreducible 2-finite pair. Then {±1} are the only
nonzero eigenvalues of 𝐶(𝑉1, 𝑉2). Moreover

rank[𝑉∗
2 , 𝑉1] = 1,

and there exists a unimodular constant 𝛼 such that
𝜎([𝑉∗

2 , 𝑉1]) ⧵ {0} = {𝛼}.
Moreover

(𝑉1, 𝑉2) ≅ (𝑀𝑧, �̄�𝑀𝑧).
Conversely, if 𝛼 is unimodular constant, then (𝑀𝑧, �̄�𝑀𝑧) on 𝐻2(𝔻) is an irre-
ducible 2-finite pair with {±1} as the only nonzero eigenvalues of 𝐶(𝑀𝑧, �̄�𝑀𝑧).

Note that the pair (𝑀𝑧, �̄�𝑀𝑧) is acting on the Hardy space𝐻2(𝔻). The details
of the converse part of the above result are routine, and we leave the details to
the reader.
The following result, which is an immediate consequence of Theorem 6.3,

says that for a 2-finite pair, the nonzero eigenvalue of the cross-commutator is
a complete invariant.

Theorem 6.4. Let (𝑉1, 𝑉2) onℋ and (𝑉1, 𝑉2) on ℋ̃ be irreducible 2-finite pairs.
Let

𝜎([𝑉∗
2 , 𝑉1]) ⧵ {0} = {𝛼},

and
𝜎([𝑉2

∗, 𝑉1]) ⧵ {0} = {�̃�}.
Then

(𝑉1, 𝑉2) ≅ (𝑉1, 𝑉2),
if and only if

𝛼 = �̃�.
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7. Classification of 𝟏-finite pairs
This short section classifies irreducible 1-finite pairs. In contrast to 3 and 2-

finite pairs, this class is simple, and the structure can be easily derived. Indeed,
this is simply the pair of shifts on𝐻2(𝔻2):

Theorem 7.1. Let (𝑉1, 𝑉2) be an irreducible isometric pair on aHilbert spaceℋ.
Then (𝑉1, 𝑉2) is 1-finite if and only if

(𝑉1, 𝑉2) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

Proof. It is a standard fact that (𝑀𝑧,𝑀𝑤) is irreducible. Moreover, (𝑀𝑧,𝑀𝑤) is
doubly commuting, that is, [𝑀∗

𝑤,𝑀𝑧] = 0, and also (see the identity (3) preced-
ing Definition 1.3)

𝐶(𝑀𝑧,𝑀𝑤) = 𝑃ℂ.
Therefore, (𝑀𝑧,𝑀𝑤) on 𝐻2(𝔻2) is an irreducible 1-finite pair. For the reverse
direction, consider an 1-finite irreducible isometric pair (𝑉1, 𝑉2) on a Hilbert
spaceℋ. We again recall that

(1) 𝐸1 = ker𝑉∗
1 ∩ ker𝑉

∗
2 (see Lemma 4.1),

(2) [𝑉∗
2 , 𝑉1]|𝐸⟂1 = 0, and ran[𝑉∗

2 , 𝑉1] ⊆ 𝐸1 (see Lemma 4.2), and
(3) rank𝐶(𝑉1, 𝑉2) = 2rank[𝑉∗

2 , 𝑉1] + dim𝐸1 −dim𝐸−1 (see Corollary 3.6).
By assumption, rank𝐶(𝑉1, 𝑉2) = 1. Then, in view of Theorem 2.5, we know
that either 1 or−1 is the only nonzero eigenvalue of 𝐶(𝑉1, 𝑉2). If−1 is the only
nonzero eigenvalue of 𝐶(𝑉1, 𝑉2), then

dim𝐸1 = 0.

Therefore,
rank[𝑉∗

2 , 𝑉1] = 0,
and hence, by the rank identity (3) above, we have

rank𝐶(𝑉1, 𝑉2) = 2 × 0 + 0 − 1
= −1,

an impossibility. Therefore, 1 is the only nonzero eigenvalue of𝐶(𝑉1, 𝑉2). Then

𝐸−1 = {0}.

Since rank𝐶(𝑉1, 𝑉2) = 1, the rank identity in (3) above again forces that

[𝑉∗
2 , 𝑉1] = 0,

that is, (𝑉1, 𝑉2) is a doubly commuting pair onℋ. The Wold decomposition of
doubly commuting pairs (1.3) yields the orthogonal decomposition into reduc-
ing subspaces

ℋ =ℋ𝑢𝑢 ⊕ℋ𝑢𝑠 ⊕ℋ𝑠𝑢 ⊕ℋ𝑠𝑠,
where 𝑉1|ℋ𝑖𝑗

is a shift if 𝑖 = 𝑠 and unitary if 𝑖 = 𝑢, and 𝑉2|ℋ𝑖𝑗
is a shift if 𝑗 = 𝑠

andunitary if 𝑗 = 𝑢. Nevertheless, due to the irreducibility of (𝑉1, 𝑉2), precisely
one summand will survive. We claim thatℋ𝑠𝑠 is the one who will last. Indeed,
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if (𝑊1,𝑊2) is an isometric pair such that at least one of𝑊1 and𝑊2 is unitary,
then an easy computation reveals that

𝐶(𝑊1,𝑊2) = 0.

Consequently, in the present situation, we have that

𝐶(𝑉1|ℋ𝑖𝑗
, 𝑉2|ℋ𝑖𝑗

) = 0,

whenever at least one of 𝑖, 𝑗 is 𝑢. Therefore,

ℋ =ℋ𝑠𝑠 ≠ {0}.

The representation of shift part of theWold decomposition for doubly commut-
ing pairs [JS14, Theorem 3.1] yields

ℋ𝑠𝑠 =
⨁

𝑚,𝑛≥0
𝑉𝑚
1 𝑉

𝑛
2

(
ker(𝑉1|ℋ𝑠𝑠

)∗ ∩ ker(𝑉2|ℋ𝑠𝑠
)∗
)
.

However, we know from (1) above that

𝐸1 = ker(𝑉1|ℋ𝑠𝑠
)∗ ∩ ker(𝑉2|ℋ𝑠𝑠

)∗.

Since dim𝐸1 = 1, there exists unit vector 𝑓 ∈ℋ such that

𝐸1 = ℂ𝑓.

Therefore, there exists a unitary 𝑈 ∶ℋ𝑠𝑠 → 𝐻2(𝔻2) such that

𝑈(𝑉𝑚
1 𝑉

𝑛
2𝑓) = 𝑧𝑚𝑤𝑛 (𝑚, 𝑛 ≥ 0).

Moreover, 𝑈𝑉1 = 𝑀𝑧𝑈 and 𝑈𝑉2 = 𝑀𝑤𝑈 (see [JS14] for more details), that is,
(𝑉1, 𝑉2) ≅ (𝑀𝑧,𝑀𝑤). This completes the proof of the theorem. □

With this, we now have a thorough understanding of irreducible 𝑛-finite
pairings for all 𝑛 = 1, 2, 3. In the following section aims to show that irre-
ducible 1, 2, and 3-finite pairs are all irreducible 𝑛-finite pairs.

8. Compact normal pairs
In this section, we obtain complete representations of compact normal pairs.

As we will see, aggregating all previously learned results will archive this. In-
deed, we will see that along with the 3 and 2 and 1-finite pairs obtained before,
shift-unitary pairs (see Definition 1.9) will also serve as the fundamental build-
ing blocks of compact normal pairs.
We fix a compact normal pair (𝑉1, 𝑉2) onℋ. As usual, following (2.9), we

write
𝐸𝜆 ∶= 𝐸𝜆(𝐶(𝑉1, 𝑉2)) (𝜆 ∈ ℝ).

Recall from Lemmas 4.1 and 4.2 that

ran[𝑉∗
2 , 𝑉1] = ran[𝑉∗

2 , 𝑉1]
∗ ⊆ 𝐸1 =𝒲1 ∩𝒲2,

where𝒲𝑖 = ker𝑉∗
𝑖 , 𝑖 = 1, 2, and

[𝑉∗
2 , 𝑉1]|𝐸⟂1 = [𝑉∗

1 , 𝑉2]|𝐸⟂1 = 0.
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We first consider the case when dim𝐸1 ≥ 1. The case when 𝐸1 = {0} is easy
and will be discussed later in Remark 8.8. Let

dim𝐸1 ∶= 𝑘 ∈ ℕ ∪ {∞},

and suppose {𝑓1,… , 𝑓𝑘} is an orthonormal basis of𝐸1 consisting of eigen vectors
of [𝑉∗

2 , 𝑉1] (by treating [𝑉
∗
2 , 𝑉1]|𝐸1 on 𝐸1 as a normal operator). There exist

scalars {𝜆1,… , 𝜆𝑘} (possibly repeated) such that

[𝑉∗
2 , 𝑉1]𝑓𝑖 = 𝜆𝑖𝑓𝑖,

for 𝑖 = 1, 2,… , 𝑘. Finally, for each 𝑖 = 1,… , 𝑘, we define a closed subspaceℋ𝑖
ofℋ as

ℋ𝑖 ∶= span{𝑉𝑚
1 𝑉

𝑛
2𝑓𝑖 ∶ 𝑚, 𝑛 ≥ 0}.

These spaces are of interest, which we now analyze thoroughly. First, we prove
that these spaces are jointly reducing (see Definition 1.6).

Lemma 8.1. ℋ𝑖 reduces (𝑉1, 𝑉2) for all 𝑖 = 1, 2,… , 𝑘.

Proof. The proof is exactly the same as the proof of the reducibility of 𝒮 in
Proposition 4.3. □

Moreover, we claim that:

Lemma 8.2. (𝑉1|ℋ𝑖
, 𝑉2|ℋ𝑖

) is irreducible for all 𝑖 = 1, 2,… , 𝑘.

Proof. Fix an 𝑖. Note that

𝐶(𝑉1|ℋ𝑖
, 𝑉2|ℋ𝑖

) = 𝐶(𝑉1, 𝑉2)|ℋ𝑖
.

By the definition ofℋ𝑖, we have

𝐸1
(
𝐶(𝑉1|ℋ𝑖

, 𝑉2|ℋ𝑖
)
)
= ℂ𝑓𝑖.

Suppose𝒦 is a nonzero closed subspace ofℋ𝑖. Assume that𝒦 reduces (𝑉1, 𝑉2).
Since

dim𝐸1
(
𝐶(𝑉1|ℋ𝑖

, 𝑉2|ℋ𝑖
)
)
= 1,

an easy consequence of the spectral theorem for compact and self-adjoint opera-
tors (cf. [DSPS24, Lemma2.6]) implies that𝑓𝑖 ∈ 𝒦, and consequently,𝒦 =ℋ𝑖.
This completes the proof. □

The following orthogonality relation will be useful in what follows.

Lemma 8.3.
⟨
𝑉𝑚
2 𝑓𝑖, 𝑉

𝑛
1𝑓𝑗

⟩
= 0 for 𝑖 ≠ 𝑗 and𝑚, 𝑛 ∈ ℤ+.

Proof. Since 𝑓𝑗 ∈𝒲1 ∩𝒲2, it follows that

𝑉∗
2𝑉1𝑓𝑗 = [𝑉∗

2 , 𝑉1]𝑓𝑗 + 𝑉1𝑉∗
2𝑓𝑗

= 𝜆𝑗𝑓𝑗.

Then, similar computation as in the proof of Proposition 4.3 (or, see (4.1)) yields
that (note that 𝑉∗

2𝑉
𝑛
1𝑓𝑗 = 𝑉𝑛−1

1 𝑉∗
2𝑉1𝑓𝑗)

𝑉∗
2𝑉

𝑛
1𝑓𝑗 = 𝑉𝑛−1

1 𝑉∗
2𝑉1𝑓𝑗 = 𝜆𝑗𝑉𝑛−1

1 𝑓𝑗,
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for all 𝑛 ≥ 1. Repeated application of the above yields

𝑉∗𝑚
2 𝑉𝑛

1𝑓𝑗 = {
𝜆𝑚𝑗 𝑉

𝑛−𝑚
1 𝑓𝑗 if𝑚 ≤ 𝑛

0 if𝑚 > 𝑛,

where the final equality is due to the fact that 𝑉∗(𝑚−𝑛)
2 𝑓𝑗 = 0 for 𝑚 > 𝑛. Then

the above equality implies
⟨
𝑉𝑚
2 𝑓𝑖, 𝑉

𝑛
1𝑓𝑗

⟩
=
⟨
𝑓𝑖, 𝑉∗𝑚

2 𝑉𝑛
1𝑓𝑗

⟩

= {
⟨
𝑓𝑖, 𝜆𝑚𝑗 𝑉

𝑛−𝑚
1 𝑓𝑗

⟩
if𝑚 ≤ 𝑛,

0 if𝑚 > 𝑛.
= 0,

and completes the proof of the lemma. □

It is now natural to expect that:

Lemma 8.4. ℋ𝑖 ⟂ℋ𝑗 for all 𝑖 ≠ 𝑗.

Proof. Suppose 𝑖 ≠ 𝑗. It is enough to show that

{𝑉𝑚
1 𝑉

𝑛
2𝑓𝑖 ∶ 𝑚, 𝑛 ≥ 0} ⟂ {𝑉𝑚

1 𝑉
𝑛
2𝑓𝑗 ∶ 𝑚, 𝑛 ≥ 0}.

Let𝑚1, 𝑛1, 𝑚2, 𝑛2 ≥ 0. Since 𝑓𝑖, 𝑓𝑗 ∈𝒲1 ∩𝒲2, it follows that
⟨
𝑉𝑚1
1 𝑉𝑛1

2 𝑓𝑖, 𝑉
𝑚2
1 𝑉𝑛2

2 𝑓𝑗
⟩
= 0,

whenever 𝑚1 ≥ 𝑚2, 𝑛1 ≥ 𝑛2 or 𝑚1 ≤ 𝑚2, 𝑛1 ≤ 𝑛2. If 𝑚1 < 𝑚2 and 𝑛1 > 𝑛2,
then Lemma 8.3 implies

⟨
𝑉𝑚1
1 𝑉𝑛1

2 𝑓𝑖, 𝑉
𝑚2
1 𝑉𝑛2

2 𝑓𝑗
⟩
=
⟨
𝑉𝑛1−𝑛2
2 𝑓𝑖, 𝑉

𝑚2−𝑚1
1 𝑓𝑗

⟩

= 0.

The remaining case when𝑚1 > 𝑚2 and 𝑛1 < 𝑛2 is treated in a similar manner
and is left to the reader. □

The nonzero part of the defect operator is contained in the direct sumofℋ𝑖’s.
More specifically:

Lemma 8.5.
(
ker𝐶(𝑉1, 𝑉2)

)⟂
⊆ ⊕𝑘

𝑖=1ℋ𝑖.

Proof. Let
ℋ0 =ℋ ⊖

(
⊕𝑘
𝑖=1 ℋ𝑖

)
.

Thenℋ0 reduces (𝑉1, 𝑉2), and consequently, (𝑉1|ℋ0
, 𝑉2|ℋ0

) is a BCL pair on
ℋ0. Clearly

𝐶(𝑉1|ℋ0
, 𝑉2|ℋ0

) = 𝐶(𝑉1, 𝑉2)|ℋ0
,

and
[(𝑉2|ℋ0

)∗, 𝑉1|ℋ0
] = [𝑉∗

2 , 𝑉1]|ℋ0
.

By the definition ofℋ𝑖’s, we have

𝐸1 ⊂ ⊕𝑘
𝑖=1ℋ𝑖.
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Since [𝑉∗
2 , 𝑉1] = 0 on 𝐸⟂1 , we conclude that

[(𝑉2|ℋ0
)∗, 𝑉1|ℋ0

] = 0,
and

dim𝐸1(𝐶(𝑉1|ℋ0
, 𝑉2|ℋ0

)) = 0.
Therefore, it follows from Corollary 3.7 that 𝐶(𝑉1|ℋ0

, 𝑉2|ℋ0
) has finite rank,

and consequently, Corollary 3.6 implies
rank 𝐶(𝑉1|ℋ0

, 𝑉2|ℋ0
) = 2rank [(𝑉2|ℋ0

)∗, 𝑉1|ℋ0
] + dim𝐸1(𝐶(𝑉1|ℋ0

, 𝑉2|ℋ0
))

− dim𝐸−1(𝐶(𝑉1|ℋ0
, 𝑉2|ℋ0

))
= −dim𝐸−1(𝐶(𝑉1|ℋ0

, 𝑉2|ℋ0
)).

Therefore,
𝐶(𝑉1|ℋ0

, 𝑉2|ℋ0
) = 0,

which completes the proof. □

Before we proceed to the final lemma of this section, we fix some notations.
Set

ℋ0 ∶=ℋ ⊖ (
𝑘⨁

𝑖=1
ℋ𝑖), (8.1)

and for each 𝑖 = 0,… , 𝑘, define
(𝑉1,𝑖, 𝑉2,𝑖) ∶= (𝑉1|ℋ𝑖

, 𝑉2|ℋ𝑖
).

Clearly, (𝑉1,𝑖, 𝑉2,𝑖) is a BCL pair on ℋ𝑖, 𝑖 = 0, 1,… , 𝑘. We have the following
(see Definition 1.9 for the notion of shift-unitary pairs):

Lemma 8.6. (𝑉1,0, 𝑉2,0) is a shift-unitary pair.

Proof. By Lemma 8.5,
𝐶(𝑉1,0, 𝑉2,0) = 0,

which implies that (𝑉1,0, 𝑉2,0) is a doubly commuting BCL pair onℋ0 [MSS19,
Theorem 6.5]. By (1.3), the Wold decomposition for doubly commuting pairs,
there is a unique orthogonal decomposition of ℋ0 into (𝑉1,0, 𝑉2,0)-reducing
subspaces

ℋ0 =ℋ𝑢𝑢 ⊕ℋ𝑢𝑠 ⊕ℋ𝑠𝑢 ⊕ℋ𝑠𝑠,
where 𝑉1,0 onℋ𝑖𝑗 is a shift (respectively, unitary) if 𝑖 = 𝑠 (respectively, 𝑖 = 𝑢)
and 𝑉2,0 onℋ𝑖𝑗 is a shift (respectively, unitary) if 𝑗 = 𝑠 (respectively, 𝑗 = 𝑢).
As (𝑉1,0, 𝑉2,0) is a BCL pair, we must have that

ℋ𝑢𝑢 = {0}.
By the construction ofℋ𝑠𝑠 [JS14, Theorem 3.1], it follows that

ℋ𝑠𝑠 =
⨁

𝑚,𝑛≥0
𝑉𝑚
1,0𝑉

𝑛
2,0
(
ker𝑉∗

1,0 ∩ ker𝑉
∗
2,0
)
.

On the other hand, Lemma 4.1 implies

𝐸1(𝐶(𝑉1,0, 𝑉2,0)) = ker𝑉∗
1,0 ∩ ker𝑉

∗
2,0.
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Then
ℋ𝑠𝑠 =

⨁

𝑚,𝑛≥0
𝑉𝑚
1,0𝑉

𝑛
2,0𝐸1(𝐶(𝑉1,0, 𝑉2,0)).

Observe that
𝐸1(𝐶(𝑉1,0, 𝑉2,0)) = 𝐸1(𝐶(𝑉1, 𝑉2)|ℋ0

) = {0},
and hence

ℋ𝑠𝑠 = {0}.
Thus,

ℋ𝑢𝑢 =ℋ𝑠𝑠 = {0}.
Hence,ℋ0 =ℋ𝑢𝑠 ⊕ℋ𝑠𝑢 and the result follows. □

Let us establish one terminology for the purpose of future reference.

Definition 8.7. Let (𝑉1, 𝑉2) onℋ be a compact normal pair. Letℋ0 be as in
(8.1). The shift-unitary part of (𝑉1, 𝑉2) is the pair (𝑉1,0, 𝑉2,0) defined by

(𝑉1,0, 𝑉2,0) = (𝑉1|ℋ0
, 𝑉2|ℋ0

).

Remark 8.8. Let (𝑉1, 𝑉2) onℋ be a compact normal pair. Assume that𝐸1 = {0}.
By Lemma 4.2, we know

[𝑉∗
2 , 𝑉1] = 0,

and so, by Corollary 3.7, 𝐶(𝑉1, 𝑉2) has finite rank, and consequently, it follows
from Corollary 3.6 that

𝐶(𝑉1, 𝑉2) = 0.
Therefore, in this case,ℋ =ℋ0 and consequently

(𝑉1, 𝑉2) = (𝑉1,0, 𝑉2,0).

An appeal to Lemma 8.6 immediately yields that (𝑉1, 𝑉2) onℋ is a shift-unitary
pair.

The following theorem highlights all of the results achieved so far in this
section:

Theorem 8.9. Let (𝑉1, 𝑉2) be a compact normal pair onℋ. Define

𝑘 ∶= dim𝐸1(𝐶(𝑉1, 𝑉2)) ∈ [0,∞].

Then the following holds:
(1) There exist 𝑘 + 1 closed (𝑉1, 𝑉2)-reducing subspaces {ℋ𝑗}𝑘𝑗=0 such that

ℋ =
𝑘⨁

𝑗=0
ℋ𝑗,

where

ℋ𝑗 ∶= span{𝑉𝑚
1 𝑉

𝑛
2𝑓𝑗 ∶ 𝑚, 𝑛 ≥ 0} (𝑗 = 1,… , 𝑘),
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and

ℋ0 =ℋ ⊖ (
𝑘⨁

𝑗=1
ℋ𝑗),

and {𝑓𝑖}𝑘𝑖=1 is an orthonormal basis of 𝐸1(𝐶(𝑉1, 𝑉2)) consisting of eigen-
vectors of the cross-commutator [𝑉∗

2 , 𝑉1].
(2) (𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 is irreducible, where

(𝑉1,𝑖, 𝑉2,𝑖) ∶= (𝑉1|ℋ𝑖
, 𝑉2|ℋ𝑖

),

for all 𝑖 = 1,… , 𝑘.
(3) (𝑉1,0, 𝑉2,0) onℋ0 is a shift-unitary pair, where

(𝑉1,0, 𝑉2,0) = (𝑉1|ℋ0
, 𝑉2|ℋ0

).

We continue with the assumptions and conclusion of the previous theorem.
Our aim is to analyze the structure of the irreducible pair (𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 for
𝑖 = 1, 2,⋯ , 𝑘. Note that the structure of (𝑉1,0, 𝑉2,0) is clear from part (3) of the
preceding theorem.
We fix an 𝑖 ∈ {1,⋯ , 𝑘}, and set

𝐸1,𝑖 ∶= 𝐸1
(
𝐶(𝑉1,𝑖, 𝑉2,𝑖)

)
.

It is clear from the definition of the spaceℋ𝑖 and Lemma 4.1 that

𝐸1,𝑖 = ker𝑉∗
1,𝑖 ∩ ker𝑉

∗
2,𝑖 = ℂ𝑓𝑖. (8.2)

Then
[𝑉∗

2,𝑖, 𝑉1,𝑖]|ℋ𝑖⊖𝐸1,𝑖 = 0.
Moreover, [𝑉∗

2,𝑖, 𝑉1,𝑖]𝑓𝑖 = 𝜆𝑖𝑓𝑖 implies that

rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = {

0 if 𝜆𝑖 = 0
1 if 𝜆𝑖 ≠ 0.

We first consider the case when 𝜆𝑖 = 0. In this case, [𝑉∗
2,𝑖, 𝑉1,𝑖] = 0 and hence,

(𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 is doubly commuting. By [MSS19, Theorem6.5],𝐶(𝑉1,𝑖, 𝑉2,𝑖) ≥
0 and therefore

dim𝐸−1
(
𝐶(𝑉1,𝑖, 𝑉2,𝑖)

)
= 0.

Consequently, by the second part of Theorem 3.5, we have

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = dim𝐸1,𝑖 = 1.

Then
ker

(
𝐶(𝑉1,𝑖, 𝑉2,𝑖)

)⟂
= 𝐸1,𝑖,

and hence
𝒲𝑖 ∶= ker(𝑉1,𝑖𝑉2,𝑖)∗ = 𝐸1,𝑖 ⊕ (𝒲𝑖 ⊖𝐸1,𝑖).

With respect to this decomposition of𝒲𝑖, we write

𝐶(𝑉1,𝑖, 𝑉2,𝑖)|𝒲𝑖
= [

𝐼𝐸1,𝑖
0] .
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As (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible doubly commuting BCL pair onℋ𝑖 with nonzero
defect operator, it follows directly from the construction ofWold decomposition
for doubly commuting pairs [JS14, Theorem 3.1] that

ℋ𝑖 =
⨁

𝑚,𝑛≥0
𝑉𝑚
1,𝑖𝑉

𝑛
2,𝑖𝐸1,𝑖,

and 𝑉1,𝑖 and 𝑉2,𝑖 are unilateral shifts. More specifically

(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

Now we consider the case when 𝜆𝑖 ≠ 0. Since rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1, an appeal to

Corollary 3.7 yields that

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) <∞,

and consequently, Corollary 3.6 implies

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 3 − dim𝐸−1,𝑖, (8.3)

where
𝐸−1,𝑖 ∶= 𝐸−1(𝐶(𝑉1,𝑖, 𝑉2,𝑖)).

Clearly
dim𝐸−1,𝑖 ≤ 3.

If dim𝐸−1,𝑖 = 3, then (8.3) implies 𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 0, a contradiction. Therefore,

dim𝐸−1,𝑖 ∈ {0, 1, 2}.

We now consider three separate cases:
(i) Suppose dim𝐸−1,𝑖 = 2. Since dim𝐸1,𝑖 = 1 (see (8.2)), it follows that

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) ≥ 3.

On the other hand, it follows from (8.3) that, in this case

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 1,

a contradiction. Therefore,

dim𝐸−1,𝑖 ≠ 2.

(ii) Suppose dim𝐸−1,𝑖 = 1. We know, by (8.3), that

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 2.

Thus, (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 2-finite pair. This class of pairs was
classified earlier in Theorem 6.3, leading us to conclude the existence
of a unimodular constant 𝛼 such that

𝜎([𝑉∗
2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {𝛼}.
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(iii) Finally, if dim𝐸−1,𝑖 = 0, then (8.3) again implies that

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 3.

Therefore, in this case, (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 3-finite pair onℋ𝑖,
which was classified in Theorem 5.6. Consequently, there exist 𝜆 ∈
(0, 1) and unimodular constant 𝛾 such that

𝜎(𝐶(𝑉1,𝑖, 𝑉2,𝑖)) ∩ (0, 1) = {𝜆},

and
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {𝛾𝜆}.
Summarizing the foregoing discussion, we have:

Proposition 8.10. In the setting of Theorem 8.9, fix 𝑖 ∈ {1,… , 𝑘}. Then

rank[𝑉∗
2,𝑖, 𝑉1,𝑖] ∈ {0, 1},

and we have the following:
(1) If rank[𝑉∗

2,𝑖, 𝑉1,𝑖] = 0, then

(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

(2) If rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1, then

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) ∈ {2, 3}.

(a) If rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 2, then (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 2-finite pair,
and

𝜎(𝐶(𝑉1,𝑖, 𝑉2,𝑖)) ⧵ {0} = {±1}, and 𝜎([𝑉∗
2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {𝛼}

for some unimodular constant 𝛼.
(b) If rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 3, then (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 3-finite pair,

and there exist 𝜆 ∈ (0, 1), and a unimodular constant 𝛾 such that

𝜎(𝐶(𝑉1,𝑖, 𝑉2,𝑖)) ∩ (0, 1) = {𝜆},

and
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {𝜆𝛾}.

In view of this, themain result concerning a complete description of compact
normal pairs can now be stated. In essence, the description is a summary of all
the major outcomes in this paper so far, specifically Theorem 5.6, and Theorem
6.3, Theorem 8.9, and Proposition 8.10.

Theorem 8.11. Let (𝑉1, 𝑉2) be a compact normal pair onℋ. Define

𝑘 ∶= dim𝐸1
(
𝐶(𝑉1, 𝑉2)

)
∈ [0,∞].

Then there exist 𝑘 + 1 closed (𝑉1, 𝑉2)-reducing subspaces {ℋ𝑖}𝑘𝑖=0 ofℋ such that

ℋ =
𝑘⨁

𝑖=0
ℋ𝑖.
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Set
(𝑉1,𝑖, 𝑉2,𝑖) = (𝑉1|ℋ𝑖

, 𝑉2|ℋ𝑖
),

for all 𝑖 = 0, 1,… , 𝑘. Then, we have the following:
(1) (𝑉1,0, 𝑉2,0) onℋ0 is a shift-unitary pair.
(2) For each 𝑖 = 1,… , 𝑘, the pair (𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 is irreducible and is uni-

tarily equivalent to one of the following three pairs:
(a) (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).
(b) (𝑀𝑧, 𝛼𝑀𝑧) on𝐻2(𝔻) for some unimodular constant 𝛼.
(c) (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) on 𝒮𝜆 where 𝒮𝜆 is the invariant subspace of𝐻

2(𝔻2)
given by

𝒮𝜆 = 𝜑
(
𝐻2(𝔻2)

⨁( ∞⨁

𝑗=0
𝑧𝑗span

{ �̄�
1 − 𝜆𝑧�̄�

}))
,

for some 𝜆 ∈ (0, 1), unimodular constant 𝛾 and inner function 𝜑 ∈
𝐻∞(𝔻2).

In the following section, we use this result to explain a complete set of unitary
invariants for compact normal pairs. The discourse that precedes Proposition
8.10 also gives, in particular, that

rank𝐶(𝑉1,𝑖, 𝑉2,𝑖) = 1, 2, or 3,

for all 𝑖 = 1,… , 𝑘. This yields the complete list of irreducible 𝑛-finite pairs.
More specifically:

Corollary 8.12. An irreducible 𝑛-finite pair is either 1-finite, 2-finite, or 3-finite.

Keep in mind that 𝑛-finite pairs with 𝑛 > 3 still exist, but irreducible 𝑛-finite
pairs for 𝑛 = 1, 2, and 3 will build them up. In particular, 𝑛-finite pairs, 𝑛 > 3,
are always reducible.

9. Complete unitary invariants
In this section, we analyze the main results in terms of unitary invariants.

First, we note, as already pointed out in the results obtained so far (see Theorem
5.6, Theorem 6.3, Theorem 8.9, and Proposition 8.10), that the decomposition
in Theorem 8.11 is unique (up to unitary equivalence) and canonical. In order
to be more specific, let us continue with the assumptions and outcomes of The-
orem 8.11. Recall that {𝑓1,… , 𝑓𝑘} was assumed to be an orthonormal basis of
𝐸1
(
𝐶(𝑉1, 𝑉2)

)
consisting of eigen vectors of [𝑉∗

2 , 𝑉1], where

𝑘 = dim𝐸1(𝐶(𝑉1, 𝑉2)) ∈ [0,∞].

Then
ℋ𝑖 ∶= span{𝑉𝑚

1 𝑉
𝑛
2𝑓𝑖 ∶ 𝑚, 𝑛 ≥ 0},
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reduces (𝑉1, 𝑉2) for all 𝑖 = 1,… , 𝑘. Moreover, we have the remaining space

ℋ0 ∶=ℋ ⊖ (
𝑘⨁

𝑖=1
ℋ𝑖).

Recall
(𝑉1,𝑖, 𝑉2,𝑖) ∶= (𝑉1|ℋ𝑖

, 𝑉2|ℋ𝑖
),

for all 𝑖 = 0, 1,… , 𝑘, where (𝑉1,0, 𝑉2,0) onℋ0 is a shift-unitary pair, and for each
𝑖 ∈ {1,… , 𝑘}, the pair (𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 satisfies the following properties:

(1) (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 1-finite pair if and only if

(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

Moreover, in this case

rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 0.

(2) (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 2-finite pair if and only if there exists uni-
modular constant 𝛼 such that

(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧, 𝛼𝑀𝑧) on𝐻2(𝔻).

Moreover, in this case

rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1,

and
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {�̄�}.

(3) (𝑉1,𝑖, 𝑉2,𝑖) is an irreducible 3-finite pair if and only if there exist 𝜆 ∈
(0, 1) and a unimodular constant 𝛾 such that

(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) on 𝒮𝜆.

Moreover, in this case

rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1,

and
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} = {𝜆𝛾}.
Now we turn to the problem of computing complete unitary invariants. We

fix a compact normal pair (𝑉1, 𝑉2) on a Hilbert space ℋ. We adhere to the
conclusion and the identical notation as presented in the preceding discussion
and Theorem 8.11. Recall the notation that

𝑘 = dim𝐸1(𝐶(𝑉1, 𝑉2)).

Suppose
𝑘 > 0.

We construct a sequence

𝛼(𝑉1,𝑉2) = {𝛼𝑖}𝑘𝑖=1 ⊆ ℂ,
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as follows:

𝛼𝑖 ∶= {
0 if rank[𝑉∗

2,𝑖, 𝑉1,𝑖] = 0
𝜎([𝑉∗

2,𝑖, 𝑉1,𝑖]) ⧵ {0} if rank[𝑉∗
2,𝑖, 𝑉1,𝑖] = 1.

If
𝑘 = 0,

then we define
𝛼(𝑉1,𝑉2) = empty sequence.

The cardinality of the sequence {𝛼𝑖} is the number 𝑘 = dim𝐸1(𝐶(𝑉1, 𝑉2)).

Definition 9.1. The sequence

𝛼(𝑉1,𝑉2) = {𝛼𝑖}𝑘𝑖=1 ⊆ ℂ,

is referred to as the fundamental sequence associated to the isometric pair (𝑉1, 𝑉2).

The term “fundamental sequence” finds its rationale in the fact that this se-
quence is determined by the action of the cross-commutator on the fundamen-
tal building blocks consisting of irreducible 𝑛-finite pairs, 𝑛 = 1, 2, 3. In terms
of fundamental sequence, the discussion at the beginning of this section results
in the following:

(1) 𝛼𝑖 = 0 if and only if
(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧,𝑀𝑤) on𝐻2(𝔻2).

(2) |𝛼𝑖| = 1 if and only if
(𝑉1,𝑖, 𝑉2,𝑖) ≅ (𝑀𝑧, �̄�𝑖𝑀𝑧) on𝐻2(𝔻).

(3) 0 < |𝛼𝑖| < 1 if and only if
(𝑉1,𝑖, 𝑉2,𝑖) onℋ𝑖 ≅ (𝛾𝑀𝑧|𝒮𝜆 ,𝑀𝑤|𝒮𝜆) on𝐻

2(𝔻2),
where 𝜆 ∈ (0, 1), and 𝛾 is a unimodular constant such that 𝜆𝛾 = 𝛼𝑖.

Therefore, we have the following:

(𝑉1|ℋ⟂
0
, 𝑉2|ℋ⟂

0
) ≅ 𝑀1 ⊕𝑀2 ⊕𝑀3,

where
𝑀1 =

⨁

{𝑖∶𝛼𝑖=0}
(𝑀𝑧,𝑀𝑤),

and
𝑀2 =

⨁

{𝑖∶|𝛼𝑖|=1}
(𝑀𝑧, �̄�𝑖𝑀𝑧),

and
𝑀3 =

⨁

{𝑖∶0<|𝛼𝑖|<1 with 𝛼𝑖=𝜆𝑖𝛾𝑖 ,
𝜆𝑖∈(0,1),|𝛾𝑖|=1}

(𝛾𝑖𝑀𝑧|𝒮𝜆𝑖 ,𝑀𝑤|𝒮𝜆𝑖 ).

In summary of the above discussion, the shift-unitary part, along with the fun-
damental sequence, serves as a complete unitary invariant for compact normal
pairs. More formally:
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Theorem 9.2. Let (𝑉1, 𝑉2) be a compact normal pair onℋ. Let

𝛼(𝑉1,𝑉2) = {𝛼𝑖}𝑘𝑖=1,

denote the fundamental sequence associated to (𝑉1, 𝑉2) with cardinality 𝑘 ∈
[0,∞]. Also, let (𝑉1,0, 𝑉2,0) onℋ0 denote the shift-unitary part of (𝑉1, 𝑉2).
(i) Then

(𝑉1|ℋ⟂
0
, 𝑉2|ℋ⟂

0
) ≅ 𝑀1 ⊕𝑀2 ⊕𝑀3,

where𝑀𝑖 , 𝑖 = 1, 2, 3, are defined as above.
(ii) Let (𝑉1, 𝑉2) on ℋ̃ be another compact normal pair. Suppose �̃�(�̃�1,�̃�2) =

{�̃�𝑖}�̃�𝑖=1 is the associated fundamental sequence with cardinality �̃� ∈ [0,∞]. As-
sume that (�̃�1,0, �̃�2,0) on ℋ̃0 denotes the shift-unitary part of (�̃�1, �̃�2). Then the
following are equivalent:

(1) (𝑉1, 𝑉2) ≅ (𝑉1, 𝑉2).
(2) (𝑉1,0, 𝑉2,0) ≅ (�̃�1,0, �̃�2,0), and [𝑉∗

2 , 𝑉1]|ℋ0
⟂ ≅ [𝑉2

∗, 𝑉1]|ℋ̃0
⟂ .

(3) (𝑉1,0, 𝑉2,0) ≅ (�̃�1,0, �̃�2,0), 𝑘 = �̃�, and there exists a permutation 𝜎 of
{1, 2,⋯ , 𝑘} such that

𝛼𝑖 = �̃�𝜎(𝑖) (𝑖 = 1, 2,⋯ , 𝑘).

Our aim in the following remark is to examine the unitary equivalence of the
shift-unitary parts of compact normal pairs (more specifically, the first part of
(3) of the above theorem). We assert that this part is the simplest of the entire
equivalence problem.

Remark 9.3. Let (𝑉1, 𝑉2) be a shift-unitary pair on a Hilbert spaceℋ. First we
write the two summands of reducing subspaces as (see Definition 1.9)

ℋ =ℋ𝑢𝑠 ⊕ℋ𝑠𝑢.

By symmetry, it is now evident to explore unitary equivalence of (𝑉1|ℋ𝑠𝑢
, 𝑉2|ℋ𝑠𝑢

).
More generally, we consider a commuting pair (𝑊1,𝑊2) on a Hilbert space 𝒦
such that𝑊1 is a shift and𝑊2 is a unitary. Therefore, there exist a Hilbert space
𝒲 and a unitary 𝑈 ∶ 𝒦 → 𝐻2

𝒲(𝔻) such that (refer to the discourse given at the
outset of Section 2)

𝑈𝑊1 = 𝑀𝑧𝑈.
Since 𝑊2 is a unitary commuting and ∗-commuting with the shift 𝑊1, it fol-
lows that a constant function yields the analytic Toeplitz representation of𝑊2 on
𝐻2
𝒲(𝔻). In other words, there exists a unitary operator𝑊 ∈ ℬ(𝒲) such that

𝑈𝑊2 = (𝐼𝐻2(𝔻) ⊗𝑊)𝑈.

Therefore, the pair {𝑊,𝒲} is a complete set of unitary invariants for shift-unitary
pairs of the above type.

Given the outcomes of this paper, we are compelled to pose the following
natural question:



COMPACT AND NORMAL ISOMETRIC PAIRS 1063

Question 9.4. Classify isometric pairs (𝑉1, 𝑉2) acting onHilbert spaces such that

[𝑉∗
2 , 𝑉1] = compact.

It perhaps necessitates differentmethodologies. As far as the presentmethod-
ology is concerned, our approach involved identifying a complete list of irre-
ducible compact normal pairs and thereafter representing a typical compact
normal pair as a direct sum of them. In the present paper, the irreducible 𝑛-
finite pairs, where 𝑛 is equal to 1, 2, and 3, as well as the shift-unitary pairs,
have served as distinguished building blocks.
An essential step in answering the questionmight include identifying certain

irreducible pairs of isometries that satisfy the above compactness condition.
A further strategy could involve incorporating the defect operator of isomet-
ric pairs, as was demonstrated in this paper. Defect operators are indeed very
significant; however, they alone do not provide substantial information about
pairs. For instance, consider the pairs (𝑀𝑧,𝑀𝑧) and (𝑀𝑧, 𝛾𝑀𝑧) on the Hardy
space𝐻2(𝔻), where

𝛾 ∈ 𝕋 ⧵ {1},
is a fixed scalar. An easy computation yields

𝐶(𝑀𝑧,𝑀𝑧) = 𝐶(𝑀𝑧, 𝛾𝑀𝑧).

However, it is easy to see that (𝑀𝑧,𝑀𝑧) and (𝑀𝑧, 𝛾𝑀𝑧) are not jointly unitarily
equivalent. As observed earlier, these are the examples of 2-finite pairs. Some
of the results of the present paper could also be helpful in answering the above
question. For instance, Theorem 3.5 is true for all isometric pairs.
Question 9.4 has an 𝑛-variable analogy, 𝑛 > 2. It is important to note, nev-

ertheless, that operator and function theory depart considerably when 𝑛 rises
from two to three or even larger.

Question 9.5. Classify 𝑛-tuples, 𝑛 > 2, of commuting isometries (𝑉1,… , 𝑉𝑛)
acting on Hilbert spaces such that

[𝑉∗
𝑖 , 𝑉𝑗] = compact,

or
[𝑉∗

𝑖 , 𝑉𝑗] = compact and normal,
for all 𝑖 ≠ 𝑗.
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