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Weighted norm inequalities for maximal
operator and extrapolation on variable
Lebesgue spaces underlying
nonhomogeneous trees

Luobin Liu and Jiang Zhou

ABSTRACT. This paper aims to study the weighted strong and weak norm
inequalities for maximal operator and the extrapolation theorem on variable
Lebesgue spaces in the context of nonhomogeneous trees equipped with flow
measures. For this, we introduce a class of continuity condition, which play
akeyrole in this paper. Furthermore, in virtue of extrapolation, the weighted
norm inequalities for the sharp maximal operator are established.
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1. Introduction

The theory of harmonic analysis in the context of trees originally emerged
from the study of automorphism groups and discrete Laplace operators, as shown
in [10, 12]. Since the 1970s, this topic has attracted numerous mathematicians.
For research on the properties of certain operators on trees, one can refer to
[18, 27, 28]. In 2023, Levi, Santagati, Tabacco and Vallarino [22] investigated
infinite nonhomogeneous trees with flow measures satisfying the local dou-
bling condition. They obtained the weak and strong-type estimates for maximal
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operators, developed the Calderén-Zygmund decomposition theory, and intro-
duced Hardy spaces and BMO spaces in this setting. Analogous to the classi-
cal Muckenhoupt weight theory initially established by Muckenhoupt in [23]
and the discrete Muckenhoupt weights first developed by Saker and Agarwal
in [30]. In 2024, Ottazzi, Santagati and Vallarino [26] developed the A, weight
theory on this type of infinite nonhomogeneous trees. Our work focuses on the
weighted variable Lebesgue spaces in this setting.

The origins of variable Lebesgue spaces can be traced back to the work of Or-
licz [25] in 1931. In addition to their intrinsic research value, these spaces also
have significant applications in partial differential equations and variational in-
tegrals with non-standard growth conditions, as seen, for example [17, 15]. In
the field of physics, variable Lebesgue spaces play a crucial role in the math-
ematical modeling of electrorheological fluids, as seen in [14]. However, it is
widely acknowledged that the modern study of variable Lebesgue spaces be-
gan with the work of Kovacik and Rakosnik [19] in 1991, who extended certain
properties of classical Lebesgue spaces to variable Lebesgue spaces. Later, re-
searchers focused much attention on finding the conditions for the exponent
function to obtain the boundedness of the Hardy-Littlewood maximal operator
on variable Lebesgue spaces, for detailed information, refer to [29, 11, 2, 3, 7].

In variable Lebesgue spaces, there are two different ways to establish the
Ap(y weights: one treats the weight as a measure, and the other as a multiplier.
In 2012, Cruz-Uribe, Fiorenza and Neugebauer [6] introduced a class of Apey
weights using the second approach and established the boundedness of the
Hardy-Littlewood maximal operator. This method had previously been used
for fractional integral non-diagonal weighted inequalities and two-weight norm
inequalities, as seen in [24, 4]. In 2017, Cruz-Uribe and Wang [8] extended the
Rubio de Francia extrapolation theorem based on the A, weights from [6].
In the context of trees, we will also adopt the second approach to define A,
weights. Besides, there has been extensive work and exploration to determine
the conditions required for the boundedness of the Hardy-Littlewood maximal
operator on weighted variable Lebesgue spaces, as seen in[1, 5, 16, 20, 21].
In 2022, Cruz-Uribe and Cummings [9] generalized the boundedness of the
Hardy-Littlewood maximal operator on weighted variable Lebesgue spaces to
homogeneous spaces.

Inspired by the aforementioned works, the main goal of this paper is to study
the necessary and sufficient conditions for the boundedness of maximal op-
erators on weighted variable Lebesgue spaces underlying infinite nonhomo-
geneous trees equipped with flow measures. In addition, we also extend the
Rubio de Francia extrapolation theorem. The organization of the paper is as
follows: In Section 2, we review the definitions and existing results related
to these nonhomogeneous trees. Moreover, we provide precise definitions of
(weighted) variable Lebesgue spaces, globally Holder continuity condition, and
Ap(y weights, along with the necessary lemmas for proving the main results of
the paper. In Section 3, the necessary and sufficient conditions for the weighted
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boundedness of maximal operators are presented. In Section 4, we establish the
Rubio de Francia extrapolation theorem, and as an application, a sharp maxi-
mal operator weighted norm inequality is derived.

Finally, we illustrate some of the notations in the paper. We always denote
by C a positive constant, which is independent of the main parameters, but
it may vary from line to line. For a measurable set E, we denote by yp the
characteristic function of E. [-] represents the ceiling functions, Z denotes the
set of all integers, C is the set of complex numbers and N = {0, 1,2, ---}.

2. Preliminary

2.1. Nonhomogeneous trees equipped with flow measures.Let T =
(V, &) be a tree, which is a connected and acyclic graph, where V is the set
of vertices and & is the set of edges. If we endow V with a natural distance d,
then the tree T can be uniquely represented by this metric space, see [12]. For
X, y € V,we say x, y are neighbours if and only if d(x,y) = 1 and denote as
x ~ y. According to the definition of a tree, there exists a unique path between
any two vetices x and y, which is referred to as the geodesic and denoted as
[x,y]. By fixing a reference vertex called the origin of the tree, denote as o and
selecting a semi-infinite geodesic that passes through the origin and extends to
the boundary of the tree, the boundary vertex is denoted as . This tree can be
viewed as hanging downward from the vetex ¢. These choices naturally induce
a partial order ralation <, namely, x < y if and only if y € [x,{). Defining the
projection of x on the geodesic [0, {) as

F(x) = arg min d(x,y).
y€lo.)

Further, the level of x is defined as
I(x) =d(o,F(x)) —d(F(x),x), VxeV.

After endowing the tree T with aforementioned level struction, for each ver-
tex x € V, the parent and the sons of x are defined respectively as

pX)={y eV i(y)=1x)+1, dlx,y) =1}

sx)={yeV: i(y)=1x)—-1, dlx,y) =1}
Next, in order to define the integral, it is necessary to equip the tree T with a
measure. We refer to the definition of the flow measure in [22] as follows.

Definition 2.1. A flow measure is a function i : V — (0, c0) that satisfies the
following conditions

pA) = Y ux), ACV and u(x) = ), u®).
XEA yes(x)

For a function f : ¥V — C and a subeset A C V, the integral of f over A is
defined as

f F®du®) = Y, fFOIuG).
A

YEA
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In the following discussion, we will always base our exposition on the flow
measure u and the definition of the integral. According to the definition of
the flow measure, it is straightforward to observe that the measure of vertices
increases with the level of the hierarchy, and the rate of growth accelerates pro-
gressively. Consequently, this measure clearly does not satisfy the doubling
condition for balls defined in the usual sense. To obtain a relationship analo-
gous to the doubling condition, it is necessary to employ two specific types of
sets in place of balls.

Definition 2.2. [26] For hy, h, € N, h; < h,, the trapezoid rooted at x € V is
defined by

R(x) := RZf(x) ={yeV:y<xh <dxy) <hl

It is worth noting that ,u(RZf (x)) = (hy — hy)u(x). Given a constant 3 > 12, the

trapezoid R with root x is called admissible if 2 < % < B or R = {x}. Further,
1
the envelope of R(x) is defined as the set

5 h
R() =R ;f](x).
3

This envelope is also referred to as the Calderén-Zygmund set. We denote by
Z the family of all trapezoids and &% the family of all Calderén-Zygmund sets.

Next, several results on the space (V,d, u) from [22] and [26] that are re-
quired for this paper are presented.

Lemma 2.3. Let R be an admissible trapezoid, then u(R) < 2Bu(R).

Lemma 2.4. Let Ry, R, € Z with roots X, X, respectively, such that Ry NR, # (}
and u(x;) > u(x,). Then R, C R;.

Lemma 2.5. Given A > 0, f € LY V), set Q = {x € V : My,f(x) > A}
and %, = {Re% L

H(R)
admissible trapezoids R; € ., j € N\{0} such that Q C | J Rj.
J

Jr 1FOldu(x) > A¢, then there exist pairwise disjoint

Lemma 2.6. Thereexists a family{R;}; C % suchthatR; C R;,; andU;R; = V.

Lemma 2.7. Let R be an admissible trapezoid. Then R is contained in the union
of at most 4 admissible trapezoids Qy, ..., Q4 with u(Q;) ~g u(R).

Lemma 2.8. Let u be a flow measure. Assume that x, = o and X, = p(x;) for
k > 0. Foreveryr € N, it holds

:u(Sr(O)) = ,u(xr—l) + lu(xr)s
where S,(0) represents the sphere centered at o with radius r and is denoted as
S, (0)={xeV:d(x,o)=r}

Lemma 2.9. Let u be a flow measure and satisfies locally doubling condition,
then there exists a constant ¢ > 2 such that u(x) < cu(y), Vx € V,y € s(x).
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2.2. Variable Lebesgue spaces.

Definition 2.10. Define (V) as the set of all functions p(-) : V — [1, oo]. For
given p(-) € P(V) and the set E € V, we define

p_(E) := irégp(x), p+(E) :=sup p(x).

x€E

For convenience, we write p_ = p_(V), p; = p+(V).
Next, we define three canonical subsets of V.
Definition 2.11. Let p(-) € P(V), define
Vi={xeV:px)=1}, Vy :={x eV : plx)=o00}, V, :=VP\(V;UV).

Definition 2.12. Given p(-) € P(V) and a function f : V — C, the modular
functional of f associated with p(-) is defined as

Py () = f FPOd() + 1 .
MV,

If f is unbounded on V,, we define p,.y(f) = co.

Remark 2.13. Let p(-) € P(V), according to the aforementioned definition,
on one hand, if p, (V\V,) < oo, then for 4 > 1,

PpyAf) < AP+(M\Vdp o ().
On the other hand, if p, < oo, then for4 > 1,

AP=pp) () < ppy(Af) < AP+ ()
For 0 < 1 < 1, the converse inequalities hold.

Definition 2.14. Given p(-) € P(V)and f : V — C, the variable Lebesgue
space LPO)(V) is defined as the set of all functions f such that Pp)(f/A) < o0
for some 1 > 0. Futher, we define the Luxemburg norm

- f
I lLropy 2= inf {/1 >0 oy (I) < 1},

If the set on the right-hand side of the equation is the empty set, we write
1 llzeercvy = o0. We always write || f|zeo vy = IS [l pc)-

Remark 2.15. Obviously, pj, (%) is continuous and monotonically decreas-
ing with respect to A. Further, pp, (%) — 0as A — oo. Therefore, f € LPO(V)
is equivalent to || f]| ) < o0.

Remark 2.16. Let (V,d, u) be a metric measure space. Suppose p(-) € P(V),
then || - || . is a norm and LP®)(V) is a Banach space from [7].

Next, we discuss some fundamental results related to exponent functions p(-)
and the norm || - || ). The proofs of these results are almost identical to those
in [7], and therefore, we omit the detailed proof here.
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Lemma 2.17. Let p(-) € P(V), then pp.y and || - || o) have the following proper-
ties:
@ IfIf ()] < |18 forall x € V, then ppy(f) < ppy(8) and [Ifl|pc

gl pc-
(ii) For A >0,

IA

Pp-»(f)
() £ 252
(iif) lIm'fnp(.) < 1, then ppy(f) < Ifllpe I Ifllpey > L. then ppey(f)
p(C)
@) S1fllpy < sup Sy, 1FCNIEEO] dua(x) < 201 -
geLl?’ O,
llgllpr¢H<1

v

As a corollary of the third property, the following relationship between norm
and modular holds.

Lemma 2.18. Let p(-) € P(V). For any set E C 7V, the following inequalities
hold

; p-(E) p+(E) p-(E) p+(E)
min {||f el % £ 2llEe S < ppeo(F ) < mac{l f el PN el )

The following lemma is about the generalized Holder’s inequality for the
norm of variable Lebesgue spaces.
Lemma 2.19. Let p(-), r(-), q(-) € P(V) satisfy
1 1 1
= + :
p(x) qx) r(x)
Then there exists a constant L such that for all f € LIO(V) and g € L'O(V),
fge LPO(V) with the norm

1£&llpcy < LIfllgeollgllrey-

Definition 2.20. Given a function r(-) : V — [0,0]. r(-) is called globally
Holder continuous, if there exists a constant B > 0 and ry € [1, o) such that,
forallx € V,

_B

14+d(x,0)

We denote r(-) satisfying the aforementioned conditions as r(-) € GH(V).
Remark 2.21. Letr(-) € P(V). Ifr, < oo, then r(-) € GH(V) is equivalent to

% € GH(7V), i.e., there exists a constant B’ such that, forall x € V,
"

[r(x) —rol <

BI
————.
1+ d(x,0)

1 1
r(x) ro

In fact, for given x € V,
r(x)—r
(ry)?

r(x)—r

1 _ 1) i~ h
e |

r(x) o
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Lemma 2.22. Let r(-) € GH(V), and assume r, < oo. Then there exists a
constant C > 0 such that, for any admissible trapezoid R C V and x € R,

URY+®) < ¢ p(RY-R-r) < C,

Proof. Given an admissible trapezoid R, according to the definition of admis-
sible trapezoids, it is easy to know that there exists at least one y € R such that

r(y) =ry(R).
For u(R) > 1, the conclusion clearly holds.
For u(R) < 1, by Definition 2.20,

2B

MG = PO < 1) = rol + 1) = ol < g

where z is x or y such that d(z, 0) = min{d(x, 0), d(y, 0)}. Then, by Lemma 2.9

2B
U(R)XT+®) = (R)~IMO=r W] < Y(R)™ T+ieo)
2B _ 2B
S lu(z)_ 1+d(z,0) S (C—d(z,o)’u(o)) 1+d(z,0) S C.

The proof of the second inequality is quite similar to that of the first one,
hence we have omitted it for brevity. O

Remark 2.23. Using the same method of proof, it follows that the above con-
clusion also holds for R.

Lemma 2.24. Consider a function r(-) : V — [0, 00) such that r(-) € GH(V)
With 0 < r_,ry < oo, and define K(x) = ¢N40) where c is defined in Lemma
29 and N > 2/r_. There exists a constant C such that for any set E and any
function F satisfying 0 < F(y) <1 forall y € E, the following holds

f FOYDdu(y) < € f F(y)Yodu(y) + f KO -du(y);

E E E

f FYodu(y) < € f FOYDdu(y) + f KO)-du(y).

E E E

Proof. We will prove the first inequality; the proof of the second inequality
follows a nearly identical approach. Denote E as E = E; UE,, where E; = {y €
E:F(y)<K()}andE, ={y € E : K(y) < F(y)}. Then

f F(yYDdu(y) < f K@) Wdu(y) < f K -du(y).
E, E, E,

Furthermore, by the GH(V) condition, we have

K(y)—|r(y)—r0| = cNIr()=rold(y.0) < NB,
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From F(y) <1,

/ F(y)Wdu(y) < f F(y)oF(y)~I"®)=roldpu(y)

E; E;

< f F(y)oK(y)~I"®=roldu(y)

By

< VB f FO)du(y).

E;

O

Remark 2.25. The condition N > 2/r_ ensures that the last term on the right-

hand side of both inequalities, [ K(y)-du(y) = >, K(y)"-u(y), is convergent.
yE€E
Indeed, by Lemma 2.8 and Lemma 2.9, it follows that

f KO)-du(y)

E

s/ M(y) ()+Z/ du(y) (o) + Z/x(xk)ﬂt(xk 1)

c2d(y.0) ~ c2d(y, 0) -

k
< (o) + Z /Z(;;k) <uo)+ Z 2 p00) _
k=1

2%
k=1 €

Remark 2.26. The same argument shows that, for any nonnegative function
h(y), the following inequalities are valid

/ FOYOR()du(y) < C / FOYhO)du(y) + / KOY-hO)du(y):

E E E
f F(y)oh(y)du(y) <C / FyYDh(y)duy) + f K(y)-h(y)du(y).
E E E

2.3. Ay % condition and weighted variable Lebesgue spaces. First, let’s
review the definition of A, 5 and A, 5 over (V,d, w).

Definition 2.27. [26] Let p € (1, o) and W be a weight. W is called an A, 5
weight if
-1

p
Wla, ., = ;lelg(ﬁ f w(y)d ﬂ(Y))< ® f W(y)‘l/@‘”dﬂ(y)) < oo,

W is called an A, 5, weight if

1
Wl : Z‘éB(u(R) f W(y)dmw)nw gy < o0,

and Aoo,% = Up>1 Ap,gg.
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Lemma 2.28. [26] Let W € A, 4 for some p € [1,00). Then for each R € Z,
there exists a constant C > 0 such that

W(R) < C[W]jp%W(R).

The following statements are about the properties of A, 5 and the proof of
these properties are same as [13], so we omit details.

Lemma 2.29. Let W be a weight. The following statements are equivalent:
(1) W e Aoo,,@'
(ii) Thereexist0 < 6 <1 < C < oo such that for each R € Z and each set
SCR

u(S) w(s)\’
u(®) SC(W<R>) |

(iii) For any a € (0, 1), there exists § € (0,1) such that for all R € % and
eachset S CR

u(S) Z au(R) = W(S) =z BW(R).

(iv) For any a € (0,1), there exists § € (0,1) such that for all R € % and
eachsetS CR

u(S) < au®R) = W(S) < fW(R).

Definition 2.30. Given p(-) € P(V) and a weight w. We say w € Ap,) 5 if
there exists a postive constant C such that

oo xrllpeollo™ xrll ey < CHR),
where p’(-) is the conjugate exponent function such that 1/p(-) + 1/p’(-) = 1.

Remark 2.31. It is evident from the definition of A 5 thatif v € Ap,) »,
then w™ € Ap(y 4.

Lemma 2.32. Given p(-) € P(V), ifw € Ay 4, then there exists a constant C
depending on p(-) and w such that given any admissible trapezoid R € % and
SCR,

u(S) - [l xsllpe
u@®) ~ lexrllpe

Proof. For any given admissible trapezoid R € % and setS C R, by generalized
Holder’s inequality and the A,y 5 condition, we get

u(S) = f () x5 () 2R (DA < Clloslloo o™ el
v

< Cllotsllpolle el 1R,
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Lemma 2.33. Given an exponent function p(-) satisfying the globally Holder con-
dition GH(V), ifw € Ap(.) %, then there exists a constant C depending on p(-) and
w such that for all admissible trapezoids R € %,

p-(R)—p4(R)
||w)(R||p(.) < C.

Proof. Fix an admissible trapezoid R € Z. Obviously it suffices to assume that
||C0)(R||p(.) < 1. Set

h h hy+3
Qo = R, (x0) = R, (0), Qu =R}, " (xz0), hu, by, n EN.

It is easy to show that Q,, is an admissible trapezoid and Q, C Q; C ---Q,, C ---.
From this construction, there exists n, € N such thato € Q. Let

hy+3
Ry = Qno = Rhi+nzo(x2no)a Ry = Qn0+k’ k €N.

Thuso € Ry C -+ C Ry. Itis observed that the only way to leave R, from any

vertex within it is through its bases. Thus we define upper base b and lower
base b of R, as follows

b={x € Ry : l(x) = l(xz0,) = b — 1o},
Q - {x (S RO . l(x) - l(x2n0) - h.z - 31’10 + 1}.
Then, for any r > 0,
(xeV :d(x,R)<rt={xeV:xeRyvd(x,b) <rvd(xb)<r}.
On one hand, the nodes x that lie above_ Ry and satisfz the condition d(x, E) <
r are the nodes above R, with the level [(b) < I(x) < I(b) + r, that is
l(xn,) = hy — g < U(x) < 1(xy,,) —hy —ng + 1.
It implies that
1(x) < UXpny4r) — 1 — 1o = 2 + 1 = 1(Xy(y1r)) =y — g — T

On the other hand, the nodes x that lie below R, and satisfy the condition
d(x, b) < r are the nodes above R, with the level I(b) —r < I(x) < I(b), that is

I(xpn,) — hy —3ng + 1 —r < U(x) < U(xy,,) — hy — 31y + 1.
It implies that
1(x) > Uxy(ny4r) — ha + 309 — 2r — 7 + 1 = I(X3(n 1)) — By + 319 — 3r + 1.

Therefore {x € V : d(x,R,) < r} C R,. Further, it is follows that B,(0) C R,,
where B,(0) represents the ball centered at o with radius r and is denoted as
B, (0)={x €V :d(x,0)<r}

We will consider the case u(R) < u(Ry). If u(Ry) < u(R), only exchange the
roles of R and R,. Since u(R) < u(Ry), there exists a constant r, independent of
R such that

p(xg) < u(R) < u(Ro) < p(xg, ) < U(Ry,).
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Write P, = R, 4k, k € N. If RN Py # @, by Lemma 2.4, we have R C P,
Futher, by Lemma 2.7, Holder’s inequality and the Ap.y 5 condition, it deduces
that

u(R) = f () du(x) < Clloxallollo~ xellyo
R

4
< Clloxrllollo™ xp, ey < Clloxrllyo D, ||w_1)(pé||p’(~)
j=1

4
< Cllozellpo 3, (D).
j=1

. 4
where P(J) is the admissble trapezoid such that P, C P(J). Thus, by Lemma 2.22,
J

4 p+(R)—p_(R)

pP-(R)—p,(R) _(R)-p,(R J -1
ozl < Cup- 14 3, (ki)

J=
4 . P+—P-
J -1
scl1+ 3 (uedlonylzy) | <c

IfRNPy, =@. Letd(o,R) = 1" > ry, then when k = r' —ry, B./(0) C P;. 1t
implies that Py N Py # @ and R N P, # @. Thus by Lemma 2.4, P, C P} and

R C P,. Repeating the above calculations and by Lemma 2.7, we can obtain

4 4
KR < Clloxellpo Y, (KPDIexp I, ) < Clozallpon® 3 (lozy ).
j=1 j=1

; 4
where P is the admissble trapezoid such that P, C . us, emma 2.22,
here P is the admissble trapezoid such that Py P|. Thus,byL 2.22

J
P-(R)—p,(R)

||wXR”p(.)
4 p+(R)—p-_(R)
< CU(R)P-®=P+® y(p Yp+R1-p-®) [ 1 4 ,2—11 (IIw X ||;(1.))
We claim u(Py)P+®~-P-(R) < C| then by Lemma 2.22, it follows that

P-(R)—p+(R)
ool <cC.

Indeed, by the definition of admissible trapezoids, there exist x;,x, € R such
that p_(R) = p(x;), p;(R) = p(x,). By GH(V) condition,
2B

P4(R) = p-(R) < p(x2) = pol +1p(x1) = pol < 1o,
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where z is x; or x, such that d(z,0) = min{d(x;, 0), d(x,, 0)}. Therefore,

2B
UP )P+ R=P-R) < (P, ) 1+dzo) < C.
O

Lemma 2.34. Given an exponent function p(-) € P(V) satisfying the globally
Holder condition GH(V), if w(x) € Ay 5, then W(-) = w(-)PO) Ao

Proof. For any given admissible trapezoid R € & and S C R, by Lemma 2.29,
it suffices to prove that there exists a constant C > 0 such that

u(S) w(s)\"/P*
u(®) SC(W<R)) '

To compelete the proof, we consider three cases.
Case L If |lw xgl|pc.y < 1, then [|wysl|p) < 1, by Lemma 2.18, it follows that

1 1 1
llwxsllpey £ W(S)r+® < W(S)»+® and ||wxg|lp.) = W(R)»+®,
which together with Lemmas 2.32 and 2.33 implies that
() oozl W) \no,  ES
£ <c STe0) <c (—)p lleoxrl| 265
u(R) p—®) _p-® W(R) pC)

+(R) P+(R)

||CUXR||£(.) ”COXRHP(.)

Case IL If [lw xsllpy £ 1 < [|lwxrllpc)> then again by Lemma 2.18 we get that

1 1 1
loxsllpey S W(S)r+® <W(S)»+® and |lwygllpe) = WER)+®.

By this and Lemma 2.32 yield that

1
w , AT
u(S) SC” Xsllpe) SC(W(S)>p ®
u(R) llw xrllpcy W(R)

Case IIL. It remains to consider the case that 1 < [|wxs||p) < ll@xrllpc)- Let
A 1= ||wxrllp)> using Lemma 2.24 to obtain that

p(x) (x)
f A Poo(x)PDdp(x) < c( f (@) d#(X)> 4 f ) du(),
R R

R cNp_d(x,0

By Lemma 2.18, the first integral on the right-hand side equals 1. Now we es-
timate the second integral on the right-hand side. According the construction
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from Lemma 2.33,

f LGOS
V

Np_d(x,o)
w(x)P™ & w(x)P)
< f du(o) + Y LI 1)
o eNp- d(x,0) 21 R0\R ch_d(x,o)
1

o0
S NEWRY) +C Y.

Z NP 0D W(Ry)

(o0
1
—Np_ L p- P+
< e NP-W(Ry) +C k§:)1 i e {lexe 1, o 1 -

By Lemma 2.32 and Lemma 2.9,
,u( k) hz—h1+2n0+2k ok
w y<C c
ARy ARl Iy — hy + 21
Combining these two estimates we have

()P N ol (hz — hy + 219 + 2k>P+ (e )P+
I A— < ¢~ NP- A
f Np_dte T S CTEW(R) +C ,;1 hy — hy + 21, Np—(k—1)

loxr,llpc)y < C

By choosing N sufficiently large, we can make the right-hand side less than 1.
From above argument, it follows that
1 1
W(R)P < (C+ 1) fJwxg|lpe)-

We now repeat the above argument, replacing R with S and exchanging the
roles of py and p(-). Let 4 := [|wys]| .- We also use Lemma 2.24 to obtain

B w(x) p(x) by - a)(x)P(X)
1= [(5) duew=c [amawriue + | SESaueo,

The same argument as before implies that the second term on the right-hand
of the above inequality is less than 1/2. We rearrange terms and get

lleoxs|lpey < CW(S)/Po.
By Lemma 2.32, we conclude that

u(S) llwxsllpc W(S) 1/po w(s) 1/ps
u(R) > llwxrllpcy = (W(R)) < (W(R))

0

Corollary 2.35. Given an exponent function p(-) € P(V) satisfying GH(V)
condition, if w € Ay 4, R is an admissible trapezoid and S C R satisfying
lwxsllpey = 1, then

w(S) w(s)\"/P
u(R>§C<W(R>) |
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Corollary 2.36. Given an exponent function p(-) € P(V) satisfying GH(V) con-
dition, if w € Ay %, R is an admissible trapezoid satisfying ||w x| pc.) = 1, then

1 RS
cllexrllpe < W(R)P < Cllwxgllp.)-

1

Remark 2.37. According to Lemma 2.28, we also obtain W (R)» < C|jwyz|| p()-
We now define weighted variable Lebesgue spaces as follows.

Definition 2.38. Let p(-) € P(V) and w be a weight. The weighted variable

Lebesgue space LS(')(V) on (V,d, u) is defined to be the set of all functions on
(V,d, p) such that

110y 2= If@llzroe) < oo

Remark 2.39. According to the definition of ||-|| ., it is easily show that |||, »
is a norm.

3. The weighted norm inequalities for maximal operator

In this section, we show that the boundedness of maximal operator associ-
ated with admissible trapezoids on variable exponent Lebesgue spaces.

Definition 3.1. [22] The maximal operator M, associated with admissible
trapezoid R € % is defined as
1
Mo = sup s [ IF0)Ndu0)
R

rez#.Rax M(R)

where the supremum is taken over allR € # such that x € R. Let o be a weight.
Define the maximal function M, 4 associate with the weight o as follows

Moof(0i= sup —o f PO e)du).
R

ReEZ,Rox

Lemma 3.2. [26] Given a weight 0 € A, for1 < p < oo and f € LE(V),
/ M, 7 f()Po(x)du(x) < Cf | fOOIPo(x)du(x).
v v

Remark 3.3. If # is replaced with %, by extending R in a manner similar to R
in [22, Theorem 3.3], the aforementioned strong-type inequality for & can still
hold.

Now, we state the boundedness of maximal operator associated with admis-
sible trapezoids on variable Lebesgue spaces as our main results in this section.

Theorem 3.4. Let w be a weight. For p(-) : V — [1, ), assume that1 < p_ <
P+ < oo and p(-) € GH(V), then

Mzl pey < Cllf@llpey
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ifand only if o € Apy 5. If p- > 1, then the strong-type inequality can be

replaced by the following weak-type inequality
Nt X xev:m,>n@llpe) < Cllfwllpey, t > 0.
3.1. Proof of necessarty of Theorem 3.1. Since the strong-type inequality
implies the weak-type inequality, it suffices to prove that the latter ensures the
Ap(y,2 condition. According to the definition of A,y , it suffices to prove there
exists a constant C > 0 such that for all R € Z,
llewxrllpeyllo™ xrllpy < Cu(R).
Fix an admissible trapezoid R € %. Without loss of generality, we may as-

sume that ||~ yz|| p/(y = 1 by the homogeneity of || - || (). Thus, we only need
to prove that

llwxrllpy < Cu(R).
Define two sets as follows,

Q)={x€R:p'(x) <o} and Q  ={x€R: p'(x)=co}
From Definition 2.14, for 0 < 1 < 1, it follows that

oy w(0)! p'(x)
1< oy 22 = / : dpe) + 27 o™ Lo
o

On one hand, if 17!l ™ xo/ [l > %, let b be a constant such that b >

o x|l = inf w(x). Then there exists a set E C Q. and u(E) > 0
0 xeQ,
such that w(x) < b for x € E. Set f = yp. From p’(x) = 10on Q.

Ifllpey = llwxellpe) = @(E).

Since M f(x) 2 % for all x € R, by the weak-type inequality, for t < %,
a u

tllwxrllpey < tlwXxev:my,sillpey < Cllifwllpey = CwlE).
Taking the supremum over all such ¢, we obtain that

E
%nwmnp(.) < CalE).

Further,
CoE) _ Clpe)dux)

uE) u(E) -
Now, taking the infimum over all such b, it follows that

R Mwxrllpey <

_ _ _ 2C
MR lwxrllpey < Cllo™ xar lle < - S4C

On the other hand, assume that

'(x)
w(x)™! P 1
‘/(;, ( 2 ) d,u(x) > 5

0
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Since 1 < (p,) < p'(x) < (p_) < o, to avoid this complication, define
Fy={xeQ,:p'(x) <N}, N>1
Then there exists sufficiently large N such that

1\ P
< (w(X) ) ) <270 [ oy P due) <270 < o,
Fn

A Fy

1
2

w(x)™t
A

p'(x)
Since the integral of ( ) over Fy equals the sum of the value of it for

each x € Fy, we can take E C Fy such that

AP
%<f<w(? 1) du(x) < 1.
E

w(x)~P ! (x)

Define f(x) := —vo XE> it is easy to check that

1 ()" p'(x)
5 < ,op(.)(fcu) = f 7 du(x) < 1.
E

Therefore, || f||,.) < 1. Furthermore, for all x € R,

1\ P
Maef ()2 —s f Fdu) = f (“’(") ) >

Taking ¢ <3 by the weak-type inequality,

tllw)(Rllp(~) S tllwxixev:my fstllpey £ Cllf@llpey < C,
if we take the supremum over all such ¢, the A, 5 condition is obtained as
desired.

3.2. Proof of sufficiency of Theorem 3.1. For any given f € Lﬁ(')(V), since
My f = Mgr(|f]), we may assume that f is non-negative. We can also assume
that || fwl|,) = 1 by the homogeneity of || - || 5. Define o(x) := w(x)~P' ™),
decompose f = f1+f;, where f1 i = fxxev: fo-i>n3and f5 1= f¥xev: o<1y

Then My, f(x) < My f(x) + My fo(x) for all x € V, and by Lemma 2.17,
f | Fi)IPPa(x)PXdu(x) < [|fiwllpe) < [1f@llpe < 1. )
v

By this and Lemma 2.18, it suffices to prove that there exists a positive constant
C such that

= f M, fi00)PPw(x)PDdu(x) < C, i=1,2. ©)
v

We first prove (2) for f,. Let A > 1. Foreach k € Z, let
Q={Xx €V : Myfi(x)> Ar}L
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Then V = J Qg \ Q. Further, by Lemma 2.5, there exists a set of pairwise
kez

disjoint admissible trapezoids {R;‘} ~such that
j

Q C Uﬁf and
J

From the above argument, it is easily seen that

k-1

2B

1 H <Rk
F1()du(y) > .
i K ( J

() )
For each k, define {Sj‘} as follows

j-1
S¥ = (@ \Qe) N RY, 85 = [ @\ Q) n REN [ S 22
I=1

Therefore, the set {S"} is a pairwise disjoint family for all j € Nand k € Z, and
Qk\Qk+1 U S Further

I = Z M f1()PPw(x)PPdu(x)

< f (Ak+1)p( )co(x)P(x)d,u(x)
Q \Qk+1
p(x)
/fl(y)d#(y) (PO du(x)

I/\

k| u(R ~")
p(x)

[ e @du») | wR)PPw(x)PPdu(x).

RK

||
FM
N \

Note that f,6™1 > 1 or fic7! = 0and p(y) > 1 forally € V. By (1), we have

[ A e(du(y) < f (£:0)00)™)Y 6()du()
R¥ Rk

3)
- f 10O du(y) < 1.
RK
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Define pj = p_(Rj.‘). Since p(x) > pj > p-for x € S;.‘ C R;?, by (3) and
Holder’s inequality, it deduces that

p(x)
) /[ fl(y)o(y)‘la(y)d#(y)] R PP as(x)PWdpu(x)
sk | JRK

o) Pik
< f (F1)o)™) o O‘(y)d#(y)] [ f ﬂ@?)‘p(x)w(x)""‘)dﬂ(x)]

) Pjk

)
u(®y)
— f (f1)o()™) Pk a(y)du(y) f o(RK)Pik ! du(x)
U(Rj-c) R st J w(x)

IA

5
<

» p- u(R p(x)
Y- o(y)d ypic| — | du(x)|.
<&\ fR : (f1)o™) b= o(duy) fs , o(R) [ e )] p(x)

Since w € A, » implies that wle Apiy,2, by Lemma 2.34, we have 0 € A,.
Further, by Lemma 2.28 and Lemma 2.7,

/ a(RYPi u(RE) PP (x)PXdu(x)
Sk

J

<C / G(Rj-‘)pﬂ‘#(Rj-‘)‘p<x)w(X)p(")du(X)
Sk

< [ o@PAu(RE PP du)
Rk

J

4
=C Z; . o(R)P QY )PPa(x)du(x)

4 O’(Rk )
=2\ @ f o(Q PIA(QE )PP (),
I=1 k ’ ’

gl

We claim that

f O'(Q?l)ij’u(Q;fl)—P(x)w(x)P(X)dM(x) < CG(Q?I)'
Qk ’ 4 s

Jil
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Then, by Lemma 3.2,

Ilscz

p’4

p0)
f (1o ™) - o@du®) | 2 0@QF)

=1

~k)

p()

4 p-
c kZZ fQ . (Ma,@(fla‘l)(x)?—) a(x)du(x)

IA

p0 \ P~
<C f( o#(f107 1)(x)1’—) o(x)du(x)
v

p(x)

<c f (f100G)™)" o(x)dux) < C.
v

To finalize the estimation for I;, we need to prove, for all j e Nand k € Z,
[ ot@bmn@ ) rauce < o, @
Qjc’l ’ ’ ’

From the definition of A, » and @ € Ay, », there exists a constant C > 0
such that

-1
llo™ xge lry@xer,
HQj)
By this and Lemma 2.18, it follows that

()

p(x)
du(x) <C.

/ ||CO_1)(Q;Z||p/(-)CO(X)
k
Q¥ HQj))
Further, we change (4) to
p-(@Q) p(x)
O'(jSl) i P (le) p(x) ”C() XQk ”p’(x)w(x)

e o7 gt Iy - du(x)

llo™ Xk ey @, #Q;))

< Ca(Q¥).

Now, it suffices to prove that there exists a positive constant C such that

p-(Q%)
O'(Q;{J) i k
| <o) ©)
|| XQ’;,I ||p’(x)

and

_ p-(Q%)-p(x)
||CO IXQ ” )°40) ! <C. (6)

The aforementioned inequahtles will be proved by dividing it into two cases.
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For ||co‘1)(Q;;l lpr¢y = 1. Itis clear that (6) is valid. By Lemma 2.18, it deduces
Js
that

1
1 k @/ @Q%)
lleo™ xgx Iy 2 0(Q5 )71
Hence,
p-(Q5) L\P-@)

U(Qk ) 1
Jil <cC G(Q?z) @+ _ CO’(Q;{I),

||w_1)(Q;l||p’(x)
1 1

@) p(@)’

For ||co‘1)(Q;;’l ll ¢y < 1. By Lemma 2.18, it deduces that

where we have used the fact that 1 —

(P+(Q%) (P-(@Q5)
-1 Bl k -1 Jil
o gt Ny < 0@ < llo™ g8

Fromw™! € Ap )2 and Lemma 2.33, we conclude that

p-@Q%)
a(Q})

”CU_IXQ;‘J o)

@@ )1\~

<l ™ xox I "
Qi pr()

R (4@ p-1)p-@p (("-@¢ =)@ )p- Q%))
= ||lw )(Q;lllp,(.) |[9) XQ?’IHP/(.)
(4@ -1)p-(@%)
p'e)
L p-(@5)

TN Ok Y
<clo@jy T = Ca(Q).

< Cllw™?
< Cllw XQ;?J”

(5) is obtained. It remains to prove (6). By the definition of p’(-),
p(x) - p_(Q¥)
P (P)+(@Q5)
S P@-1 ()@ -1
(P)+@Q5) = p'() . (P)+@5) = (P)-@})
[P -1 Qp-11~  [e)--1F
Therefore, from Lemma 2.33, it deduces that

1 p-(Q¥)—p(x)
[|ew XQ’J?J ”p’(')

CARCIPECONC

)
1
P sC.

< Cllo™ x|
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Now we prove (2) for I,. Decompose the integral of M f, as we did above for
M f to get, with the same notation as before,

I, = Z (M £,(0))PD ()P d u(x)
k=1 Y\ Q11
<2 (AF1YPE) g (x)PX dp(x)
k=1 Y\ Q11
p(x)
<C kZJ) g M(Rk) / A | w(x)PPdu(x).

By Lemma 2.6, fix an admissible trapezoid R € {R;}; such that o(R) < co. Set
G :={(k.j) : R C R},
G, :={(k.j) : R} ¢ R}.

Therefore, it follows that

p(x)
pee| 3o+ 3 |[ o f F20)du) | 0POduc)
ks (keg, ) Jst | HER;)
=. 121 + 122.
For I,;. From 0 < f,0~! < 1and (4), it deduces that
p(x)
1
i< 3 f - f oL | w(x)PPdu(x)
(epeg, st | H(RT) Jrk
Z O-(R;C)P(x)_l’jk a( R?)pjk u( R;?)-P(X)w(x)l)(x)d u(x)
(kJ)691
D (1+U(1§}€))p+_p‘_/ O'(Rj-‘)p”‘M(E;-c)_p(x)w(x)p(x)dﬂ(x)
(k. j)EG: Sj-‘

<CA+o®YP+P- ) ZU(Q"

(k,j)eg; =1
< C(1 + a(R)P+~P-a(R).

For I,,. Since Ri‘ is a set composed of discrete points and u is a flow measure,
there exists an appropriate constant B > 1 such that

sup u(x)<B 1nf ,u(x) (7)

xeR
To estimate I,, we need to divide G, into two subsets:
9 =1{k,j)) €9 : O'(Rj-c) <1}, Gun={k)DEG: U(R;C) > 1}
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Then
p(x)
I < C Z + Z f ”’k f fz()’)d,u(y) CU(X)p(x)d/,{(x)
(K )EGy  (k.j)eGy, | /s* | MR )
=1L, +15,

We first estimate I ;2. Since fo~! < 1, by Lemma 2.24, it deduces that

D k P( )
o(R"
I, <c f f F20)e() lo(y)duly) J w(X)PDdu(x)
2 (k,j)zezgzl [U(Rk) ’ :L‘(R;{)

(x)p@ [ o( Rk 3

w(x j

+C D, f oo | du(x) =: 11} + 112,
(kj)egs Uk € P50 | W(R})

For (j, k) € G,1, by G(E;.‘) < 1and (4), we obtain

Do p(x)
f f2(0)e(y)” a(y)dﬂ(y)] o(R")Pﬂ‘[ (( )) du(x)
S

dl<c > [ 5

(k.j)EGn

o(R ~")
4

Po
<C / F2(0)o(y)~ U(y)dM(J’)] ZU(Q;‘J)-

(k)% [U (R

From the proof of Lemma 2.34, we can choose N sufficiently large such that

f M ) <1,

cNp-_d(x,0) ,Ll

k=1

using a same argument as this, replacing w(-)?”) by o, we can also obtain

o(x)
f,, op g OIS 1

Therefore, from Lemma 3.2 and (1)

B2e B % [ (Mo o) stoduco

(k,)EGn k=1 Q

<c f (M2 (f>0-900)™ o (x)du(x)
v

<C f (X)) D)o (x)du(x)
v

o(x)
Np_d(x,0)

<cC f F2(0)PX ()PP du(x) + / N7 (d() 3 du(x) <C.
v

pC

<c f (X)) PP (x)duCx) + f )
v
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Furthermore, from the fact that G(R?) < 1 and inequalities (4) and (7), it de-
duces that

D Ak w(x)
3<C 2 | o@YPH RO TR dulx)
(k,j)EGn Sj‘{ chp-a

<C Z sup c—Np-d(x, o)f G(Rif)pjkM(ﬁ?)—p(x)w(x)p(x)d#(x)
(k.J)EGs XES S}(

<C Z supc —Np_ d(xo)ZO.(Qk

(k,j)EG3 XES

o(x)
> Zf ————du(x) <C.
(k.j)€gs 1=1Q}, cNp_d(x,0)

Next we estimate the term I 52. By the Holder’s inequality

fk f2()du@y) < C||f2w”p(~)||a)_1)(1§;‘”p(-) < C||CU_1)(R§||p(.)-
R*
J

Thus, by Lemma 2.24, it follows that

2
122
_ p(x)
Z '/_ 1 X p(x) “a) IXR;‘HP’(') -
llo™ xgrll . F2(»)duly) —_— w()PMdu(x)
(k.)€ /SE ;o R} 710:49)
_ p(x)
" (e el
<c 3 [ o, [ mam)]| [—— | wrdu
(k.))EG2 S}{ ! le{ /'{(Rj)

o™ 2t )" o
+C Z / ”;c N d(xo)d'u(x)
(k.j)EG2 VS H(R}) cP-E%

—-. 721 22
=: 12 +12.

From the fact of 0! € Ap 2 and Corollary 2.36, it yields that

W™y sk o*(Rk)PO < Co(Rk) o o < Co(R").
R; ’() J
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By this and (4), we further get

Rk Do

Po
o(R7)
12 = ¢ f f d Pfx) Po p(x)d
2 (kj)zelgn sk[G(Rk) J20) M(y)] o™tz Ty (Rk) oo 7 AH)

b o™l |
f F0)ARG) | o®) f — ] wpduco
H(R})

IA

¢ ”‘k
(k.egs | 9(RY)

Peo
d k).
c(kj)ze',gaz f (J(Rk) f 2 M(y)] ;U(Q”)

is bounded by a constant. Since

IA

The final term, as in the estimate for I!!

22’
O'(R;.{) > CO'(R;{) > C. Then by (7),
- p(x)
o™ Xrellprcy
BeC Y supeedo / — ] erdux)
(k.j)EGs, XER] RY H(R;)

<C sup ¢ —Np- d(x")o(Rk)
(k,j)EG32 xER

< Cf ﬂd,u(x) <C.
v

cNp-_d(x,0)

This completes the estimate for f, and so the proof of the sufficiency of the
Ap(y,2 condition for the strong-type inequality. The proof of the weak-type in-
equality is quite similar to that of the strong-type inequality, with the difference
being that p_ can be equal to 1. We can readily modify the proof of the strong-
type inequality to demonstrate it.

Let p_ = 1. Define f; and f, as before, then for all ¢,

xeV  : Mgf(x)>t}Cc{xeZ : Myfi(x)>t/2}U{x €V : Mgyfi(x)>t/2}
Therefore, it will suffice to prove that f; and f, each satisfy the weak-type in-
equality.

We first consider f;. Fixt > 0, by Lemma 2.5, there exists a set of pairwise

disjoint admissible trapezoids {R;‘} ~such that
j

{xeV:Myfi(x)>t}C URj,
J
furthermore

f PO Y ivev Moy £, ()PP d u(x)
v

p(x)
<CZ f ( ®) f fl(y)dﬂ(y)) w(X)POdu(x).
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As is the case with the proof of I;, we can obtain the following inequality.

p(x)
Z/( (R)_/ fl()’)d#()’)) w(x)PXdu(x)

<C Z( & f (o) 1)p(y)U(J’)dM(Y)) o(R;)

<€ [ (Moua(i07H0070) o)
v

< [ (1o00)™ otoducx)
v

<c f (F1(w()™ du(x) < C.
v

The estimates for f,, though more detailed, can be adapted in exactly the
same manner to complete the proof of the weak-type inequality. It completes
the proof.

4. Extrapolation and application

The purpose of this section is to obtain the extrapolation theorem for pairs of
functions (f, g) in some family .%. We first present the extrapolation theorem
for A; 4, and then, based on the extrapolation theorem for A4, 4, derive the ex-
trapolation theorem for A, 5. We begin the discussion with the key technique
for proving the extrapolation theorem, namely the Rubio de Francia iterative
algorithm.

Theorem 4.1. Given r(-) € Z(V), suppose that w is a weight such that My, is
bounded on Lg)(')(V). For a positive function h(x) satisfying M zh(x) < oo, define
©  MEh(x)

Ih(x) := Z —,
=0 2k ||M%’|| r()(v)
where for k > 0, Mg/, = Myo --- oM, denotes the iteration of k-th maximal oper-

ator My and M, %,h(x) = h(x). And then the following conclusion holds:
(i) h(x) < Tlh(x)
) IO, < 24y

(iii) Th € Ay and [TTh] 4, ., < 2|[Myll,

Ang = Oy

Proof. (i) This is evident because the term when k = 0 is h.
(ii) By direct computation, we obtain

||M h”Lr()(V) o0 K
TR0y < sz“ Y < 25 27 Ikl = 21kl
=0 X k=1

LOw)
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where we have utilized the boundedness of the maximal operator M on the

weighted variable exponent Lebesgue space L;(')(V).
(iii) It suffices to derive the following inequality,

s MK h(x)
X
M4(ITh)(x) = My| Y] W
k=0 K74 L:u(»(V)
© MSh(x)
< W < 2”M%”L;(‘)(V)Hh(x)'
k=0 A L;(')(V)

O

Remark 4.2. More generally, for fixed constants « > 0and 8 € R, and another
weight v, define the operator

Hh(x) := [II (h*VF) (x)]i v_g.

Then the following conclusions hold:

(i) h(x) < Hh(x).
(i) Ifn(x) := vA/%w!/% then IR g0y < 211l 00

(iii) Y"(Hh)* e Ay % and [vﬁ(Hh)“]Al’% < 2||M<%>||Lr<‘)(v).
Remark 4.3. Theorem 4.1 also holds when r(-) is a positive constant.
Next, we present extrapolation theorem for A; 4.

Theorem 4.4. Suppose that for some q > 0 and each W € A, 4,

f FOOTW()du(x) < C f COW W), (f.g) € 7. (8)
v v

Given p(-) € Z(V), if p(-) € GH(V), q < p_ < p; < o0 and w? € Apy/q.%
then

Proof. Without loss of generality, we may assume 0 < || f|| LPO(py llgll LPO(py
as otherwise there is nothing to prove. By Lemma 2.17 and scaling, there exist
hy € LPO/D" with ||hy [|py/qy = 1 such that

Ifelll, <c f F)ea(x)du(x) < C f £ (e)Tea(e)TH (y () () paCx).
v v

To apply equation (8), we need to ensure that the term on the right-hand side
is bounded and that w(x)?H € A; 5. Indeed, it sufficestoseta = 1 and § =
q appropriately. First, when o« = 1 and § = gq, it follows directly from the
Remark 4.2 that w(x)7H € A, 4 is evidently satisfied. Furthermore, from w? €
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Ap()/q,2> it follows that ™ € A(,()/qy,%- By Lemma 2.19 and Theorem 4.1, it
follows that

f F e H (b )x)du(x) < Cl el IR,y
1%
< Cllfollpel1Pallipey/py < o0

Thus, by (8) and Lemma 2.19, the following inequality holds

ff(x)q[w(x)thl(x)]dM(x) < Cf g(x)[w(x)1Hhy (x)]du(x)
v v
< C||8w||;1,(.)||Hh1||(p(-)/q)' < Cllgwl| py-

The proof of Theorem 4.4 O

Next, we will present an interesting relationship between A, 4, and A, 4.
Through this relationship, we can directly derive the extrapolation theorem for
A %-

Lemma 4.5. Suppose that for some q > 0 and every W € Ay, 4, the following
inequality holds

/ FEIW (x)du(x) < C f g)IW (x)du(x), (f,8) € 7.
v v

Thenforall0 <s<q, W € A, 4 and (f,g) € 7, it deduces that

f W) < € f (O W ()du().
v v

Proof. Given 0 < s < gand W € A, 5. Without loss of generality, we may
assume that 0 < ||f]| L3, (V) llgll L,(v) < 0, as otherwise there is nothing to

prove. Let py = q/s > 1,then W € A, 4 C Ap 7 and My, is bounded on
LY(V). For f,g € L}, (), define

S

B O N O G
HEo =11 (||f||L;Vm) +<||g||L;Vm> 0o

By Theorem 4.1, it follows that

EXP

N

D N heo, (22 ) < he), )
11z, vy llgllzs, vy

EXE
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and H € A, 4. By Holder’s inequality,

f FEPWEd()

v

< ( f f(x)qH(x)‘POW(x)du(X)> K ( f H(x)PSW(x)dum)p"
v v

= J1J2.

First, we estimate J;. From W,H € A; 4,1+ py > 1 and the decomposition
property of A, 4, it follows that WH=Po = WH'=(+P) C A, 5 C Ay 4.
According to (9), it deduces that

| reormcomwoduc
‘PO

gPO ( }
WS, [ 100" a0 = 112 < o

Further, from (8), we have

L<c ( f g(x)QH(x)—POW(x)du(x)) "<c f GO W ()du(x).
v v

For J,, from Theorem 4.4, by direct computation, we obtain J, < 4. It com-
pletes the proof of Lemma 4.5 O

Theorem 4.6. Suppose that for some q > 0 and each W € A, 4,

f FGIW (x)du(x) <C f X)W (x)du(x), (f.8) € 7. (10)
v v

Given p(-) € GH(V), if there exists s € (0, p_) such that @* € Ap(.y/s 5, then
11126y, < CllEll g0y (F-8) € 7

Proof. According to Lemma 4.5, by replacing g with s, (10) holds for all W €
A; 4. Combining this with Theorem 4.4, we obtain the desired conclusion. [

Below, as an application of the extrapolation theorem, we will consider the
weighted norm inequalities for a class of sharp maximal operators. First, recall
that the definition of the sharp maximal operator is given by

M) = sup s [ 1760 o),

where the supremum is taken over all R € & such that x € R, and f denotes
the integral average of f, thatis f = % Jr FX)du(x).
u
In [22], the authors have established the following "good-1" inequality.
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Lemma4.7. Forally > 0,1 > 0and f : V — C, the following inequality holds
ux € V 1 Mpf(x) > 24, M*f(x) < yA}) < Cyu(fx € V : Mpf(x) > 1}),
where My denotes the dyadic maximal function, for details, see [22].

Based on the property (iii) of A, », we can further derive the following re-
sult.

Lemma 4.8. Given W € A, », forall 1 > 0 and A1 > 0, the following inequality
holds

W(Ex €V : Mpf(x) > 20, M*f(x) <yA) < CyW(x € V : Mpf(x) > A}).

Our objective is to apply the extrapolation theorem (Theorem 4.6) to demon-

strate the comparability of M* and f under the Lﬁf')(V) norm. To this end, we
first present the following conclusion.

Lemma4.9. Assume0 < gy < 00, W € Ay, 4. Letqy < q < oo, then there exists
a constant C > 0 such that for all My f € L‘VI[‘}(V),

f My f()TW (x)du(x) < C f MF f(0)TW (x)dp(x). 1y
v v

Proof. Without loss of generality, we assume [,,(M #£)IW (x)du(x) < oo, as
otherwise there would be nothing to prove. For N > 0, let

N
Iy = f gAT ' W({x € V : Mypf(x) > A}dA.
0
From

N

Iy < qiNq‘qO/ qoAYITW({x € V : My f(x) > A}dA < o,
0 0

and My, f € L(V), it follows that I is finite. Furthermore,

N/2
Iy =24 f gl W({x € V : Mpf(x) > 2A})dA
0N/z
<29 / gA W ({x € V : Mpf(x) > 24, MPf(x) < yADdA
’ N/2
+29 f gAI ' W(@x € V 1 MPf(x) > yA}dA
0

2 YN/
< Cyly + va f qAIW({x € V : MPf(x) > A}dA.
0

Fix y such that 29y = 1/2, then

2q+1

Iy <

yN/2
< f gl 'W({x € V : MPf(x) > A}dA. (12)
0
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Taking the limit as N — oo in inequality (12) to get (11). (]

By applying Theorem 4.6, we immediately obtain the following result.

Theorem 4.10. Given p(-) € GH(V) and a weight w. If there exists a constant
s € (0, p_) such that @* € Ay y/s 5, then

”fHLz(')(V) < ”Mﬂf”LZ()(V)
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