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Hermitian 𝒖-invariants under
quadratic field extensions

Karim Johannes Becher and Fatma Kader Bingöl

Abstract. The hermitian 𝑢-invariants of a central simple algebra with in-
volution are studied. In this context, a new technique is obtained to give
bounds for the behavior of these invariants under a quadratic field extension.
This is applied to obtain bounds in terms of the index of the algebra and the
𝑢-invariant of the base field.
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1. Introduction
The concept of the 𝑢-invariant naturally extends from quadratic forms over

fields to hermitian forms over central simple algebras with an involution. This
paper is devoted to the problem of bounding the hermitian 𝑢-invariants of cen-
tral simple algebras of exponent 2. Recall that such algebras can be represented
as a tensor product of a finite number of quaternion algebras. In the pres-
ence of a suitable separable quadratic subfield, one can bound the hermitian
𝑢-invariant of a central simple algebra with involution in terms of the hermit-
ian 𝑢-invariant of a subalgebra stable under the involution. This relies on a
method used in characteristic different from 2 by E. Bayer-Fluckiger and R.
Parimala in the construction of an exact sequence of Witt groups of hermitian
forms [1, Appendix 2 and §3.1], which plays an essential role in their classifi-
cation results for hermitian forms over central simple algebras with involution
over fields of cohomological dimension 2. It is used later in [10], [11] and [15]
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to obtain upper bounds for the hermitian 𝑢-invariants of a central simple alge-
bra of exponent 2 in terms of the 𝑢-invariant of the base field. In this article,
we refine this method and apply it to study the behavior of the hermitian 𝑢-
invariants under 2-extensions and in particular multiquadratic extensions. In
this way, we obtain bounds on the hermitian 𝑢-invariants of a central simple
algebra with involution in terms of the degree and the 𝑢-invariant of a split-
ting 2-extension (Corollary 5.2 and Corollary 6.4). For certain algebras with
involution of small index, we obtain in Theorem 5.5 and Theorem 6.1 improve-
ments to previously existing bounds. Unfortunately, at present we are not able
to produce new examples that would give new insight as to the optimality of
these bounds. This seems much related to the analogous problem concerning
bounds on the growth of the 𝑢-invariant for finite field extensions.
We denote by ℕ the set of natural numbers including 0 and set ℕ+ = ℕ ∖ {0}.

2. Hermitian forms and involutions
Our main references are [7] for the theory of hermitian forms and [8] for the

theory of algebras with involution. The notions and basic facts from the theory
of central simple algebras that we need are mostly covered by [14, Chap. 8].
Throughout this article let 𝐹 denote a field. Let 𝐴 be a central simple 𝐹-

algebra. The degree, index and exponent of 𝐴 are denoted by 𝖽𝖾𝗀𝐴, 𝗂𝗇𝖽𝐴 and
𝖾𝗑𝗉𝐴, respectively. Given another central simple 𝐹-algebra 𝐵, we write 𝐴 ∼ 𝐵
to indicate that 𝐴 and 𝐵 are Brauer equivalent. By Wedderburn’s Theorem [14,
Chap. 8, Cor. 1.6], we have 𝐴 ≃ 𝕄𝑠(𝐷) for a central 𝐹-division algebra 𝐷,
unique up to isomorphism, and a unique 𝑠 ∈ ℕ+. Then 𝗂𝗇𝖽𝐴 = 𝖽𝖾𝗀𝐷 and
𝖽𝖾𝗀𝐴 = 𝑠 ⋅ 𝗂𝗇𝖽𝐴. We say that 𝐴 is split if 𝐷 = 𝐹, or equivalently, if 𝗂𝗇𝖽𝐴 = 1.
By [14, Chap. 8, Theorem 1.8], every finitely generated 𝐴-right module 𝑉 de-
composes into a direct sum of simple𝐴-right modules. Moreover, every simple
𝐴-rightmodule is isomorphic to𝐷𝑠 with the action induced by an isomorphism
𝐴 → 𝕄𝑠(𝐷) and the multiplication by matrices from the right. The number of
simple components in a decomposition of 𝑉 as a direct sum of simple 𝐴-right
modules is called the rank of 𝑉 (over 𝐴) and denoted by 𝗋𝗄𝐴 𝑉; equivalently,
it is given by the equality 𝗋𝗄𝐴 𝑉 = 𝖽𝗂𝗆𝐹𝑉

𝑠⋅𝖽𝗂𝗆𝐹𝐷
. In particular, we have 𝗋𝗄𝐴 𝐴 = 𝑠,

and if 𝐴 is a division algebra, then 𝗋𝗄𝐴 𝑉 is the dimension of 𝑉 as an 𝐴-right
vector space. Given a field extension 𝐾∕𝐹, we obtain from 𝐴 a central simple
𝐾-algebra 𝐴𝐾 = 𝐴⊗𝐹 𝐾.
An involution on a ring 𝐴 is an anti-automorphism 𝜎 ∶ 𝐴 → 𝐴 such that

𝜎2 = 𝗂𝖽𝐴. If 𝐴 is an 𝐹-algebra, 𝜎 is an involution on 𝐴, and 𝐾∕𝐹 is a field
extension, then 𝜎 ⊗ 𝗂𝖽𝐾 is an involution on 𝐴𝐾 = 𝐴 ⊗𝐹 𝐾, which we denote
by 𝜎𝐾 . If 𝐾∕𝐹 is a quadratic étale extension (that is, either 𝐾 ≃ 𝐹 × 𝐹 or 𝐾∕𝐹
is a separable quadratic field extension), then the non-trivial 𝐹-automorphism
of 𝐾 is an involution on 𝐾, which we call the canonical involution of 𝐾∕𝐹 and
which we denote by 𝖼𝖺𝗇𝐾∕𝐹 .



1100 KARIM JOHANNES BECHER AND FATMA KADER BİNGÖL

Let now𝐴 be a central simple𝐹-algebra and 𝜎 an involution on𝐴which is𝐹-
linear. We fix a field extension 𝐾∕𝐹 such that 𝐴𝐾 is split. Hence 𝐴𝐾 ≃ 𝖤𝗇𝖽𝐾 𝑉
for a 𝐾-vector space 𝑉 with 𝖽𝗂𝗆𝐾𝑉 = 𝖽𝖾𝗀𝐴, and under this isomorphism of 𝐾-
algebras, 𝜎𝐾 corresponds to a 𝐾-linear involution on 𝖤𝗇𝖽𝐾 𝑉, which is adjoint
to a (nonsingular) alternating or symmetric 𝐾-bilinear form 𝑏 on 𝑉. Moreover,
whether 𝑏 is alternating depends neither on the choice of the field extension
𝐾∕𝐹 nor on the isomorphism; see [8, Prop. 2.6]. We call the involution 𝜎 sym-
plectic if the bilinear form 𝑏 is alternating, and we call it orthogonal otherwise.
For a ring 𝐴, we set 𝖹(𝐴) = {𝑥 ∈ 𝐴 ∣ 𝑥𝑦 = 𝑦𝑥 for all 𝑦 ∈ 𝐴}, which is a

subring called the center of 𝐴. By an 𝐹-algebra with involution, we mean a pair
(𝐴, 𝜎)where𝐴 is a finite-dimensional 𝐹-algebra and 𝜎 is an 𝐹-linear involution
on 𝐴 such that 𝐹 = {𝑥 ∈ 𝖹(𝐴) ∣ 𝜎(𝑥) = 𝑥} and 𝐴 has no non-trivial two-sided
ideal 𝐼 with 𝜎(𝐼) = 𝐼. There are two kinds of situations for this to occur:

(1) 𝐴 is a central simple 𝐹-algebra and 𝜎 is an 𝐹-linear involution.
(2) 𝐾 = 𝖹(𝐴) is a quadratic étale extension of 𝐹 and 𝜎|𝐾 is an automor-

phismof order 2 of𝐾with𝐹 as its fixedfield. In this case, either𝐾∕𝐹 is a
separable quadratic field extension and𝐴 is a central simple 𝐾-algebra,
or𝐾 ≃ 𝐹×𝐹 and𝐴 ≃ 𝐵×𝐵𝗈𝗉 for a central simple𝐹-algebra𝐵 andwhere
𝐵𝗈𝗉 denotes its opposite algebra (which coincides with 𝐵 as a set), and 𝜎
corresponds to the so-called switchmap 𝗌𝗐𝐵 on𝐵×𝐵𝗈𝗉, which is defined
by 𝗌𝗐𝐵(𝑏, 𝑏′) = (𝑏′, 𝑏) for 𝑏, 𝑏′ ∈ 𝐵.

If 𝐾 is either a field or a product of two copies of a field, then an involution
𝜎 on a 𝐾-algebra 𝐴 is called unitary if 𝜎|𝐾 ≠ 𝗂𝖽𝐾 , and in this case (𝐴, 𝜎) is
an 𝐹-algebra with involution for 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝜎(𝑥) = 𝑥}. We then also
call 𝜎 a 𝐾∕𝐹-unitary involution on 𝐴. Note that, while the fixed field 𝐹 in this
situation is determined by 𝜎, a central simple 𝐾-algebra 𝐴 can have several
unitary involutions with different fixed fields, and this situation will also occur
crucially in our study.
A unitary involution 𝜎 on an 𝐹-algebra 𝐴 with 𝖹(𝐴) ≃ 𝐹 × 𝐹 is also called

unitary of inner type. (The term is motivated by a relation to a corresponding
notion for linear algebraic groups.) For any 𝐹-algebra with involution (𝐴, 𝜎)
where 𝜎 is not unitary of inner type, we have that 𝐾 = 𝖹(𝐴) is a field, 𝐾∕𝐹 is
separable with [𝐾 ∶ 𝐹] ⩽ 2 and 𝐴 is a central simple 𝐾-algebra.
We recall the following criteria for the existence of involutions on a central

simple algebra.

Theorem 2.1 (Albert). Let 𝐴 be a central simple 𝐹-algebra. There exists an or-
thogonal involution on 𝐴 if and only if 𝖾𝗑𝗉𝐴 ⩽ 2. There exists a symplectic invo-
lution on 𝐴 if and only if 𝖾𝗑𝗉𝐴 ⩽ 2 and 𝖽𝖾𝗀𝐴 is even.

Proof. By [8, Theorem 3.1], an 𝐹-linear involution on 𝐴 exists if and only if
𝖾𝗑𝗉𝐴 ⩽ 2, and using [8, Cor. 2.8], the statement follows. □

For a separable quadratic field extension𝐾∕𝐹 and a central simple𝐾-algebra
𝐵, we denote by 𝖼𝗈𝗋𝐾∕𝐹 𝐵 the corestriction algebra of 𝐵 with respect to 𝐾∕𝐹 as
defined in [5, §8].
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Theorem 2.2 (Albert-Riehm-Scharlau). Let𝐾∕𝐹 be a separable quadratic field
extension and let B be a central simple 𝐾-algebra. There exists a 𝐾∕𝐹-unitary
involution on 𝐵 if and only if 𝖼𝗈𝗋𝐾∕𝐹 𝐵 is split.

Proof. See [8, Theorem 3.1]. □

It follows in particular from Theorem 2.1 and Theorem 2.2 that, if a central
simple algebra 𝐴 has an involution 𝜎, then every central simple algebra over
𝖹(𝐴)which is Brauer equivalent to𝐴 carries an involution whose restriction to
𝖹(𝐴) is the same as for 𝜎.
In the sequel, let 𝐾 be a field, let 𝐵 be a central simple 𝐾-algebra, and let 𝛾

be an involution on 𝐵. Then 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾(𝑥) = 𝑥} is a subfield of 𝐾, and we
obtain that (𝐵, 𝛾) is an 𝐹-algebra with involution.
Let 𝑉 be a finitely generated 𝐵-right module and 𝜀 ∈ {±1}. A bi-additive

map ℎ ∶ 𝑉 × 𝑉 → 𝐵 is called an 𝜀-hermitian form over (𝐵, 𝛾) if it satisfies the
following:

∙ ℎ(𝑣𝛼,𝑤𝛽) = 𝛾(𝛼)ℎ(𝑣, 𝑤)𝛽 for all 𝑣, 𝑤 ∈ 𝑉, 𝛼, 𝛽 ∈ 𝐵,
∙ ℎ(𝑤, 𝑣) = 𝜀𝛾(ℎ(𝑣, 𝑤)) for all 𝑣, 𝑤 ∈ 𝑉.

We also call ℎ simply a hermitian (resp. skew-hermitian) form when 𝜀 = 1
(resp. 𝜀 = −1). For an 𝜀-hermitian form ℎ over (𝐵, 𝛾), we will denote by 𝗋𝗄ℎ the
rank of the underlying 𝐵-right module 𝑉. We refer to [7, Chap. I, §2.2 & §3.4]
for the basic concepts of isometry (≃) and orthogonal sum (⟂) for 𝜀-hermitian
forms.
Consider an 𝜀-hermitian form ℎ over (𝐵, 𝛾) defined on the 𝐵-right module

𝑉. For any 𝐵-right submodule 𝑈 of 𝑉, the restriction of ℎ to 𝑈 × 𝑈 defines an
𝜀-hermitian form over (𝐵, 𝛾) which we denote by ℎ|𝑈 . A 𝐵-right submodule 𝑈
of𝑉 is called totally isotropic (with respect to ℎ) if ℎ|𝑈 is the zero map. The form
ℎ is nonsingular if for any 𝑣 ∈ 𝑉 ∖ {0} there exists 𝑤 ∈ 𝑉 such that ℎ(𝑣, 𝑤) ≠ 0.
The form ℎ is isotropic if there exists some 𝑣 ∈ 𝑉 ∖ {0} such that ℎ(𝑣, 𝑣) = 0,
and anisotropic otherwise. The form ℎ is hyperbolic if it is nonsingular and
𝑉 = 𝑈 ⊕ 𝑈′ for two 𝐵-right submodules 𝑈 and 𝑈′ which are totally isotropic
with respect to ℎ. In particular, any non-trivial hyperbolic 𝜀-hermitian form is
isotropic. If 𝖼𝗁𝖺𝗋𝐾 ≠ 2 or 𝛾|𝐾 ≠ 𝗂𝖽𝐾 , then any rank-2 nonsingular isotropic
𝜀-hermitian form over (𝐵, 𝛾) is hyperbolic.
For a field extension 𝑀∕𝐾, we obtain a finitely generated 𝐵𝑀-right module

𝑉𝑀 = 𝑉 ⊗𝐾 𝑀 and an 𝜀-hermitian form ℎ𝑀 ∶ 𝑉𝑀 × 𝑉𝑀 → 𝐵𝑀 over (𝐵𝑀 , 𝛾𝑀)
given by ℎ𝑀(𝑣 ⊗ 𝛼,𝑤 ⊗ 𝛽) = ℎ(𝑣, 𝑤)⊗ 𝛼𝛽 for 𝑣, 𝑤 ∈ 𝑉, 𝛼, 𝛽 ∈ 𝑀.
Let 𝑉 be a finitely generated 𝐵-right module. Let ℎ ∶ 𝑉 × 𝑉 → 𝐵 be a

nonsingular hermitian or skew-hermitian form over (𝐵, 𝛾). According to [8,
§4.A], ℎ determines an involution 𝖺𝖽ℎ on 𝖤𝗇𝖽𝐵 𝑉 satisfying

ℎ(𝑣, 𝑓(𝑤)) = ℎ(𝖺𝖽ℎ(𝑓)(𝑣), 𝑤) for all 𝑣, 𝑤 ∈ 𝑉 and all𝑓 ∈ 𝖤𝗇𝖽𝐵 𝑉.
We call 𝖺𝖽ℎ the adjoint involution of ℎ. Viewing 𝐾 naturally embedded into
𝖤𝗇𝖽𝐵 𝑉, we have that 𝖺𝖽ℎ |𝐾 = 𝛾|𝐾 . All involutions on 𝖤𝗇𝖽𝐵 𝑉 arise in this way
from some nonsingular hermitian form.



1102 KARIM JOHANNES BECHER AND FATMA KADER BİNGÖL

Theorem 2.3.
(𝑎) Assume that 𝖼𝗁𝖺𝗋𝐾 ≠ 2 and 𝛾|𝐾 = 𝗂𝖽𝐾 . Then any 𝐾-linear involution 𝜎 on

𝖤𝗇𝖽𝐵 𝑉 is the adjoint involution 𝖺𝖽ℎ of some nonsingular hermitian or skew-
hermitian form ℎ over (𝐵, 𝛾), which is unique up to a factor in 𝐹×. Moreover,
the involutions 𝜎 and 𝛾 are both orthogonal or both symplectic if ℎ is hermit-
ian, whereas precisely one of them is orthogonal and the other one symplectic
if ℎ is skew-hermitian.

(𝑏) Assume that 𝛾|𝐾 ≠ 𝗂𝖽𝐾 . Then any involution 𝜏 on 𝖤𝗇𝖽𝐵 𝑉 with 𝜏|𝐾 = 𝛾|𝐾 is
the adjoint involution 𝖺𝖽ℎ for some nonsingular hermitian form ℎ over (𝐵, 𝛾),
which is unique up to a factor in 𝐹×.

Proof. See [8, Theorem 4.2]. □

We denote by 𝖠𝖽𝐵(ℎ) the 𝐹-algebra with involution (𝖤𝗇𝖽𝐵 𝑉, 𝖺𝖽ℎ).
Let (𝐴, 𝜎) be an𝐹-algebrawith involution. We say that𝜎 (or (𝐴, 𝜎)) is isotropic

if there exists an 𝑎 ∈ 𝐴 ∖ {0} such that 𝜎(𝑎)𝑎 = 0, and anisotropic otherwise.
If there exists an element 𝑒 ∈ 𝐴 such that 𝑒2 = 𝑒 and 𝜎(𝑒) = 1 − 𝑒, then 𝜎 (or
(𝐴, 𝜎)) is called hyperbolic. In particular, any hyperbolic involution is isotropic.

Proposition 2.4. Let 𝐾 be a field, 𝐷 a central 𝐾-division algebra and 𝛾 an invo-
lution on𝐷. Assume that 𝖼𝗁𝖺𝗋𝐾 ≠ 2 or 𝛾 is unitary. Let𝑉 be a finite-dimensional
𝐷-right vector space and ℎ ∶ 𝑉 × 𝑉 → 𝐷 a nonsingular 𝜀-hermitian form over
(𝐷, 𝛾). Then𝖠𝖽𝐷(ℎ) is isotropic (resp. hyperbolic) if and only ifℎ is isotropic (resp.
hyperbolic).

Proof. The statement for hyperbolicity is given in [8, Prop. 6.7]. We prove the
statement for isotropy.
We set (𝐴, 𝜎) = (𝖤𝗇𝖽𝐷 𝑉, 𝖺𝖽ℎ). Assume that (𝐴, 𝜎) is isotropic. Then there

exists some 𝑓 ∈ 𝐴 ∖ {0} such that 𝜎(𝑓)◦𝑓 = 0. Since 𝑓 ≠ 0, there exists 𝑣 ∈ 𝑉
with 𝑓(𝑣) ≠ 0. We have ℎ(𝑓(𝑣), 𝑓(𝑣)) = ℎ((𝜎(𝑓)◦𝑓)(𝑣), 𝑣) = ℎ(0, 𝑣) = 0. Thus
ℎ is isotropic.
Conversely, assume that ℎ is isotropic. There exists some 𝑣 ∈ 𝑉 ∖ {0} such

that ℎ(𝑣, 𝑣) = 0. Since ℎ is nonsingular, we can find a nonzero vector 𝑤 ∈ 𝑉
such that ℎ(𝑣, 𝑤) ≠ 0. Consider 𝑓 ∶ 𝑉 → 𝑉, 𝑢 ↦ 𝑣ℎ(𝑤, 𝑢). Then 𝑓 ∈ 𝖤𝗇𝖽𝐷 𝑉,
and 𝑓 ≠ 0 as 𝑓(𝑣) = 𝑣ℎ(𝑤, 𝑣) ≠ 0. We have that

ℎ((𝜎(𝑓)◦𝑓)(𝑢), 𝑢′) = ℎ(𝑓(𝑢), 𝑓(𝑢′)) = ℎ(𝑣ℎ(𝑤, 𝑢), 𝑣ℎ(𝑤, 𝑢′))
= 𝛾(ℎ(𝑤, 𝑢))ℎ(𝑣, 𝑣)ℎ(𝑤, 𝑢′) = 0

for any 𝑢, 𝑢′ ∈ 𝑉. Using again that ℎ is nonsingular, it follows that 𝜎(𝑓)◦𝑓 = 0.
Therefore (𝐴, 𝜎) is isotropic. □

3. Hermitian 𝒖-invariants
Let 𝐾 be a field and 𝐵 a central simple 𝐾-algebra. Let 𝜀 ∈ {±1} and let 𝛾 be

an involution on 𝐵. Following [12, Chap. 9, Definition 2.4], we set
𝑢(𝐵, 𝛾, 𝜀) = 𝗌𝗎𝗉{𝗋𝗄ℎ ∣ ℎ anisotropic 𝜀-hermitian form over (𝐵, 𝛾)} ∈ ℕ ∪ {∞} ,
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and we call 𝑢(𝐵, 𝛾, 𝜀) the 𝜀-hermitian 𝑢-invariant of (𝐵, 𝛾).
For later use, we recall a well-known statement relating the 𝑢-invariant and

the rank of an 𝜀-hermitian form to the rank of totally isotropic subspaces.

Lemma 3.1. Let𝐷 be a central𝐾-division algebra and 𝛾 an involution on𝐷. Let
𝜀 ∈ {±1} and let ℎ be an 𝜀-hermitian form over (𝐷, 𝛾). Then the 𝐷-right vector
space on which ℎ is defined contains a totally isotropic subspace𝑈 with respect to
ℎ with 𝗋𝗄𝑈 ⩾ 1

2
(𝗋𝗄ℎ − 𝑢(𝐷, 𝛾, 𝜀)).

Proof. Let 𝑉 be the 𝐷-right vector space on which ℎ is defined. Let 𝑈 be a
maximal subspace of 𝑉 that is totally isotropic with respect to ℎ. We set 𝑈′ =
{𝑤 ∈ 𝑉 ∣ ℎ(𝑤, 𝑢) = 0 for all 𝑢 ∈ 𝑈} and note that this is a 𝐷-right subspace of
𝑉 with𝑈 ⊆ 𝑈′. Viewing 𝐷 as a 𝐷-right vector space, we set𝑈∗ = 𝖧𝗈𝗆𝐷(𝑈,𝐷)
and view 𝑈∗ as a 𝐷-right vector space by letting 𝑓.𝑑 = 𝛾(𝑑)𝑓 for 𝑓 ∈ 𝑈∗ and
𝑑 ∈ 𝐷. Then 𝖽𝗂𝗆𝐷𝑈∗ = 𝖽𝗂𝗆𝐷𝑈, and the map 𝑉 → 𝑈∗, 𝑣 ↦ ℎ(𝑣, ∗) is 𝐷-
linear and its kernel is𝑈′. We conclude that 𝖽𝗂𝗆𝐷𝑈′+𝖽𝗂𝗆𝐷𝑈 ⩾ 𝖽𝗂𝗆𝐷𝑉. Hence
𝗋𝗄𝑈′ + 𝗋𝗄𝑈 ⩾ 𝗋𝗄𝑉. We further have that 𝑈′ = 𝑈 ⊕𝑈′′ for a 𝐷-right subspace
𝑈′′ of 𝑈′. Then 𝗋𝗄𝑈′′ = 𝗋𝗄𝑈′ − 𝗋𝗄𝑈 ⩾ 𝗋𝗄𝑉 − 2 𝗋𝗄𝑈, and it follows from the
choice of 𝑈 that ℎ|𝑈′′ is anisotropic. Hence 𝗋𝗄𝑈′′ ⩽ 𝑢(𝐷, 𝛾, 𝜀). We conclude
that 2 𝗋𝗄𝑈 ⩾ 𝗋𝗄𝑉 − 𝗋𝗄𝑈′′ ⩾ 𝗋𝗄ℎ − 𝑢(𝐷, 𝛾, 𝜀). □

The following statement is well-known. In [10, Prop. 2.2], it is shown for the
case where 𝐵 is a division algebra. We include a proof that does not require this
hypothesis.

Proposition 3.2. Let 𝛾 and 𝛾′ involutions on 𝐵.
(1) Let 𝜀 ∈ {±1}. If 𝛾 and 𝛾′ are either both orthogonal or both symplectic,

then 𝑢(𝐵, 𝛾, 𝜀) = 𝑢(𝐵, 𝛾′, 𝜀). If 𝛾 is orthogonal and 𝛾′ is symplectic, then
𝑢(𝐵, 𝛾, 𝜀) = 𝑢(𝐵, 𝛾′,−𝜀).

(2) If 𝛾 and 𝛾′ are both unitary and 𝛾|𝐾 = 𝛾′|𝐾 , then 𝑢(𝐵, 𝛾, 1) = 𝑢(𝐵, 𝛾′,−1).
Proof. In both parts, we have 𝛾|𝐾 = 𝛾′|𝐾 . Hence 𝛾◦𝛾′ is a 𝐾-automorphism
of 𝐵. We obtain by the Skolem-Noether Theorem that 𝛾◦𝛾′ = 𝖨𝗇𝗍(𝑏) for some
𝑏 ∈ 𝐵×. Then 𝛾 = 𝖨𝗇𝗍(𝑏)◦𝛾′.
(1) If 𝛾 and 𝛾′ are either both orthogonal or both symplectic, then we set

𝜀′ = 1, otherwise we set 𝜀′ = −1. Then 𝛾′(𝑏) = 𝜀′𝑏, by [8, Prop. 2.7]. Let
𝑉 be a finitely generated 𝐵-right module and ℎ ∶ 𝑉 × 𝑉 → 𝐵 an 𝜀-hermitian
form over (𝐵, 𝛾). One easily verifies that 𝑏−1ℎ ∶ 𝑉 ×𝑉 → 𝐵 is an 𝜀𝜀′-hermitian
form over (𝐵, 𝛾′). Clearly, ℎ is isotropic if and only if 𝑏−1ℎ is isotropic, and
𝗋𝗄ℎ = 𝗋𝗄 𝑏−1ℎ. Similarly, if ℎ′ ∶ 𝑉 × 𝑉 → 𝐵 is an 𝜀𝜀′-hermitian form over
(𝐵, 𝛾′), then 𝑏ℎ ∶ 𝑉 × 𝑉 → 𝐵 is an 𝜀-hermitian form over (𝐵, 𝛾). This shows
that 𝑢(𝐵, 𝛾′, 𝜀𝜀′) = 𝑢(𝐵, 𝛾, 𝜀).
(2) Set 𝜆 = 𝑏𝛾′(𝑏)−1. Then 𝛾′(𝜆)𝜆 = 1, whereby −𝜆−1𝛾′(−𝜆−1) = 1. We

further obtain that 𝖨𝗇𝗍(𝑏)◦𝛾′◦ 𝖨𝗇𝗍(𝑏) = 𝖨𝗇𝗍(𝜆)◦𝛾′, hence 𝗂𝖽𝐵 = 𝛾◦𝛾 = 𝖨𝗇𝗍(𝜆),
whereby 𝜆 ∈ 𝐵×∩𝖹(𝐵) = 𝐾×. By Hilbert’s Theorem 90 applied to the quadratic
extension 𝐾∕𝐹 where 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾′(𝑥) = 𝑥}, there exists 𝜆′ ∈ 𝐾× such that
𝜆′−1𝛾′(𝜆′) = −𝜆−1. Set 𝑏′ = (𝜆′)−1𝑏. Then 𝖨𝗇𝗍(𝑏′) = 𝖨𝗇𝗍(𝑏) and thus 𝛾 =
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𝖨𝗇𝗍(𝑏′)◦𝛾′. Consider a finitely generated 𝐵-right module 𝑉. Given a hermitian
form ℎ ∶ 𝑉 × 𝑉 → 𝐵 over (𝐵, 𝛾), we obtain that 𝑏′−1ℎ is a skew-hermitian
form over (𝐵, 𝛾′). Clearly ℎ is isotropic if and only if 𝑏′−1ℎ is isotropic, and
𝗋𝗄ℎ = 𝗋𝗄 𝑏′−1ℎ. Similarly, if ℎ′ ∶ 𝑉 × 𝑉 → 𝐵 is a skew-hermitian form over
(𝐵, 𝛾′), then 𝑏′ℎ is a hermitian form over (𝐵, 𝛾). This shows that 𝑢(𝐵, 𝛾′,−1) =
𝑢(𝐵, 𝛾, 1). □

By means of Proposition 3.2, we can reduce the number of different hermit-
ian 𝑢-invariants to be considered for a central simple 𝐹-algebra.
Assume for now that 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Given a central simple 𝐹-algebra 𝐵 with

𝖾𝗑𝗉𝐵 ⩽ 2, we fix an arbitrary orthogonal involution 𝛾 on 𝐵, which exists by
Theorem 2.1, and we set

𝑢+(𝐵) = 𝑢(𝐵, 𝛾, 1) and 𝑢−(𝐵) = 𝑢(𝐵, 𝛾,−1),
observing that, by Proposition 3.2 (1), the definition does not depend on the
particular choice of 𝛾. For a given central simple 𝐹-algebra 𝐵 with 𝖾𝗑𝗉𝐵 > 2,
we set 𝑢+(𝐵) = 𝑢−(𝐵) = 0. We call 𝑢+(𝐵) the orthogonal 𝑢-invariant of 𝐵 and
𝑢−(𝐵) the symplectic 𝑢-invariant of 𝐵. These notations go back to [10, Remark
2.3]. Note that 𝑢−(𝐵) = 0 if 𝐵 is split.
Let us point out the relation between the orthogonal 𝑢-invariant and the clas-

sical 𝑢-invariant of a field. Recall that the field 𝐹 is nonreal if −1 is a sum of
squares in 𝐹 and real otherwise. If 𝐹 is nonreal, one defines

𝑢(𝐹) = 𝗌𝗎𝗉{𝖽𝗂𝗆(𝑞) ∣ 𝑞 anisotropic quadratic form over 𝐹} .
This is called the 𝑢-invariant of 𝐹. We refer to [12, Chap. 8] for a treatment of
the 𝑢-invariant, including a discussion of how to extend this notion to cover
real fields, which however is not relevant for this article. We note that when
𝖼𝗁𝖺𝗋(𝐹) = 2, the definition of 𝑢(𝐹) here corresponds to what is denoted by �̂�(𝐹)
in [12, Chap. 8, Sect. 4].

Example 3.3. Assume that 𝖼𝗁𝖺𝗋𝐹 ≠ 2. We consider 𝑢+(𝐵) for the central sim-
ple 𝐹-algebra 𝐵 = 𝐹. By the 1-1-correspondence between symmetric bilinear
forms and quadratic forms over 𝐹, we obtain that 𝑢+(𝐹) = 𝑢(𝐹).
We now define the hermitian 𝑢-invariant for unitary involutions in a simi-

lar way. Here we make no assumption on the characteristic of 𝐹. Consider a
separable quadratic field extension 𝐾∕𝐹 and a central simple 𝐾-algebra 𝐵. If
there exists a 𝐾∕𝐹-unitary involution 𝛾 on 𝐵, (which by Theorem 2.2 holds if
and only if the corestriction algebra 𝖼𝗈𝗋𝐾∕𝐹 𝐵 is split), then we set

𝑢(𝐵∕𝐹) = 𝑢(𝐵, 𝛾, 1),
observing that this is independent of the specific choice of the 𝐾∕𝐹-unitary in-
volution 𝛾, in view of Proposition 3.2 (2). If 𝐵 does not admit any 𝐾∕𝐹-unitary
involution, then we set 𝑢(𝐵∕𝐹) = 0. We call 𝑢(𝐵∕𝐹) the 𝐹-unitary 𝑢-invariant
of 𝐵.
Note that the hermitian 𝑢-invariants depend only on the Brauer class of the

algebra. This was pointed out in [15, Lemma 2.1].
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Proposition 3.4. Let 𝐾∕𝐹 be a separable field extension with [𝐾 ∶ 𝐹] ⩽ 2. Let
𝐵 and 𝐵′ be central simple 𝐾-algebras such that 𝐵 ∼ 𝐵′. Then we have 𝑢+(𝐵) =
𝑢+(𝐵′), 𝑢−(𝐵) = 𝑢−(𝐵′) and 𝑢(𝐵∕𝐹) = 𝑢(𝐵′∕𝐹).

Proof. This follows by [7, Theorem 9.3.5] together with Theorem 2.3. □

Let 𝖡𝗋(𝐹) denote the Brauer group of 𝐹 and let 𝖡𝗋2(𝐹) denote its 2-torsion
subgroup. For 𝛼 ∈ 𝖡𝗋(𝐹), we take the central 𝐹-division algebra 𝐷 such that
𝛼 = [𝐷] and define

𝑢+(𝛼) = 𝑢+(𝐷) and 𝑢−(𝛼) = 𝑢−(𝐷) .
Similarly, given a separable quadratic field extension 𝐾∕𝐹 and 𝛼 ∈ 𝖡𝗋(𝐾), we
take the central 𝐾-division algebra 𝐷 with 𝛼 = [𝐷] and define

𝑢(𝛼∕𝐹) = 𝑢(𝐷∕𝐹) .

Proposition 3.5. Let (𝐴, 𝜎) be an 𝐹-algebra with involution. For (𝑎) and (𝑏),
assume that 𝖼𝗁𝖺𝗋𝐹 ≠ 2.
(𝑎) If 𝜎 is orthogonal and 𝖽𝖾𝗀𝐴 > 𝗂𝗇𝖽𝐴 ⋅ 𝑢+(𝐴), then 𝜎 is isotropic.
(𝑏) If 𝜎 is symplectic and 𝖽𝖾𝗀𝐴 > 𝗂𝗇𝖽𝐴 ⋅ 𝑢−(𝐴), then 𝜎 is isotropic.
(𝑐) If 𝜎 is unitary and 𝖽𝖾𝗀𝐴 > 𝗂𝗇𝖽𝐴 ⋅ 𝑢(𝐴∕𝐹), then 𝜎 is isotropic.

Proof. Suppose that 𝜎 is anisotropic. Then 𝐾 = 𝖹(𝐴) is a field. Let 𝐷 be the
central 𝐾-division algebra Brauer equivalent to 𝐴. Then 𝖽𝖾𝗀𝐷 = 𝗂𝗇𝖽𝐴. We
fix an involution 𝛾 on 𝐷 with 𝛾|𝐾 = 𝜎|𝐾 and such that 𝛾 is orthogonal if and
only if 𝜎 is orthogonal. By Theorem 2.3, (𝐴, 𝜎) ≃ 𝖠𝖽𝐷(ℎ) for some nonsingular
hermitian form over (𝐷, 𝛾). Then 𝖽𝖾𝗀𝐴 = 𝗂𝗇𝖽𝐴 ⋅ 𝗋𝗄ℎ.
Since 𝜎 is anisotropic, by Proposition 2.4, ℎ is anisotropic. If 𝜎 is orthogonal,

then so is 𝛾, and it follows that 𝗋𝗄ℎ ⩽ 𝑢+(𝐷) = 𝑢+(𝐴). If 𝜎 is symplectic, then
so is 𝛾, and we obtain that 𝗋𝗄ℎ ⩽ 𝑢−(𝐷) = 𝑢−(𝐴). Finally, if 𝜎 is unitary, then
as 𝛾|𝐾 = 𝜎|𝐾 , we conclude that 𝗋𝗄ℎ ⩽ 𝑢(𝐷∕𝐹) = 𝑢(𝐴∕𝐹). □

Within the study of the 𝑢-invariant for quadratic forms, a central topic is its
behavior under field extensions.

Proposition 3.6. Assume that 𝐹 is nonreal and let 𝐿∕𝐹 be a finite 2-extension.
For 𝑛 ∈ ℕ with [𝐿 ∶ 𝐹] = 2𝑛, we have 𝑢(𝐿) ⩽ ( 3

2
)𝑛 ⋅ 𝑢(𝐹).

Proof. See [12, Chap. 9, Cor. 2.2] for the case where 𝑛 = 1. From this case, the
statement follows by induction on 𝑛. □

We recall the following fact about the unitary 𝑢-invariant in the split case.

Proposition 3.7. Assume that 𝐹 is nonreal. Let 𝐾∕𝐹 be a separable quadratic
field extension. The following hold:

(𝑎) 𝑢(𝐾∕𝐹) ⩽ 1
2
𝑢(𝐹).

(𝑏) If 𝑢(𝐾∕𝐹) > 2, then there exists an anisotropic quadratic 3-fold Pfister form
over 𝐹 which becomes hyperbolic over 𝐾.
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Proof. We recall from [14, Chap. 10, §1] that, for an arbitrary nonsingular her-
mitian form over (𝐾, 𝖼𝖺𝗇𝐾∕𝐹), the rule 𝑥 ↦ ℎ(𝑥, 𝑥) defines a quadratic form
𝗊ℎ over 𝐹 with 𝖽𝗂𝗆𝗊ℎ = 2 𝗋𝗄ℎ which becomes hyperbolic over 𝐾, and that ℎ is
isotropic if and only if 𝗊ℎ is isotropic.
(𝑎) As 𝑢(𝐾∕𝐹) = 𝑢(𝐾, 𝖼𝖺𝗇𝐾∕𝐹 , 1), this follows directly.
(𝑏) Assume that 𝑢(𝐾∕𝐹) > 2. We may then choose an anisotropic her-

mitian form ℎ over (𝐾∕𝐹, 𝖼𝖺𝗇𝐾∕𝐹) with 𝗋𝗄ℎ = 3. Then 𝗊ℎ is an anisotropic
6-dimensional quadratic form over 𝐹 which becomes hyperbolic over 𝐾. It fol-
lows that 𝗊ℎ is similar to a subform of some quadratic 3-fold Pfister form 𝜌 over
𝐹. Since 𝗊ℎ is anisotropic, 𝜌 is not hyperbolic. Since 𝜌 is a Pfister form, it follows
that 𝜌 is anisotropic and becomes hyperbolic over 𝐾. □

Using systems of quadratic forms, Mahmoudi obtained in [10] the following
upper bounds on the hermitian 𝑢-invariants in terms of the 𝑢-invariant of the
base field, which we restate here in our setup.

Proposition 3.8 (Mahmoudi). Assume that 𝖼𝗁𝖺𝗋𝐹 ≠ 2 and 𝐹 is nonreal.
(𝑎) Let 𝛼 ∈ 𝖡𝗋(𝐹) and 𝑛 = 𝗂𝗇𝖽𝛼. Then

𝑢+(𝛼) ⩽ (𝑛+1)(𝑛2+𝑛+2)
8𝑛

⋅ 𝑢(𝐹) and 𝑢−(𝛼) ⩽ (𝑛−1)(𝑛2−𝑛+2)
8𝑛

⋅ 𝑢(𝐹).

(𝑏) Let 𝐾∕𝐹 be a quadratic field extension, 𝛼 ∈ 𝖡𝗋(𝐾) and 𝑛 = 𝗂𝗇𝖽𝛼. Then

𝑢(𝛼∕𝐹) ⩽ 𝑛2+1
4

⋅ 𝑢(𝐹).

Proof. See [10, Prop. 3.6]. □

The hermitian 𝑢-invariants were further studied in [11] and [15].

Theorem 3.9 (Parihar-Suresh). Assume that 𝐹 is nonreal with 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Let
𝐾∕𝐹 be a quadratic field extension and 𝛼 ∈ 𝖡𝗋(𝐹). Then 𝑢+(𝛼𝐾) ⩽

3
2
𝑢+(𝛼),

𝑢−(𝛼𝐾) ⩽
3
2
𝑢−(𝛼) and 𝑢(𝛼𝐾∕𝐹) ⩽

1
2
𝑢+(𝛼) + 𝑢−(𝛼).

Proof. See [11, Theorems 4.2 & 4.3]. □

Using Theorem 3.9, the following bounds were obtained in [15].

Theorem 3.10 (Wu). Assume that 𝐹 is nonreal and 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Let 𝛼 ∈ 𝖡𝗋(𝐹).
Assume that 𝑛 ∈ ℕ is such that 𝗂𝗇𝖽𝛼 = 2𝑛 and 𝛼 is given by a tensor product of 𝑛
𝐹-quaternion algebras. Then the following hold:
(𝑎) 𝑢+(𝛼) ⩽ 1

5
(4 + ( 3

2
)2𝑛)𝑢(𝐹).

(𝑏) 𝑢−(𝛼) ⩽ 1
5
(−1 + ( 3

2
)2𝑛)𝑢(𝐹).

(𝑐) 𝑢(𝛼𝐾∕𝐹) ⩽
1
5
(1 + ( 3

2
)2𝑛+1)𝑢(𝐹) for any quadratic field extension 𝐾∕𝐹.

Proof. This is [15, Theorem 1.3]. The proof is by induction on 𝑛. For 𝑛 = 1,
(𝑎), (𝑏), and (𝑐) are established in [10, Cor. 3.4], [14, Chap. 10, Theorem 1.7],
and [11, Cor. 4.4], respectively. □
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Remark 3.11. The hypothesis in Theorem 3.10 means that the Brauer class 𝛼
is represented by a division algebra which is a tensor product of 𝑛 quaternion
algebras. The hypothesis stated in [15, Theorem 1.3] is weaker, but the author
notified us that it needs to be strengthened, due to the results used in the proof.

4. Isotropy via quadratic reduction
Given a central simple algebra with involution and a separable quadratic

subextension stable under the involution, one obtains a simple subalgebra car-
rying a pair of involutions. Accordingly, we can obtain from a hermitian form
over this algebra with involution a pair of hermitian forms over the subalge-
bra with respect to two different involutions such that the isotropy of this pair
(i.e., the existence of a common nonzero isotropic vector) is equivalent to the
isotropy of the original hermitian form. By these means, one can compare the
hermitian 𝑢-invariant of a central simple algebra with involution with the her-
mitian 𝑢-invariants of a subalgebra. This method to study the hermitian 𝑢-
invariants stems from [10, Prop. 3.1]. The purpose of this section is to extend
thismethod by relaxing the hypotheses under which it can be applied. This will
be achievedwith Theorem 4.6. Our treatment will cover the case of characteris-
tic 2 for the unitary case. As described above, themethod relies on the presence
of a quadratic subextension. In Proposition 4.2 we discuss another technique
to deal with the complementary situation where we cannot find any quadratic
field extension of the center contained in the algebra. Together, these methods
will allow us in the subsequent sections to obtain bounds on the hermitian 𝑢-
invariants of a central simple algebra with involution in terms of the degree and
the 𝑢-invariant of a splitting 2-extension; see Corollary 5.2 and Corollary 6.4.
In this section, let 𝐾 be a field.

Proposition 4.1. Let 𝐷 be a central 𝐾-division algebra and 𝛾 an involution on
𝐷. Assume that 𝖼𝗁𝖺𝗋𝐾 ≠ 2 if 𝛾|𝐾 = 𝗂𝖽𝐾 . Let 𝜀 ∈ {±1} and ℎ be a nonsingular
𝜀-hermitian form over (𝐷, 𝛾). Let 𝑀∕𝐾 be a separable quadratic field extension
such that 𝐷𝑀 is a division algebra. Then

ℎ ≃ ℎ′ ⟂ ℎ1 ⟂ … ⟂ ℎ𝑛
for some 𝑛 ∈ ℕ and 𝜀-hermitian forms ℎ′, ℎ1,… , ℎ𝑛 over (𝐷, 𝛾) such that ℎ′𝑀 is
anisotropic and, for 1 ⩽ 𝑖 ⩽ 𝑛, we have that 𝗋𝗄ℎ𝑖 = 2 and (ℎ𝑖)𝑀 is hyperbolic.

Proof. See [2, Prop. 4.3] and its proof. (In [2], the general assumption is that
𝛾|𝐾 = 𝗂𝖽𝐾 and 𝖼𝗁𝖺𝗋𝐾 ≠ 2, but the proof [2, Prop. 4.3] is valid in general.) □

The following proposition extends [10, Prop. 3.1]. (Here the assumptions
on 𝛼 are less restrictive, and we cover characteristic 2 for the unitary case.)
This extension is complementary to those obtained in [11, §4], while based on
similar arguments.

Proposition 4.2. Let 𝐾∕𝐹 be a separable field extension with [𝐾 ∶ 𝐹] ⩽ 2. Let
𝑀∕𝐾 be a quadratic field extension such that𝑀∕𝐹 is separable and𝑀 contains
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a quadratic extension of 𝐹 distinct from 𝐾. Let 𝛼 ∈ 𝖡𝗋(𝐾) be such that 𝗂𝗇𝖽𝛼𝑀 =
𝗂𝗇𝖽𝛼. Then the following hold:
(𝑎) If 𝖼𝗁𝖺𝗋𝐹 ≠ 2 and 𝐾 = 𝐹, then

𝑢+(𝛼) ⩽ 𝑢+(𝛼𝑀) + 2𝑢(𝛼𝑀∕𝐹) and 𝑢−(𝛼) ⩽ 𝑢−(𝛼𝑀) + 2𝑢(𝛼𝑀∕𝐹).

(𝑏) If [𝐾 ∶ 𝐹] = 2, then𝑀∕𝐹 has a quadratic subextension 𝐿∕𝐹 such that𝑀 =
𝐾𝐿 and

𝑢(𝛼∕𝐹) ⩽ 3 ⋅ 𝑢(𝛼𝑀∕𝐿).

Proof. If 𝐾 = 𝐹, then we assume that 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Let 𝐷 be the central 𝐾-
division algebra such that 𝛼 = [𝐷]. If 𝐾 = 𝐹 and 𝑢+(𝛼) = 0, respectively if
[𝐾 ∶ 𝐹] = 2 and 𝑢(𝛼∕𝐹) = 0, then the claim of (𝑎), respectively of (𝑏) holds
trivially. We may assume that this is not the case. We may thus fix an 𝐹-linear
involution 𝛾 on 𝐷 with 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾(𝑥) = 𝑥} which is orthogonal or unitary
(depending on [𝐾 ∶ 𝐹]).
Note that 𝐷𝑀 is a division algebra because 𝗂𝗇𝖽𝛼𝑀 = 𝗂𝗇𝖽𝛼, and 𝛾𝑀 = 𝛾⊗ 𝗂𝖽𝑀

is an 𝐹-linear involution on 𝐷𝑀 .
Let 𝜀 ∈ {±1} and consider an anisotropic 𝜀-hermitian form ℎ over (𝐷, 𝛾),

defined on some finite-dimensional𝐷-right vector space𝑉. By Proposition 4.1,
ℎ ≃ ℎ′ ⟂ ℎ′′ for some 𝜀-hermitian forms ℎ′ and ℎ′′ such that ℎ′𝑀 is anisotropic
and ℎ′′𝑀 is hyperbolic. In particular, 𝗋𝗄ℎ′ = 𝗋𝗄ℎ′𝑀 ⩽ 𝑢(𝐷𝑀 , 𝛾𝑀 , 𝜀).
Set (𝐴, 𝜎) = 𝖠𝖽𝐷(ℎ′′). Then (𝐴, 𝜎) is an𝐹-algebrawith involution and 𝖽𝖾𝗀𝐴 =

𝗋𝗄ℎ′′ ⋅ 𝖽𝖾𝗀𝐷. Since ℎ is anisotropic, so is ℎ′′, and hence 𝜎 is anisotropic. As ℎ′′𝑀
is hyperbolic and 𝖠𝖽𝐷𝑀 (ℎ

′′
𝑀) ≃ (𝐴𝑀 , 𝜎𝑀), we obtain that 𝜎𝑀 is hyperbolic. It

follows by [4, Theorem 1.15 and Theorem 1.16] that we can identify𝑀 with an
𝐹-subalgebra of 𝐴 with 𝜎(𝑀) = 𝑀 and 𝜎|𝑀 ≠ 𝗂𝖽𝑀 .
Let 𝐶 = {𝑎 ∈ 𝐴 ∣ 𝑎𝑏 = 𝑏𝑎 for all 𝑏 ∈ 𝑀}, the centralizer of𝑀 in 𝐴. Then 𝐶

is a central simple𝑀-algebra and 𝜎|𝐶 is an anisotropic unitary involution on 𝐶.
By Theorem 2.2, since [𝐶] = [𝐷𝑀] = 𝛼𝑀 in 𝖡𝗋(𝑀), we can choose an involution
�̃� on 𝐷𝑀 with �̃�|𝑀 = 𝜎|𝑀 . It follows by Theorem 2.3 that (𝐶, 𝜎|𝐶) ≃ 𝖠𝖽𝐷𝑀 (ℎ̃)
for some anisotropic hermitian form ℎ̃ over (𝐷𝑀 , �̃�). Hence 𝗋𝗄 ℎ̃ ⩽ 𝑢(𝐷𝑀 , �̃�, 1).
Since 𝖽𝖾𝗀𝐷 = 𝗂𝗇𝖽𝛼 = 𝗂𝗇𝖽𝛼𝑀 = 𝖽𝖾𝗀𝐷𝑀 and 𝖽𝖾𝗀𝐷 ⋅ 𝗋𝗄ℎ′′ = 𝖽𝖾𝗀𝐴 = 2𝖽𝖾𝗀𝐶 =
2𝖽𝖾𝗀𝐷𝑀 ⋅ 𝗋𝗄 ℎ̃, we now conclude that 𝗋𝗄ℎ′′ = 2 𝗋𝗄 ℎ̃ ⩽ 2𝑢(𝐷𝑀 , �̃�, 1).
It follows that 𝗋𝗄ℎ = 𝗋𝗄ℎ′ + 𝗋𝗄ℎ′′ ⩽ 𝑢(𝐷𝑀 , 𝛾𝑀 , 𝜀) + 2𝑢(𝐷𝑀 , �̃�, 1).
This argument shows that

𝑢(𝐷, 𝛾, 𝜀) ⩽ 𝑢(𝐷𝑀 , 𝛾𝑀 , 𝜀) + 2𝑢(𝐷𝑀 , �̃�, 1) .

If 𝖼𝗁𝖺𝗋𝐹 ≠ 2 and 𝐾 = 𝐹, then by taking the two possible choices of 𝜀 ∈ {±1},
we obtain the two inequalities in (𝑎).
Assume now that [𝐾 ∶ 𝐹] = 2. We take 𝜀 = 1. Set 𝛾0 = 𝛾𝑀 and 𝛾1 = �̃�, and

for 𝑖 = 0, 1 let 𝐿𝑖 = {𝑥 ∈ 𝑀 ∣ 𝛾𝑖(𝑥) = 𝑥}. Then the above inequality yields that
𝑢(𝛼∕𝐹) = 𝑢(𝐷, 𝛾, 1) ⩽ 𝑢(𝐷𝑀 , 𝛾0, 1) + 2𝑢(𝐷𝑀 , 𝛾1, 1) = 𝑢(𝛼𝑀∕𝐿0) + 2𝑢(𝛼𝑀∕𝐿1).
Hence letting 𝑘 ∈ {0, 1} be such that 𝑢(𝛼𝑀∕𝐿𝑘) ⩾ 𝑢(𝛼𝑀∕𝐿1−𝑘), we conclude
that 𝑢(𝛼∕𝐹) ⩽ 3𝑢(𝛼𝑀∕𝐿𝑘), which establishes (𝑏). □
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Proposition 4.3. Let 𝐷 be a central simple 𝐾-algebra and 𝛾 an involution on 𝐷.
Let 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾(𝑥) = 𝑥} and 𝐿∕𝐹 be a separable quadratic field extension
contained in 𝐷 and linearly disjoint from 𝐾∕𝐹. Then there exists 𝑗 ∈ 𝐷× such
that 𝖨𝗇𝗍(𝑗)|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 , and for any such 𝑗, there exists an involution 𝛾′ on 𝐷
which is either symplectic or unitary and such that 𝛾′|𝐾 = 𝛾|𝐾 , 𝛾′|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 and
𝛾′(𝑗) = −𝑗.
Proof. By the Skolem-Noether Theorem, there exists an element 𝑗 ∈ 𝐷× such
that 𝖨𝗇𝗍(𝑗)|𝐾𝐿 = 𝖼𝖺𝗇𝐾𝐿∕𝐾 . Since [𝐾𝐿 ∶ 𝐾] = [𝐿 ∶ 𝐹] = 2, we obtain that
𝖨𝗇𝗍(𝑗)|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 ≠ 𝗂𝖽𝐿. Note that 𝐿(𝑗2) is a subfield of 𝐷. As 𝖨𝗇𝗍(𝑗)|𝐿 ≠ 𝗂𝖽𝐿
we have 𝑗 ∉ 𝐿(𝑗2) and 𝐿 ⊈ 𝐹(𝑗2). Hence [𝐿(𝑗2) ∶ 𝐹(𝑗2)] = [𝐿 ∶ 𝐹] = 2.
Set 𝐻 = 𝐿(𝑗2) ⊕ 𝑗𝐿(𝑗2) and 𝑄 = 𝐾𝐿(𝑗2) ⊕ 𝑗𝐾𝐿(𝑗2). Then 𝐻 is an 𝐹(𝑗2)-
quaternion algebra and 𝑄 is a 𝐾(𝑗2)-quaternion algebra contained in 𝐷. Note
that𝐻 and𝐾(𝑗2) are 𝐹(𝑗2)-subalgebras of𝑄 and that 𝑗2 commutes with𝐾𝐿 and
hence with 𝑄. Multiplication in 𝑄 induces an isomorphism of 𝐹(𝑗2)-algebras
𝐻 ⊗𝐹(𝑗2) 𝐾(𝑗2) → 𝑄. Let 𝖼𝖺𝗇𝐻 denote the canonical involution on 𝐻 and let
𝜏 be the involution on 𝑄 corresponding with 𝖼𝖺𝗇𝐻⊗ 𝖼𝖺𝗇𝐾(𝑗2)∕𝐹(𝑗2) under this
isomorphism. Then 𝜏 is symplectic or unitary, 𝜏(𝑗) = −𝑗 and 𝜏|𝐾 = 𝖼𝖺𝗇𝐾∕𝐹 =
𝛾|𝐾 , where 𝖼𝖺𝗇𝐾∕𝐹 = 𝗂𝖽𝐹 when𝐾 = 𝐹. Hence, by [8, Theorem 4.14], there exists
an involution 𝛾′ on 𝐷 which is symplectic or unitary and such that 𝛾′|𝑄 = 𝜏. In
particular, 𝛾′|𝐾 = 𝛾|𝐾 , 𝛾′|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 and 𝛾′(𝑗) = −𝑗. □

Proposition 4.4. Let 𝐷 be a central 𝐾-division algebra and 𝛾 an involution on
𝐷. Let 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾(𝑥) = 𝑥}. Let 𝐿∕𝐹 be a separable quadratic field extension
contained in 𝐷, linearly disjoint from 𝐾∕𝐹 and with 𝛾|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 . Let 𝑗 ∈ 𝐷×

be such that 𝛾(𝑗) = −𝑗 and 𝖨𝗇𝗍(𝑗)|𝐿 = 𝖼𝖺𝗇𝐿∕𝐹 . Set �̃� = 𝐶𝐷(𝐿), 𝛾0 = 𝛾|�̃� and
𝛾1 = (𝖨𝗇𝗍(𝑗−1)◦𝛾)|�̃� . Then �̃� is an 𝐿-division algebra with 𝖹(�̃�) = 𝐿𝐾 and such
that 𝐷 = �̃� ⊕ 𝑗�̃�. Furthermore, the following hold:
(𝑎) The maps 𝛾0 and 𝛾1 are involutions on �̃�, and 𝛾0 is unitary. If 𝛾 is unitary,

then so is 𝛾1. If 𝖼𝗁𝖺𝗋𝐹 ≠ 2, then 𝛾 is orthogonal if and only if 𝛾1 is symplectic,
and vice-versa.

(𝑏) Let 𝜋0, 𝜋1 ∶ 𝐷 → �̃� be the 𝐹-linear maps such that 𝗂𝖽𝐷 = 𝜋0 + 𝑗𝜋1. Let
𝜀 ∈ {±1}and letℎ ∶ 𝑉×𝑉 → 𝐷 be anonsingular 𝜀-hermitian formover (𝐷, 𝛾)
defined on afinite-dimensional𝐷-right vector space𝑉. Then𝜋0◦ℎ ∶ 𝑉×𝑉 →
�̃� is a nonsingular 𝜀-hermitian form over (�̃�, 𝛾0) and 𝜋1◦ℎ ∶ 𝑉 × 𝑉 → �̃� is
a nonsingular (−𝜀)-hermitian form over (�̃�, 𝛾1).

Proof. It is easy to see that 𝛾(�̃�) = �̃�, 𝖹(�̃�) = 𝐾𝐿, 𝐷 = �̃� ⊕𝑗�̃� and that 𝛾0 and
𝛾1 are involutions on �̃�.
(𝑎) Clearly (𝛾0)|𝐿 ≠ 𝗂𝖽𝐿, so 𝛾0 is unitary. Note that (𝛾1)|𝐿 = 𝗂𝖽𝐿 and (𝛾1)|𝐾 =

𝛾|𝐾 . Therefore 𝛾1 is unitary if and only if 𝛾 is unitary. Assume now that this
is not the case, that is 𝛾|𝐾 = 𝗂𝖽𝐾 and 𝐹 = 𝐾. Since 𝛾(𝑗) = −𝑗, assuming
that 𝖼𝗁𝖺𝗋𝐹 ≠ 2, it follows by [8, Prop. 2.7] that if 𝛾 is orthogonal, then 𝛾1 is
symplectic, and vice-versa.
(𝑏) Set ℎ0 = 𝜋0◦ℎ and ℎ1 = 𝜋1◦ℎ. Clearly themaps ℎ0 and ℎ1 are bi-additive,

and for any 𝑣, 𝑤 ∈ 𝑉 we have ℎ(𝑣, 𝑤) = ℎ0(𝑣, 𝑤) + 𝑗ℎ1(𝑣, 𝑤). Let 𝑣, 𝑤 ∈ 𝑉 and
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𝑥, 𝑦 ∈ �̃�. We have
ℎ(𝑣𝑥,𝑤𝑦) = 𝛾(𝑥)ℎ(𝑣, 𝑤)𝑦 = 𝛾(𝑥)ℎ0(𝑣, 𝑤)𝑦 + 𝛾(𝑥)𝑗ℎ1(𝑣, 𝑤)𝑦

= 𝛾0(𝑥)ℎ0(𝑣, 𝑤)𝑦 + 𝑗𝛾1(𝑥)ℎ1(𝑣, 𝑤)𝑦,
whereby ℎ0(𝑣𝑥,𝑤𝑦) = 𝛾0(𝑥)ℎ0(𝑣, 𝑤)𝑦 and ℎ1(𝑣𝑥,𝑤𝑦) = 𝛾1(𝑥)ℎ1(𝑣, 𝑤)𝑦. Fur-
thermore,

ℎ(𝑤, 𝑣) = 𝜀𝛾(ℎ(𝑣, 𝑤)) = 𝜀𝛾(ℎ0(𝑣, 𝑤)) − 𝜀𝛾(ℎ1(𝑣, 𝑤))𝑗
= 𝜀𝛾0(ℎ0(𝑣, 𝑤)) − 𝜀𝑗𝛾1(ℎ1(𝑣, 𝑤)).

whereby ℎ0(𝑤, 𝑣) = 𝜀𝛾0(ℎ0(𝑣, 𝑤)) and ℎ1(𝑤, 𝑣) = −𝜀𝛾1(ℎ1(𝑣, 𝑤)). Hence, ℎ0 is
an 𝜀-hermitian form over (�̃�, 𝛾0) and ℎ1 is a (−𝜀)-hermitian form over (�̃�, 𝛾1).
Note that for 𝑣, 𝑤 ∈ 𝑉, since 𝛾(𝑗) = −𝑗, we have

ℎ(𝑣𝑗, 𝑤) = ℎ0(𝑣𝑗, 𝑤) + 𝑗ℎ1(𝑣𝑗, 𝑤)
= −𝑗ℎ0(𝑣, 𝑤) − 𝑗2ℎ1(𝑣, 𝑤),

and as 𝑗2 ∈ �̃�×, we get thatℎ0(𝑣𝑗, 𝑤) = −𝑗2ℎ1(𝑣, 𝑤) andℎ1(𝑣𝑗, 𝑤) = −ℎ0(𝑣, 𝑤).
As ℎ is nonsingular, this implies in particular that ℎ0 and ℎ1 are nonsingular.

□

We obtain another generalization of [10, Prop. 3.1].

Proposition 4.5. Let 𝐾∕𝐹 be a separable field extension with [𝐾 ∶ 𝐹] ⩽ 2. Let
𝑀∕𝐾 be a quadratic field extension such that𝑀∕𝐹 is separable and𝑀 contains
a quadratic extension of 𝐹 distinct from 𝐾. Let 𝛼 ∈ 𝖡𝗋(𝐾) be such that 𝗂𝗇𝖽𝛼𝑀 =
1
2
𝗂𝗇𝖽𝛼. Then the following hold:

(𝑎) If 𝖼𝗁𝖺𝗋𝐹 ≠ 2 and 𝐾 = 𝐹, then

𝑢+(𝛼) ⩽ 1
2
𝑢+(𝛼𝑀) + 𝑢(𝛼𝑀∕𝐹) and 𝑢−(𝛼) ⩽ 𝑢−(𝛼𝑀) +

1
2
𝑢(𝛼𝑀∕𝐹).

(𝑏) If [𝐾 ∶ 𝐹] = 2, then𝑀∕𝐹 has a quadratic subextension 𝐿∕𝐹 such that𝑀 =
𝐾𝐿 and

𝑢(𝛼∕𝐹) ⩽ 3
2
⋅ 𝑢(𝛼𝑀∕𝐿).

Proof. If 𝐾 = 𝐹, then we assume that 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Let 𝐷 be the central 𝐾-
division algebra such that 𝛼 = [𝐷]. If 𝐾 = 𝐹 and 𝑢+(𝛼) = 0, respectively if
[𝐾 ∶ 𝐹] = 2 and 𝑢(𝛼∕𝐹) = 0, then the claim of (𝑎), respectively of (𝑏) holds
trivially. We may assume that this is not the case. We may thus fix an 𝐹-linear
involution 𝛾 on 𝐷 with 𝐹 = {𝑥 ∈ 𝐾 ∣ 𝛾(𝑥) = 𝑥} which is orthogonal or unitary
(depending on [𝐾 ∶ 𝐹]).
Since 𝗂𝗇𝖽𝛼𝑀 = 1

2
𝗂𝗇𝖽𝛼, we can embed 𝑀 into 𝐷 and hence view 𝑀 as an

𝐹-subalgebra of 𝐷. Using Proposition 4.3, we choose an element 𝑗 ∈ 𝐷× with
𝖨𝗇𝗍(𝑗)|𝑀 = 𝖼𝖺𝗇𝑀∕𝐾 and an 𝐹-linear involution 𝛾′ on 𝐷 which is symplectic or
unitary and such that 𝛾′|𝐾 = 𝛾|𝐾 , 𝛾′(𝑀) = 𝑀 and 𝛾′(𝑗) = −𝑗.
Set �̃� = {𝑥 ∈ 𝐷 ∣ 𝑥𝑦 = 𝑦𝑥 for all 𝑦 ∈ 𝑀}, the centralizer of 𝑀 in 𝐷, and

𝛾0 = 𝛾′|�̃�, 𝛾1 = (𝖨𝗇𝗍(𝑗−1)◦𝛾′)|�̃� . Then �̃� is a central simple𝑀-algebra, and 𝛾0
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and 𝛾1 are 𝐹-linear involutions on �̃�, whose properties are, according to Propo-
sition 4.4, determined by those of 𝛾′ in the following way: 𝛾0 is unitary in any
case, and if 𝛾′ is symplectic, then 𝛾1 is orthogonal, whereas if 𝛾′ is unitary, then
so is 𝛾1.
Let 𝜀 ∈ {±1} and consider an 𝜀-hermitian form ℎ over (𝐷, 𝛾′), defined on

some finite-dimensional 𝐷-right vector space 𝑉. Seeing 𝑉 as a �̃�-right vector
space, Proposition 4.4 yields an 𝜀-hermitian form ℎ0 over (�̃�, 𝛾0) and a (−𝜀)-
hermitian form ℎ1 over (�̃�, 𝛾1) such that 𝗋𝗄ℎ0 = 𝗋𝗄ℎ1 = 2 ⋅ 𝗋𝗄ℎ.
Suppose now that 𝗋𝗄ℎ > 1

2
𝑢(�̃�, 𝛾0, 𝜀) + 𝑢(�̃�, 𝛾1,−𝜀). As 𝗋𝗄ℎ0 = 2 𝗋𝗄ℎ, it

follows by Lemma 3.1 that 𝑉 contains a �̃�-subspace𝑊 such that ℎ0(𝑣, 𝑤) = 0
for all 𝑣, 𝑤 ∈ 𝑊 and 𝗋𝗄�̃�𝑊 > 𝑢(�̃�, 𝛾1,−𝜀). This implies that ℎ1(𝑣, 𝑣) = 0 for
some 𝑣 ∈ 𝑊 ∖ {0}. Then ℎ(𝑣, 𝑣) = ℎ0(𝑣, 𝑣) + 𝑗ℎ1(𝑣, 𝑣) = 0, so ℎ is isotropic.
This argument proves that

𝑢(𝐷, 𝛾′, 𝜀) ⩽ 1
2
𝑢(�̃�, 𝛾0, 𝜀) + 𝑢(�̃�, 𝛾1,−𝜀) .

Analogously, switching the roles of ℎ0 and ℎ1 in the argument, we obtain that

𝑢(𝐷, 𝛾′, 𝜀) ⩽ 𝑢(�̃�, 𝛾0, 𝜀) +
1
2
𝑢(�̃�, 𝛾1,−𝜀) .

We are now ready to prove the two parts of the statement. If 𝐾 = 𝐹, then
using Proposition 3.2, the second inequality for 𝜀 = −1 gives the first inequality
in (𝑎), while the first inequality for 𝜀 = 1 yields the second inequality in (𝑎).
Assume now that [𝐾 ∶ 𝐹] = 2. For 𝑖 = 0, 1, we set 𝐿𝑖 = {𝑥 ∈ 𝑀 ∣ 𝛾𝑖(𝑥) = 𝑥}.

Then 𝐾∕𝐹, 𝐿0∕𝐹 and 𝐿1∕𝐹 are the three different quadratic subextensions in
𝑀∕𝐹. Note that 𝑢(�̃�, 𝛾𝑖, 𝜀) = 𝑢(�̃�, 𝛾𝑖, 1) for 𝑖 = 0, 1. Take 𝑘 ∈ {0, 1} such that
𝑢(�̃�, 𝛾𝑘, 1) ⩾ 𝑢(�̃�, 𝛾1−𝑘, 1). We conclude from either of the two inequalities
above that 𝑢(𝛼∕𝐹) = 𝑢(𝐷, 𝛾, 1) ⩽ 3

2
𝑢(�̃�, 𝛾𝑘, 1) =

3
2
𝑢(𝛼𝑀∕𝐿𝑘), proving (𝑏). □

We merge the main results of this section into one theorem.

Theorem 4.6. Let 𝐾∕𝐹 be a separable field extension with [𝐾 ∶ 𝐹] ⩽ 2. Let
𝑀∕𝐾 be a quadratic field extension such that𝑀∕𝐹 is separable and𝑀 contains
a quadratic extension of 𝐹 distinct from 𝐾. Let 𝛼 ∈ 𝖡𝗋(𝐾).
(𝑎) If 𝖼𝗁𝖺𝗋𝐹 ≠ 2 and 𝐾 = 𝐹, then

𝑢+(𝛼) ⩽ 𝗂𝗇𝖽𝛼𝑀
𝗂𝗇𝖽𝛼

(
𝑢+(𝛼𝑀) + 2𝑢(𝛼𝑀∕𝐹)

)
.

(𝑏) If [𝐾 ∶ 𝐹] = 2, then𝑀∕𝐹 has a quadratic subextension 𝐿∕𝐹 such that𝑀 =
𝐾𝐿 and

𝑢(𝛼∕𝐹) ⩽ 3 ⋅ 𝗂𝗇𝖽𝛼𝑀
𝗂𝗇𝖽𝛼

⋅ 𝑢(𝛼𝑀∕𝐿).

Proof. This follows from Proposition 4.2 if 𝗂𝗇𝖽𝛼𝐾𝑀 = 𝗂𝗇𝖽𝛼 and from Proposi-
tion 4.5 if 𝗂𝗇𝖽𝛼𝐾𝑀 = 1

2
𝗂𝗇𝖽𝛼. □

In Section 5 and Section 6, we shall apply Theorem 4.6 to obtain bounds on
the hermitian 𝑢-invariants.
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5. Bounds on the unitary 𝒖-invariant
In this section, we study the behavior of the unitary 𝑢-invariant under 2-

extensions.

Theorem 5.1. Let 𝐾∕𝐹 be a separable quadratic field extension and 𝛼 ∈ 𝖡𝗋(𝐾).
Let 𝑛 ∈ ℕ and let 𝐿∕𝐹 be a 2-extension linearly disjoint from 𝐾∕𝐹 such that
[𝐿 ∶ 𝐹] = 2𝑛. Then there exists a 2-extension 𝐿′∕𝐹 linearly disjoint from 𝐾∕𝐹
with 𝐾𝐿′ = 𝐾𝐿 and such that

𝗂𝗇𝖽𝛼 ⋅ 𝑢(𝛼∕𝐹) ⩽ 3𝑛 ⋅ 𝗂𝗇𝖽𝛼𝐾𝐿 ⋅ 𝑢(𝛼𝐾𝐿∕𝐿′).

Proof. We prove the statement by induction on 𝑛. If 𝑛 = 0, then 𝐿 = 𝐹 and the
inequality holds trivially by taking 𝐿′ = 𝐹. Assume now that 𝑛 ⩾ 1. Since 𝐿∕𝐹
is a 2-extension, there exist a family of intermediate fields (𝐿𝑖)𝑛𝑖=0 with 𝐿0 = 𝐹,
𝐿𝑛 = 𝐿 and such that 𝐿𝑖∕𝐿𝑖−1 is a separable quadratic field extension for 1 ⩽
𝑖 ⩽ 𝑛. Set 𝐾′ = 𝐿1𝐾.
By Theorem 4.6, there exists a separable quadratic field extension 𝐿′1∕𝐹 con-

tained in 𝐾′∕𝐹 such that 𝐿′1𝐾 = 𝐾′ and

𝑢(𝛼∕𝐹) ⩽ 𝗂𝗇𝖽𝛼𝐾′
𝗂𝗇𝖽𝛼

⋅ 3 ⋅ 𝑢(𝛼𝐾′∕𝐿′1).

Since [𝐿′1 ∶ 𝐹] = [𝐾 ∶ 𝐹] = 2 and [𝐾′ ∶ 𝐹] = 4, it follows that 𝐿′1∕𝐹 is linearly
disjoint from 𝐾∕𝐹. Note that there exists a 2-extension 𝐿′∕𝐿′1 contained in 𝐿𝐾,
linearly disjoint from 𝐾′∕𝐿′1 and such that 𝐿

′𝐾 = 𝐿𝐾. Moreover, for any such
extension 𝐿′∕𝐿′1 we have that [𝐿

′ ∶ 𝐿′1] = [𝐿𝐾 ∶ 𝐿1𝐾] = [𝐿 ∶ 𝐿1] = 2𝑛−1. The
induction hypothesis yields that there exists such an extension 𝐿′∕𝐿′1 with

𝑢(𝛼𝐾′∕𝐿′1) ⩽
𝗂𝗇𝖽𝛼𝐾𝐿
𝗂𝗇𝖽𝛼𝐾′

⋅ 3𝑛−1 ⋅ 𝑢(𝛼𝐾𝐿∕𝐿′).

Combining the inequalities yields that 𝑢(𝛼∕𝐹) ⩽ 𝗂𝗇𝖽𝛼𝐾𝐿
𝗂𝗇𝖽𝛼

⋅ 3𝑛 ⋅ 𝑢(𝛼𝐾𝐿∕𝐿′). □

Corollary 5.2. Let 𝐾∕𝐹 be a separable quadratic field extension and 𝛼∈𝖡𝗋(𝐾).
Let 𝑛 ∈ ℕ and let 𝐿∕𝐹 be a 2-extension linearly disjoint from 𝐾∕𝐹 such that
[𝐿 ∶ 𝐹] = 2𝑛 and 𝛼𝐾𝐿 = 0. Then, there exists a 2-extension 𝐿′∕𝐹 linearly disjoint
from 𝐾∕𝐹 such that 𝐾𝐿′ = 𝐾𝐿 and

𝗂𝗇𝖽𝛼 ⋅ 𝑢(𝛼∕𝐹) ⩽ 3𝑛 ⋅ 𝑢(𝐾𝐿∕𝐿′).

Proof. By Theorem 5.1, there exists a 2-extension 𝐿′∕𝐹 linearly disjoint from
𝐾∕𝐹with𝐾𝐿′ = 𝐾𝐿 and 𝗂𝗇𝖽𝛼 ⋅𝑢(𝛼∕𝐹) ⩽ 𝗂𝗇𝖽𝛼𝐾𝐿 ⋅3𝑛 ⋅𝑢(𝛼𝐾𝐿∕𝐿′). Since 𝛼𝐾𝐿 = 0,
we have 𝗂𝗇𝖽𝛼𝐾𝐿 = 1 and 𝑢(𝛼𝐾𝐿∕𝐿′) = 𝑢(𝐾𝐿∕𝐿′). □

We denote by 𝖨3𝗊𝐹 the subgroup of the Witt group of 𝐹 generated by the Witt
equivalence classes of quadratic 3-fold Pfister forms over𝐹. In particular, 𝖨3𝗊𝐹 =
0 if and only if every quadratic 3-fold Pfister form over 𝐹 is hyperbolic.
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Corollary 5.3. Assume that 𝖨3𝗊𝐹 = 0. Let 𝐾∕𝐹 be a separable quadratic field
extension and 𝛼 ∈ 𝖡𝗋(𝐾). Let 𝑛 ∈ ℕ. Assume that there exists a 2-extension 𝐿∕𝐹
linearly disjoint from 𝐾∕𝐹 with [𝐿 ∶ 𝐹] = 2𝑛 and such that 𝛼𝐿 = 0. Then

𝗂𝗇𝖽𝛼 ⋅ 𝑢(𝛼∕𝐹) ⩽ 2 ⋅ 3𝑛.

Proof. By Corollary 5.2, there exists a 2-extension 𝐿′∕𝐹 linearly disjoint from
𝐾∕𝐹 with 𝐾𝐿′ = 𝐾𝐿 such that 𝗂𝗇𝖽𝛼 ⋅ 𝑢(𝛼∕𝐹) ⩽ 3𝑛 ⋅ 𝑢(𝐾𝐿∕𝐿′). As 𝖨3𝗊𝐹 = 0 and
𝐿′∕𝐹 is a 2-extension, it follows by a repeated use of [6, Theorem 34.22] that
𝖨3𝗊𝐿′ = 0. Now Proposition 3.7 yields that 𝑢(𝐾𝐿∕𝐿′) ⩽ 2. □

Remark 5.4. Note that the bound inCorollary 5.3 does not involve 𝑢(𝐹). When
𝗂𝗇𝖽𝛼 = 2 and 𝖨3𝗊𝐹 = 0, we obtain that 𝑢(𝛼∕𝐹) ⩽ 3. Starting by constructing an
example of a central simple algebra of degree 12 with an anisotropic quadratic
pair, one can produce an example showing that this bound is optimal. This will
be included in a forthcoming article.

Theorem 5.5. Assume that𝐹 is nonreal with 𝖼𝗁𝖺𝗋𝐹 ≠ 2. Let𝐾∕𝐹 be a quadratic
field extension. Let 𝛼 ∈ 𝖡𝗋(𝐾) be such that 𝗂𝗇𝖽𝛼 ⩽ 4. Then 𝑢(𝛼∕𝐹) ⩽ 63

32
𝑢(𝐹).

Proof. Wemay assume that 𝗂𝗇𝖽𝛼 = 4. It follows by [3, Theorem 7.4] that there
exists a separable quadratic field extension 𝐿∕𝐹 linearly disjoint from𝐾∕𝐹 such
that 𝗂𝗇𝖽𝛼𝐾𝐿 = 2. Moreover, in view of Theorem 5.1, wemay choose 𝐿∕𝐹 in such
way that 𝑢(𝛼∕𝐹) ⩽ 3

2
𝑢(𝛼𝐾𝐿∕𝐿). Now, 𝑢(𝛼𝐾𝐿∕𝐿) ⩽

7
8
𝑢(𝐿), by Theorem 3.10.

Moreover, 𝑢(𝐿) ⩽ 3
2
𝑢(𝐹), by Proposition 3.6. Therefore 𝑢(𝛼∕𝐹) ⩽ 63

32
𝑢(𝐹). □

Remark 5.6. Let 𝐾∕𝐹 and 𝛼 be as in Theorem 5.5. If 𝛼 = 𝛽𝐾 for some 𝛽 ∈
𝖡𝗋2(𝐹) with 𝗂𝗇𝖽 𝛽 ⩽ 4, then Theorem 3.10 yields that 𝑢(𝛼∕𝐹) ⩽ 55

32
𝑢(𝐹), which

is better than the bound in Theorem 5.5. If we only assume that 𝖾𝗑𝗉𝛼 = 2 and
𝗂𝗇𝖽𝛼 = 4, then we can derive from Theorem 3.10 that 𝑢(𝛼∕𝐹) ⩽ 463

128
𝑢(𝐹), by

using that 𝛼 = (𝛾1 + 𝛾2 + 𝛾3)𝐾 for certain 𝛾1, 𝛾2, 𝛾3 ∈ 𝖡𝗋(𝐹) with 𝗂𝗇𝖽 𝛾𝑖 ⩽ 2 for
1 ⩽ 𝑖 ⩽ 3. Theorem 5.5 yields a sharper bound in this case. Furthermore, if
𝖾𝗑𝗉𝛼 = 𝗂𝗇𝖽𝛼 = 4, then Theorem 3.10 does not apply, while Theorem 5.5 does.

6. Bounds on the orthogonal 𝒖-invariant
In this section, we assume that 𝐹 is nonreal with 𝖼𝗁𝖺𝗋𝐹 ≠ 2. We study the

behavior of the orthogonal 𝑢-invariant under multiquadratic field extensions.

Theorem 6.1. Let 𝛼 ∈ 𝖡𝗋2(𝐹) with 𝗂𝗇𝖽𝛼 = 8. Then

𝑢+(𝛼) ⩽ ⌊ 87
64
𝑢(𝐹)⌋ + ⌊ 63

32
𝑢(𝐹)⌋ ⩽ 213

64
𝑢(𝐹).

Proof. By [13], there exists a separable quadratic field extension 𝐾∕𝐹 such
that 𝗂𝗇𝖽𝛼𝐾 = 4. By Theorem 4.6, we have 𝑢+(𝛼) ⩽ 1

2
𝑢+(𝛼𝐾) + 𝑢(𝛼𝐾∕𝐹),

and by Proposition 3.6, we have 𝑢(𝐾) ⩽ 3
2
𝑢(𝐹). We obtain by Theorem 3.10
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that 𝑢+(𝛼𝐾) ⩽
29
16
𝑢(𝐾) ⩽ 87

32
𝑢(𝐹). Furthermore, by Theorem 5.5, we have that

𝑢(𝛼𝐾∕𝐹) ⩽
63
32
𝑢(𝐹). This yields the desired inequality. □

Remark 6.2. Let 𝛼 ∈ 𝖡𝗋2(𝐹) with 𝗂𝗇𝖽𝛼 = 8, as in Theorem 6.1. From Propo-
sition 3.8, we would obtain the bound 𝑢+(𝛼) ⩽ 333

32
𝑢(𝐹). This general bound is

now considerably improved by Theorem 6.1.
Note that Theorem 3.10 does not apply here without further assumption. If

we assume that 𝛼 = 𝛾1 + 𝛾2 + 𝛾3 for certain 𝛾1, 𝛾2, 𝛾3 ∈ 𝖡𝗋(𝐹) with 𝗂𝗇𝖽 𝛾1 = 2
for 1 ⩽ 𝑖 ⩽ 3, then Theorem 3.10 yields that 𝑢+(𝛼) ⩽ 197

64
𝑢(𝐹), which is slightly

better than the bound obtained in Theorem 6.1.

Proposition 6.3. Let 𝛼 ∈ 𝖡𝗋(𝐹), 𝑛 ∈ ℕ+ and let𝑀∕𝐹 be a multiquadratic field
extension with [𝑀 ∶ 𝐹] = 2𝑛. There exists a subextension 𝐿∕𝐹 of 𝑀∕𝐹 with
[𝑀 ∶ 𝐿] = 2 such that

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ 𝗂𝗇𝖽𝛼𝑀 ⋅
(
𝑢+(𝛼𝑀) + (3𝑛 − 1) ⋅ 𝑢(𝛼𝑀∕𝐿)

)
.

Proof. We prove the statement by induction on 𝑛. If 𝑛 = 1, then [𝑀 ∶ 𝐹] = 2,
and we conclude by Theorem 4.6 that the claimed inequality holds with 𝐿 = 𝐹.
Assume now that 𝑛 > 1. We fix a quadratic subextension 𝐾∕𝐹 and a mul-
tiquadratic subextension 𝑀′∕𝐹 of 𝑀∕𝐹 linearly disjoint from 𝐾∕𝐹 such that
𝑀 = 𝑀′𝐾. Then 𝛼𝐾 ∈ 𝖡𝗋(𝐾) and𝑀∕𝐾 is a multiquadratic field extension with
[𝑀 ∶ 𝐾] = 2𝑛−1. Hence, by the induction hypothesis, there exists a 2-extension
𝐿1∕𝐾 contained in𝑀∕𝐾 with [𝑀 ∶ 𝐿1] = 2 and such that

𝗂𝗇𝖽𝛼𝐾 ⋅ 𝑢+(𝛼𝐾) ⩽ 𝗂𝗇𝖽𝛼𝑀 ⋅
(
𝑢+(𝛼𝑀) + (3𝑛−1 − 1) ⋅ 𝑢(𝛼𝑀∕𝐿1)

)
.

Since𝑀′∕𝐹 is a 2-extension linearly disjoint from 𝐾∕𝐹 with [𝑀′ ∶ 𝐹] = 2𝑛−1,
it follows by Theorem 5.1 that there exists a subextension 𝐿2∕𝐹 of𝑀∕𝐹 linearly
disjoint from 𝐾∕𝐹 such that 𝐿2𝐾 = 𝑀′𝐾 = 𝑀 and

𝗂𝗇𝖽𝛼𝐾 ⋅ 𝑢(𝛼𝐾∕𝐹) ⩽ 3𝑛−1 ⋅ 𝗂𝗇𝖽𝛼𝑀 ⋅ 𝑢(𝛼𝑀∕𝐿2).
By Theorem 4.6 we have

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ 𝗂𝗇𝖽𝛼𝐾 ⋅
(
𝑢+(𝛼𝐾) + 2 ⋅ 𝑢(𝛼𝐾∕𝐹)

)
.

If 𝑢(𝛼𝑀∕𝐿1) ⩾ 𝑢(𝛼𝑀∕𝐿2) then we set 𝐿 = 𝐿1, and otherwise we set 𝐿 = 𝐿2.
Then 𝑢(𝛼𝑀∕𝐿𝑖) ⩽ 𝑢(𝛼𝑀∕𝐿) for 𝑖 = 1, 2, and we conclude that

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ 𝗂𝗇𝖽𝛼𝑀 ⋅
(
𝑢+(𝛼𝑀) + (3𝑛 − 1) ⋅ 𝑢(𝛼𝑀∕𝐿)

)
. □

Corollary 6.4. Let 𝛼 ∈ 𝖡𝗋(𝐹) and 𝑛 ∈ ℕ. Let 𝑀∕𝐹 be a multiquadratic field
extension such that [𝑀 ∶ 𝐹] = 2𝑛 and 𝛼𝑀 = 0. If 𝑢 ∈ ℕ is such that 𝑢(𝐿) ⩽ 𝑢 for
every subextension 𝐿∕𝐹 of𝑀∕𝐹, then

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ 3𝑛+1
2

⋅ 𝑢.

In any case, we have

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ (3𝑛+2)3𝑛−1

2𝑛
⋅ 𝑢(𝐹) .
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Proof. If 𝑛 = 0, then 𝛼 = 0, whereby 𝑢+(𝛼) = 𝑢+(𝐹) = 𝑢(𝐹), so that both parts
of the statement hold trivially. Assume now that 𝑛 ⩾ 1. By Proposition 6.3,
there exists a 2-extension 𝐿∕𝐹 contained in 𝑀∕𝐹 with [𝑀 ∶ 𝐿] = 2 and such
that

𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ 𝗂𝗇𝖽𝛼𝑀 ⋅
(
𝑢+(𝛼𝑀) + (3𝑛 − 1) ⋅ 𝑢(𝛼𝑀∕𝐿)

)
.

Since 𝛼𝑀 = 0, we have 𝗂𝗇𝖽𝛼𝑀 = 1, and hence 𝑢+(𝛼𝑀) = 𝑢(𝑀) and further
𝑢(𝛼𝑀∕𝐿) = 𝑢(𝑀∕𝐿) ⩽ 1

2
𝑢(𝐿), in view of Proposition 3.7. This yields the first

part. As𝑀∕𝐹 and 𝐿∕𝐹 are 2-extensions with [𝑀 ∶ 𝐹] = 2𝑛 and [𝐿 ∶ 𝐹] = 2𝑛−1,
we obtain by Proposition 3.6 that 𝑢(𝑀) ⩽ ( 3

2
)𝑛 ⋅ 𝑢(𝐹) and 𝑢(𝐿) ⩽ ( 3

2
)𝑛−1 ⋅ 𝑢(𝐹).

This yields the second part. □

Most bounds thatwe presented in this article have strictlyweaker hypotheses
than previously known bounds. The trade-off is that the bounds that we obtain
are also a bit weaker, by comparison.

Remark 6.5. Let 𝑛 ∈ ℕ. Consider the condition on 𝐹 that, for any 𝑟 ∈ ℕ,
every system of 𝑟 quadratic forms over 𝐹 in more than 𝑟 ⋅ 2𝑛 variables has a
non-trivial zero over 𝐹. With this condition, the proof of [10, Prop. 3.6] yields
that 𝑢+(𝛼) ⩽ (1 + 1

𝗂𝗇𝖽𝛼
) ⋅ 2𝑛−1 for any 𝛼 ∈ 𝖡𝗋2(𝐹).

Note that the condition on systems of quadratic forms also implies that
𝑢(𝐹′) ⩽ 2𝑛 for every finite field extension 𝐹′∕𝐹. However, the bound which
we get from [10, Prop. 3.6] is far better than what one would obtain by applying
Corollary 6.4 with 𝑢 = 2𝑛.
However, there are fields 𝐹 for which it is known that 𝑢(𝐹′) ⩽ 2𝑛 holds for

every finite field extension 𝐹′∕𝐹, while there is no evidence that the stronger
condition on systems of quadratic forms over 𝐹 is satisfied.
A very interesting such case is that of a rational function field

𝐹 = ℚ𝑝(𝑡1,… , 𝑡𝑛−2)

in 𝑛−2 variables, where 𝑛 ⩾ 3, over the field of 𝑝-adic numbersℚ𝑝 for a prime
number 𝑝. Here, it is shown in [9, Prop. 2.4, Cor. 2.7] that, for any 𝑟 ∈ ℕ,
any systems of 𝑟 quadratic forms over 𝐹 in more than 𝑟 ⋅ 2𝑛 variables has a
solution in some finite extension of odd degree of 𝐹, and this is further used in
[9, Theorem 3.4] to show that 𝑢(𝐹′) ⩽ 2𝑛 for every finite extension 𝐹′∕𝐹.
Since it is not knownwhether 𝑢+(𝛼𝐿) = 𝑢+(𝛼) for any𝛼 ∈ 𝖡𝗋2(𝐹) and a finite

extension of odd degree 𝐿∕𝐹, the bound from Corollary 6.4 is still the best we
might have so far. For 𝑛 = 4, that is, 𝐹 = ℚ𝑝(𝑡1, 𝑡2), we obtain for example that
𝗂𝗇𝖽𝛼 ⋅ 𝑢+(𝛼) ⩽ (37 + 1) ⋅ 8 = 17504 for any 𝛼 ∈ 𝖡𝗋2(𝐹). From Theorem 3.10,
one can get that 𝑢+(𝛼) ⩽ 946, which is better when 𝗂𝗇𝖽𝛼 ⩽ 16. It is unknown
whether there exists 𝛼 ∈ 𝖡𝗋2(𝐹) with 𝗂𝗇𝖽𝛼 > 16 over this field 𝐹.

In [15, Theorem 1.2], precise values for the 𝑢-invariants were determined for
algebraswith involution over function fields of curves over a𝑝-adic field, where
𝑝 is an odd prime number.
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