
New York Journal of Mathematics
New York J. Math. 31 (2025) 1118–1139.

On balanced HKTmanifolds

Giovanni Gentili and Mehdi Lejmi

Abstract. We prove the openness of the balanced HKT cone within the
cone ofHKT structures on a compact hypercomplexmanifold (𝑀, 𝐼, 𝐽, 𝐾). We
also study the Lie algebra of hyperholomorphic vector fields of type (1, 0)with
respect to 𝐼, with particular emphasis on the case when there exists a compat-
ible balanced HKTmetric. These fields exhibit a strict interplay with the bal-
ancedHKT structure, for instance, we prove a harmonicity property for (1, 0)-
forms dual to hyperholomorphic vector fields. We also shownon-existence of
hyperholomorphic (1, 0)-vector fields on some hypercomplex manifolds ad-
mitting a HKT–Einstein metric.
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1. Introduction
Hyperkählerwith torsion (HKT) structures have been introduced in the phys-

ical literature by Howe and Papadopoulos [19]. They play a significant role
in certain supersymmetric sigma models and other physical theories. These
structures belong to the realm of hyperhermitian geometry and represent an
interesting weakening of the hyperkähler condition. We refer to Section 2 for
essential definitions.
The attention devoted to HKT and hypercomplex structures has recently in-

creased: among others, we mention the very recent work [3, 2, 4, 5, 9, 10, 12,
15, 24, 28, 29, 36]. Part of this renewed interest of the mathematical com-
munity is due to the influential quaternionic Calabi conjecture formulated by
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Alesker and Verbitsky [1] in 2010. On a HKT manifold (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω), the
form Ω ∈ Λ2,0

𝐼 (𝑀) induces a nowhere vanishing section of the canonical bun-
dle Ω𝑛 ∈ Λ2𝑛,0

𝐼 (𝑀), where 2𝑛 = dimℂ(𝑀). The expectation is that on a com-
pactHKTmanifold, any q-positive holomorphic section of the canonical bundle
arises in this way, namely as the top wedge power of another HKT metric. The
new HKT metric, which would be the “quaternionic version” of a Calabi–Yau
metric in Kähler geometry, is then also balanced and (first) Chern–Ricci flat.
The conjecture has only been fully proved with the additional assumption of
having a hyperkähler metric by Dinew and Sroka [11] (see also [8]), which un-
fortunately excludes from the picture all the interesting geometric scenarios in
the non-Kähler framework.

Our first main result, motivated by the conjecture of Alesker and Verbitsky,
concerns the cone of balanced HKT cohomology classes. A HKTmetricΩ on a
hypercomplex manifold (𝑀, 𝐼, 𝐽, 𝐾) determines a quaternionic Bott–Chern co-
homology class in𝐻2,0

BC(𝑀). All such classes admitting a HKTmetric as a repre-
sentative form an open cone inside𝐻2,0

BC(𝑀). Also, we can consider the smaller
cone of cohomology classes that admit a balanced HKT representative. Should
the conjecture of Alesker and Verbitsky turn out to be true, it would imply that
on compact HKT manifolds with holomorphically trivial canonical bundle the
balanced HKT cone coincides with the HKT cone. We prove, analogously to
the classical result of LeBrun and Simanca [23] regarding extremal Kähler met-
rics, that a given balanced HKT class has an open neighborhood in 𝐻2,0

BC(𝑀)
such that each element of this neighborhood is represented by a balanced HKT
metric:

Theorem 1.1. Let (𝑀, 𝐼, 𝐽, 𝐾) be a compact hypercomplex manifold. Then the
balanced HKT cone is open in the HKT cone.

It should be remarked that a notion of extremal HKT metric is still missing
in the literature. However, we could take into account HKTmetrics of constant
Chern–scalar curvature as well as HKT–Einstein metrics as the analogue of
constant scalar curvature Kähler metrics and Kähler–Einstein metrics, respec-
tively. From this point of view, balanced HKT metrics are those HKT–Einstein
metrics with vanishing Chern–scalar curvature, just as Calabi–Yau metrics are
Kähler–Einsteinmetrics with vanishing Riemannian scalar curvature. Surpris-
ingly, unlike what happens in the Kähler framework, compact hypercomplex
manifolds cannot support negative constant Chern–scalar curvature HKTmet-
rics (see [12]).

The rest of the paper deals with the Lie algebra of hyperholomorphic vector
fields on a hypercomplex manifold (𝑀, 𝐼, 𝐽, 𝐾), i.e. vector fields such that

ℒ𝑋𝐼 = ℒ𝑋𝐽 = ℒ𝑋𝐾 = 0.
Our interest towards these structures has several motivations. First, hyperholo-
morphic vector fields form the Lie algebra of the automorphism group of a
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hypercomplex manifold and thus they deserve to be studied on their own as
they convey deep and meaningful information of the hypercomplex structure.
Second, the presence of such fields gives constraints to the possible metric ge-
ometries arising on a given manifold, specially for the case of balanced HKT
structures, which is our primary interest also in view of the quaternionic Cal-
abi conjecture. Third, fields of this kind have been used as a tool in some con-
structions of new examples, most notably in reduction techniques, such as the
hyperkähler reduction [18], the hypercomplex reduction of Joyce [22] and the
HKT reduction of Grantcharov, Papadopoulos, and Poon [16] (see also [30]).
Related investigations have been carried out, e.g., in [27, 28, 29, 33]. For starters,
we obtain a Hodge–type decomposition for hyperholomorphic vector fields in
𝑇1,0𝐼 (𝑀), which allows us to prove the following:

Theorem 1.2. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a compact balanced HKTmanifold. Sup-
pose that 𝑋 ∈ 𝑇1,0𝐼 (𝑀) is a hyperholomorphic vector field and denote by 𝛼 ∈
Λ1,0
𝐼 (𝑀) the form given by 𝛼 = Ω(𝑋) = 𝐽 (𝑋)♭. Then 𝛼 and 𝐽�̄� are ∆𝜕-harmonic.

In particular, the Lie algebra of hyperholomorphic (1, 0)-vector fields is given by
Killing vector fields of constant length.

The organization of the paper is the following. In Section 2, we cover essen-
tial notions that will be useful throughout the paper. Section 3 is devoted to the
proof of Theorem 1.1. In Section 4, we collect a few observations on harmonic-
ity of forms. The rest of the paper deals with hyperholomorphic vector fields.
More precisely, in Section 5, we investigate the properties of hyperholomorphic
vector fields of type (1, 0) with respect to one of the complex structures. When
there exists a compatible balanced HKT metric, the Lie algebra of such vector
fields is abelian and consists of Killing vector fields of constant norm. Section 6
is then focused onLie algebraswith a left-invariant abelianhypercomplex struc-
ture. Finally, Section 7 deals with the interplay between the Einstein condition
with a non-zero Einstein constant and hyperholomorphic (1, 0)-vector fields on
compact hypercomplex manifolds, showing that the latter cannot exist.
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2. Preliminaries
In this section we review some basic facts concerning hypercomplex and

HKT geometry with the purpose of fixing terminologies and notations adopted
throughout the paper. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a hyperhermitianmanifold. Here
(𝐼, 𝐽, 𝐾) is a hypercomplex structure, 𝑔 is a Riemannianmetric compatible with
(𝐼, 𝐽, 𝐾) and

Ω = 𝑔(𝐽⋅, ⋅) +
√
−1 𝑔(𝐾⋅, ⋅)
2 (1)

is a non-degenerate (2, 0)-form with respect to 𝐼 that is q-real and q-positive:
𝐽Ω = Ω̄, Ω(𝑋, 𝐽𝑋) > 0, for all non-zero 𝑋 ∈ 𝑇𝑀.

As is customary, wewill occasionally abuse language and callΩ a “hyperhermi-
tian metric”. This is motivated by the fact that a (2, 0)-form with the properties
above completely determines a hyperhermitian metric related toΩ as in (1). A
hyperhermitian structure is calledHKT if

𝜕Ω = 0,
where 𝜕 is the (conjugate) Dolbeault operator taken with respect to 𝐼. The Lee
form of an Hermitian manifold (𝑀, 𝐽, 𝑔) is defined as the 1-form 𝜃 ∶= 𝐽𝛿𝐹,
where 𝐹 is the fundamental form associated to (𝐽, 𝑔) and 𝛿 the codifferential.
Our convention for the action of 𝐽 on a 𝑘-form 𝛼 is

𝐽𝛼 = 𝛼(𝐽−1⋅,… , 𝐽−1⋅) = (−1)𝑘𝛼(𝐽⋅,… , 𝐽⋅) .
When 𝜃 = 0, equivalently 𝑑𝐹𝑚−1 = 0, 𝑚 = dimℂ(𝑀), the Hermitian struc-
ture (𝐽, 𝑔) is called balanced. On a hyperhermitian manifold (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω)
the Lee forms of all Hermitian structures (𝑔, 𝐼), (𝑔, 𝐽), (𝑔, 𝐾) coincide (see [12,
Proposition 3.4]) and we can talk about the Lee form 𝜃 of (𝑀, 𝐼, 𝐽, 𝐾, 𝑔)without
ambiguity. Furthermore as follows from the computations in [35] (see also [8,
Lemma 2.2]), on a HKT manifold the Lee form satisfies

𝜕Ω̄𝑛 = 𝜃1,0 ∧ Ω̄𝑛, (2)

where (⋅)𝑝,𝑞, here and in the following, denotes the (𝑝, 𝑞)-part of a form taken
with respect to 𝐼. Thus, the structure is balanced HKT if and only if the top
wedge power of the hyperhermitianmetric is a holomorphic (2𝑛, 0)-form,where
2𝑛 = dimℂ(𝑀). From (2) we also deduce the following formula

𝜕∗Ω = − ∗ 𝜕 ∗ Ω = − ∗ 𝜕 (Ω
𝑛−1 ∧ Ω̄𝑛

(𝑛 − 1)!𝑛! )
= − ∗ (𝜃1,0 ∧ Ω𝑛−1 ∧ Ω̄𝑛

(𝑛 − 1)!𝑛! )
= −𝐽𝜃0,1

(3)
where we used that for every 𝛼 ∈ Λ1,0

𝐼 (𝑀) the Hodge-star operator acts as

∗ 𝛼 = 𝐽�̄� ∧ Ω𝑛−1 ∧ Ω̄𝑛

(𝑛 − 1)!𝑛!
.

Another characterization of the balanced condition for HKT manifolds is
the vanishing of the Chern–Ricci form of all Hermitian structures (𝑔, 𝐼), (𝑔, 𝐽),
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(𝑔, 𝐾) (see, e.g. [8, Lemma 2.2]). The Chern–Ricci form 𝜌𝐼 of an Hermitian
structure (𝑔, 𝐼) is given locally by

𝜌𝐼 = −𝑖𝜕�̄� log det(𝑔).
The trace of the Chern–Ricci form with respect to 𝐹 yields the Chern–scalar
curvature. Again, it turns out that all Chern–scalar curvatures on a hyper-
hermitianmanifold agree (see [12, Proposition 3.10]) and there is no ambiguity
when referring to the Chern–scalar curvature 𝑠Ch(Ω) of a hyperhermitian struc-
ture (𝐼, 𝐽, 𝐾, 𝑔,Ω). We also report the following explicit formula

𝑠Ch(Ω) = 2Λ
(
𝜕𝐽(𝜃1,0)

)
∶= 2𝑛𝜕𝐽(𝜃

1,0) ∧ Ω𝑛−1

Ω𝑛 , (4)

where 𝜕𝐽 = 𝐽�̄�𝐽−1∶ Λ𝑝,𝑞
𝐼 (𝑀)→ Λ𝑝+1,𝑞

𝐼 (𝑀). Here, Λ is the dual of the Lefschetz
operatorΩ∧−. It will also be useful to recall the following identities proved in
[32]:

[Λ, 𝜕] = −𝜕∗𝐽 , [𝜕𝐽 ,Λ] = −𝜕∗. (5)
As advocated in [12] balancedHKT structures should be seen as a subclass of

HKT structures satisfying an appropriate Einstein condition. A HKT manifold
(𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) is calledHKT–Einstein if

𝜕𝐽(𝜃1,0) = 𝜆Ω,
for a real constant 𝜆. Equivalently

𝜌𝐿 − 𝐿′𝜌𝐿
2 = 𝜆𝐹𝐿,

where 𝐿, 𝐿′ ∈ {𝐼, 𝐽, 𝐾} anticommute and 𝐹𝐿 is the fundamental form of (𝐿, 𝑔).
From (4) it is clear that a HKT–Einstein metric has constant Chern–scalar cur-
vature equal to 2𝑛𝜆. Moreover, as anticipated, balanced HKT metrics on com-
pact hypercomplex manifolds are precisely those HKT–Einstein metrics with
vanishing Chern–scalar curvature.

On a hypercomplex manifold (𝑀, 𝐼, 𝐽, 𝐾) there is a unique torsion-free con-
nection ∇ that preserves the hypercomplex structure (𝐼, 𝐽, 𝐾). This connection
is named after Obata, who discovered it [26]. By the holonomy principle, the
holonomy group of ∇ lies inside GL(𝑛,ℍ), where 2𝑛 = dimℂ(𝑀) and ℍ is the
algebra of quaternions. Whenever Hol(∇) ⊆ SL(𝑛,ℍ) ∶= [GL(𝑛,ℍ),GL(𝑛,ℍ)]
the hypercomplex manifold (𝑀, 𝐼, 𝐽, 𝐾) is called a SL(𝑛,ℍ)-manifold. In addi-
tion, a hypercomplex manifold is SL(𝑛,ℍ) if and only if it admits an Obata-
parallel (2𝑛, 0)-form Φ ∈ Λ2𝑛,0

𝐼 (𝑀). Such a form can further be chosen q-
positive, i.e. it is the 𝑛th wedge power of a hyperhermitian metric Ω. As a con-
sequence, the canonical bundle has to be holomorphically trivial. In [34] Ver-
bitsky proved in the compact setting that when there exists a compatible HKT
metric the SL(𝑛,ℍ)-condition is actually equivalent to having holomorphically
trivial canonical bundle; in particular, we see from (2) that the existence of a
balanced HKT structure forces the manifold to be SL(𝑛,ℍ). Furthermore, for
compact manifolds, the class of those admitting a balanced HKT structure is
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precisely the intersection of the class of those carrying HKT–Einstein metrics
and that of SL(𝑛,ℍ)-manifolds. TheHKT assumption onVerbitsky’s result can-
not be removed, indeed as shown by Andrada and Tolcachier [5, Example 6.3]
there exist compact hypercomplex manifolds that are not SL(𝑛,ℍ) but have
holomorphically trivial canonical bundle with respect to one of the complex
structures. A full characterization of the SL(𝑛,ℍ)-condition on compact hy-
percomplex manifolds was recently given in [12, Theorem 1.2] in terms of the
holomorphic triviality of the canonical bundle and an additional metric condi-
tion that is weaker than HKT. Also, on compact HKT manifolds, the SL(𝑛,ℍ)-
condition is equivalent to the validity of the 𝜕𝜕𝐽-lemma: every 𝜕-closed, 𝜕𝐽-exact
(𝑝, 0)-form (with respect to 𝐼) is 𝜕𝜕𝐽-exact (see [17, Theorem 6] and [12, Corol-
lary 1.3]).

Given ahyperhermitian structure (𝑔,Ω) on a SL(𝑛,ℍ)-manifold (𝑀, 𝐼, 𝐽, 𝐾,Φ)
we use two types of Hodge-star operator. The usual one

∗∶ Λ𝑝,𝑞
𝐼 (𝑀)→ Λ2𝑛−𝑝,2𝑛−𝑞

𝐼 (𝑀),
determined uniquely by the Riemannian structure:

𝛼∧ ∗ 𝛽 = 𝑔(𝛼, 𝛽)Ω
𝑛 ∧ Ω̄𝑛

(𝑛!)2
, for every 𝛼, 𝛽 ∈ Λ𝑝,𝑞

𝐼 (𝑀),

and the operator⋆Φ∶ Λ
𝑝,0
𝐼 (𝑀)→ Λ2𝑛−𝑝,0

𝐼 (𝑀) introduced in [25, Section 6]with
the aid of the holomorphic form Φ:

𝛼 ∧ ⋆Φ𝛽 ∧ Φ̄ = 𝑔(𝛼, 𝛽)Ω
𝑛

𝑛! ∧ Φ̄ , for every 𝛼, 𝛽 ∈ Λ𝑝,𝑞
𝐼 (𝑀).

These allow one to define, as usual, the adjoint operators 𝜕∗ = − ∗ 𝜕 ∗, 𝜕∗𝐽 =
− ∗ 𝜕𝐽 ∗, 𝜕⋆Φ = − ⋆Φ 𝜕 ⋆Φ, 𝜕

⋆Φ
𝐽 = − ⋆Φ 𝜕𝐽 ⋆Φ. When taken with respect to a

balanced HKTmetric, it has been observed in [15, Section 3.2] that the adjoints
with respect to ∗ and ⋆Φ coincide. Furthermore, we recall that on compact
balanced HKT manifolds, the following Laplacians coincide [15, Proposition
3.4]:

∆𝜕 ∶= 𝜕𝜕∗ + 𝜕∗𝜕, ∆𝜕𝐽 = 𝜕𝐽𝜕∗𝐽 + 𝜕∗𝐽 𝜕𝐽 .

3. Openness of the balanced HKT cone
Let (𝑀, 𝐼, 𝐽, 𝐾) be a hypercomplex manifold and fix a hyperhermitian struc-

ture (𝑔0,Ω0) on it. If the form Ω0 is HKT it defines a class in the (2, 0) quater-
nionic Bott-Chern cohomology:

𝐻2,0
BC(𝑀) =

{𝛼 ∈ Λ2,0
𝐼 𝑀 ∣ 𝜕𝛼 = 𝜕𝐽𝛼 = 0}
𝜕𝜕𝐽(𝐶∞(𝑀,ℂ))

.

If themanifold𝑀 is compact then𝐻2,0
BC(𝑀) is finite-dimensional, as it is isomor-

phic to the space of (2, 0) quaternionic Bott-Chern harmonic forms (see [17]):
ℋ2,0

BC(𝑀,Ω0) = {𝛼 ∈ Λ2,0
𝐼 𝑀 ∣ 𝜕𝛼 = 𝜕𝐽𝛼 = 𝜕∗𝐽 𝜕∗𝛼 = 0} .
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Indeed,ℋ2,0
BC(𝑀,Ω0) coincides with the kernel of the fourth order elliptic oper-

ator
∆BC = 𝜕∗𝜕 + 𝜕∗𝐽 𝜕𝐽 + 𝜕𝜕𝐽𝜕∗𝐽 𝜕∗ + 𝜕∗𝐽 𝜕∗𝜕𝜕𝐽 + 𝜕∗𝐽 𝜕𝜕∗𝜕𝐽 + 𝜕∗𝜕𝐽𝜕∗𝐽 𝜕

and we have a decomposition

Ker
(
𝜕|Λ2,0𝐼 (𝑀)

)
∩ Ker

(
𝜕𝐽|Λ2,0𝐼 (𝑀)

)
=ℋ2,0

BC(𝑀,Ω0)⊕ 𝜕𝜕𝐽(𝐶∞(𝑀,ℂ)) . (6)

Since any HKT form Ω on (𝑀, 𝐼, 𝐽, 𝐾) determines a class [Ω]BC ∈ 𝐻2,0
BC(𝑀), it

makes sense to consider the set of all (2, 0) quaternionic Bott-Chern cohomol-
ogy classes admitting a representative which is a HKT form:

𝒦 ∶= {Θ ∈ 𝐻2,0
BC(𝑀) ∣ there exists 𝛼 ∈ Θ such that 𝛼 > 0} .

The set𝒦 is a convex open cone inside the vector space 𝐻2,0
BC(𝑀), and we shall

call it the HKT cone of the hypercomplex manifold (𝑀, 𝐼, 𝐽, 𝐾). We are in-
terested in studying the subcone of cohomology classes containing a balanced
HKT representative. More precisely, given a balanced HKT class we aim to find
a balanced HKT representative for all classes sufficiently close it.
The decomposition (6) restricts to q-real forms as follows:

Ker (𝜕|Λ2,0𝐼,ℝ(𝑀)) ∩ Ker (𝜕𝐽|Λ2,0𝐼,ℝ(𝑀)) =ℋ2,0
ℝ (𝑀,Ω0)⊕ 𝜕𝜕𝐽(𝐶∞(𝑀,ℝ)), (7)

whereℋ2,0
ℝ (𝑀,Ω0) denotes the space of quaternionic Bott-Chern harmonic q-

real forms with respect toΩ0 of type (2, 0). In particular, any HKTmetricΩ can
be written uniquely as

Ω = 𝛼 + 𝜕𝜕𝐽𝑓,
with (𝛼, 𝑓) ∈ℋ2,0

ℝ (𝑀,Ω0)×𝐶∞0 (𝑀,ℝ), where 𝛼 is the harmonic representative
of [Ω]BC with respect to Ω0 and 𝐶∞0 (𝑀,ℝ) is the space of real-valued smooth
functions with zero mean:

𝐶∞0 (𝑀,ℝ) ∶= {𝑓 ∈ 𝐶∞(𝑀,ℝ) ||||| ∫𝑀
𝑓Ω𝑛

0 ∧ Ω̄
𝑛
0 = 0} .

LetℳHKT denote the space of all HKT forms on𝑀 compatible with the fixed
hypercomplex structure (𝐼, 𝐽, 𝐾) and define the map

Ψ∶ ℳHKT →ℋ2,0
ℝ (𝑀,Ω0) × 𝐶∞0 (𝑀,ℝ) , Ω↦

(
𝛼, 𝑠Ch(Ω)

)
,

where 𝑠Ch(Ω) is the projection of the Chern scalar curvature onto 𝐶∞0 (𝑀,ℝ):

𝑠Ch ∶= 𝑠Ch(Ω) − 1
Vol(𝑀,Ω0)

∫
𝑀
𝑠Ch(Ω)

Ω𝑛
0 ∧ Ω̄

𝑛
0

(𝑛!)2
.

Recall that a metricΩ ∈ℳHKT is balanced if and only if its Chern-scalar curva-
ture vanishes (see [12, Lemma3.14]), also, a balancedHKTmetric is Bott-Chern
harmonic thanks to (3) and thus we have Ψ(Ω0) = (Ω0, 0). More generally, we
make the following observation:
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Lemma 3.1. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔0,Ω0) be a compact balanced HKT manifold, then
a 𝜕-closed, 𝜕𝐽-closed (2, 0)-form is quaternionic Bott-Chern harmonic if and only
if it has constant trace.

Proof. Suppose 𝛼 ∈ Λ2,0
𝐼 (𝑀) is 𝜕-closed and 𝜕𝐽-closed. Then, using the bal-

anced HKT identities (5) and the fact that the Chern Laplacian

∆ChΩ0
∶ 𝐶∞(𝑀,ℝ)→ 𝐶∞(𝑀,ℝ)

can be written as ∆Ω0𝑓 = ΛΩ0(𝜕𝜕𝐽𝑓) we get

∆ChΩ0

(
ΛΩ0𝛼

)
= ΛΩ0(𝜕𝜕𝐽ΛΩ0𝛼),
= −𝜕∗𝐽 𝜕𝐽(ΛΩ0𝛼),
= 𝜕∗𝐽 𝜕∗𝛼

and so we conclude thanks to the maximum principle. □

Our aim is to compute the derivative of the map Ψ at Ω0 and then apply the
inverse function theorem to show that all the Bott-Chern classes nearby [Ω0]BC
admit a q-positive representativewith vanishingChern-scalar curvature, which
is thus a balanced HKT metric.

Proposition 3.2. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔0,Ω0) be a compact balanced HKT manifold.
The derivative of Ψ atΩ0

𝑇Ω0Ψ∶ 𝑇Ω0ℳHKT ≅ℋ2,0
ℝ (𝑀,Ω0)⊕𝐶∞0 (𝑀,ℝ)→ℋ2,0

ℝ (𝑀,Ω0)⊕𝐶∞0 (𝑀,ℝ)
is given by

𝑇Ω0Ψ(𝛽, ℎ) =
(
𝛽,−2∆2𝑔0ℎ

)
,

where ∆𝑔0 is the de Rham laplacian of 𝑔0.

Proof. LetΩ𝑡 be a curve inℳHKT for 𝑡 ∈ (−𝜀, 𝜀) such thatΩ𝑡|𝑡=0 = Ω0. As be-
fore, we decomposeΩ𝑡 = 𝛼𝑡+𝜕𝜕𝐽𝑓𝑡 where (𝛼𝑡, 𝑓𝑡) ∈ℋ2,0

ℝ (𝑀,Ω0)⊕𝐶∞0 (𝑀,ℝ)
is such that (𝛼0, 𝑓0) = (Ω0, 0). For any quantity 𝐴𝑡 depending on 𝑡 in the fol-
lowing we shall use the notation �̇� ∶= 𝑑

𝑑𝑡
|𝑡=0𝐴𝑡. First, in order to avoid trivial

deformations of 𝛼 by rescalings, we take advantage of Lemma 3.1 and impose
the condition

ΛΩ0 �̇� = 0 . (8)
Now, we begin by computing the variation of the volume form

𝑑
𝑑𝑡
|||||𝑡=0Ω

𝑛
𝑡 = 𝑛(�̇� + 𝜕𝜕𝐽�̇�) ∧ Ω𝑛−1

0 ,

= ∆ChΩ0
�̇�Ω𝑛

0 ,

where we used (8). Let 𝜃𝑡 be the Lee form of Ω𝑡, then from (2) we deduce

�̇� ∧ Ω̄𝑛
0 + ∆ChΩ0

�̇� 𝜃0 ∧ Ω̄𝑛
0 = 𝜕

(
∆ChΩ0

�̇� Ω̄𝑛
0

)
,

= 𝜕∆ChΩ0
�̇� ∧ Ω̄𝑛

0 + ∆ChΩ0
�̇� 𝜃0 ∧ Ω̄𝑛

0
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and so we obtain
�̇� = 𝑑∆ChΩ0

�̇� .
We can now compute the variation of the Chern scalar curvature

�̇�Ch ∶= 𝑑
𝑑𝑡 |𝑡=0𝑠

Ch(Ω𝑡).

From (4) we have
𝑠Ch(Ω𝑡)Ω𝑛

𝑡 = 2𝑛 𝜕𝐽(𝜃1,0𝑡 ) ∧ Ω𝑛−1
𝑡

hence

�̇�ChΩ𝑛
0 + 𝑠Ch(Ω0)∆ChΩ0

�̇�Ω𝑛
0 = 2𝑛 𝜕𝐽(�̇�1,0) ∧ Ω𝑛−1

0 + 2𝑛 𝜕𝐽(𝜃1,00 ) ∧ 𝑑
𝑑𝑡
|||||𝑡=0Ω

𝑛−1
𝑡 .

Now, since Ω0 is balanced 𝜃0 = 0 and 𝑠Ch(Ω0) = 0 so we infer
�̇�ChΩ𝑛

0 = 2𝑛 𝜕𝐽(�̇�1,0) ∧ Ω𝑛−1
0 ,

= 2𝑛 𝜕𝐽𝜕∆ChΩ0
�̇� ∧ Ω𝑛−1

0 ,

= −2
(
(∆ChΩ0

)2�̇�
)
Ω𝑛
0 ,

in order to concludewe only need to observe that in the balanced case theChern
Laplacian acting on functions coincideswith the opposite of the deRhamLapla-
cian, which follows from the well-known formula (see [14, pp. 502-503]):

∆ChΩ0
ℎ = −∆𝑔0ℎ − 𝑔0(𝑑ℎ, 𝜃0), ℎ ∈ 𝐶∞(𝑀,ℝ). □

We are ready to prove Theorem 1.1.

Theorem 3.3. Let (𝑀, 𝐼, 𝐽, 𝐾) be a compact hypercomplex manifold. Then the
balanced HKT cone is open in the HKT cone.

Proof. Pick any balanced HKT structure (𝑔0,Ω0) on (𝑀, 𝐼, 𝐽, 𝐾), which, in par-
ticular, must be a SL(𝑛,ℍ)-manifold. Consider the following extension of Ψ

Ψ∶ ℳ𝑘+4
HKT →ℋ2,0

ℝ (𝑀,Ω0)⊕𝑊𝑘
0 (𝑀,ℝ)

whereℳ𝑘+4
HKT denotes the Banachmanifold of HKTmetrics of bounded Sobolev

norm of order 𝑘 + 4. For 𝑘 large enoughℳ𝑘+4
HKT is contained in the space of all

HKT metrics of regularity 𝐶4.
By Proposition 3.2 the kernel of

𝑇Ω0Ψ∶ ℋ
2,0
ℝ (𝑀,Ω0)⊕𝑊𝑘+4

0 (𝑀,ℝ)→ℋ2,0
ℝ (𝑀,Ω0)⊕𝑊𝑘

0 (𝑀,ℝ)
consists of those pairs (𝛽, ℎ) such that

(
𝛽,−2∆2𝑔0ℎ

)
= (0, 0).

Ellipticity of ∆2𝑔0 implies that ℎmust be smooth, but then the maximum princi-
ple forces ℎ to be constant, because𝑀 is compact and so ℎ = 0 by the normal-
ization condition. Hence 𝑇Ω0Ψ is injective. Surjectivity also follows from the
fact that∆2𝑔0 is an isomorphism between the spaces𝑊𝑘+4

0 (𝑀,ℝ) and𝑊𝑘
0 (𝑀,ℝ).
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By the inverse function theorem for Banach manifolds Ψ is an isomorphism
between an open neighborhood of Ω0 inℳ𝑘+4

HKT onto an open neighborhood of
(Ω0, 0) inℋ2,0

ℝ (𝑀,Ω0)⊕𝑊𝑘
0 (𝑀,ℝ). Therefore, there exists 𝜀 > 0 small enough

such that for every 𝛽 ∈ ℋ2,0
ℝ (𝑀,Ω0) with ‖𝛽 − Ω0‖ ≤ 𝜀 the equation Ψ(Ω) =

(𝛽, 0) has a solution inℳ𝑘+4
HKT. This means that the Chern-scalar curvature ofΩ

is constant. Since locally we can write

𝑠Ch(Ω) = −∆ChΩ log (Ω
𝑛 ∧ Ω̄𝑛

Ω𝑛
0 ∧ Ω̄

𝑛
0
)

standard elliptic theory reveals that Ω is smooth; we refer to [23] for the de-
tails. Being a HKT metric with constant Chern-scalar curvature on a compact
SL(𝑛,ℍ)-manifold, Ω is balanced. □

4. Harmonic forms
Proposition 4.1. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a compact balanced HKT manifold. If
𝛼 ∈ Λ𝑝,0

𝐼 (𝑀) is ∆𝜕-harmonic then so is 𝐽�̄�.

Proof. We have ∆𝜕 = ∆𝜕𝐽 , hence 𝛼 is 𝜕, 𝜕
∗, 𝜕𝐽 and 𝜕∗𝐽 -closed. Clearly

𝜕𝐽�̄� = 𝐽−1𝐽𝜕𝐽�̄� = −𝐽𝐽𝜕𝐽−1�̄� = −𝐽�̄�𝐽�̄� = 0,

and using the identities (5), together with the fact Λ𝐽 = 𝐽Λ̄ we also conclude

𝜕∗𝐽�̄� = Λ(𝜕𝐽𝐽�̄�) − 𝜕𝐽Λ(𝐽�̄�),
= Λ(𝐽�̄��̄�) − 𝐽�̄�Λ̄(�̄�),
= −𝐽Λ̄(�̄��̄�) − 𝐽�̄�∗𝐽 �̄�,
= 0,

hence 𝐽�̄� is ∆𝜕-harmonic. □

Corollary 4.2. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔) be a compact balanced HKT manifold. Then
dim𝐻2𝑝−1,0

𝜕 (𝑀) ≡ 0 mod 2 for all 𝑝 = 1,… , 𝑛 and 𝐻2𝑝,0
𝜕 (𝑀) ≠ 0 for 𝑝 =

0,… , 𝑛.

Proof. The first assertion follows from Proposition 4.1 together with the fact
that 𝛼 and 𝐽�̄� are independent if the form 𝛼 ∈ Λ2𝑝−1,0

𝐼 (𝑀) is of odd degree. The
second part is a consequence of the fact that the powers Ω𝑝 are ∆𝜕-harmonic
for every 𝑝 = 0,… , 𝑛. Indeed they are evidently 𝜕-closed and also

𝜕∗Ω𝑝 = − ∗ 𝜕 ∗ Ω𝑝 = −𝑝! ∗ 𝜕 (Ω
𝑛−𝑝 ∧ Ω̄𝑛

(𝑛 − 𝑝)!𝑛! )
= 0. □

Proposition 4.3. Let (𝑀, 𝐼, 𝐽, 𝐾,Φ, 𝑔) be a compactHKT SL(𝑛,ℍ)-manifold and
∇ the Obata connection on it. If 𝛼 ∈ Λ1,0

𝐼 (𝑀) is ∇-parallel it is ∆𝜕,Φ-harmonic,
where ∆𝜕,Φ ∶= 𝜕𝜕⋆Φ + 𝜕⋆Φ𝜕.
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Proof. If𝛼 ∈ Λ1,0
𝐼 (𝑀) is parallel also 𝐽�̄� is because∇ preserves 𝐽. Furthermore,

as ∇ is torsion-free, this implies that 𝛼 and 𝐽�̄� are closed. In particular 𝜕𝛼 = 0
and 𝜕𝐽�̄� = 0. We then conclude

𝜕⋆Φ𝛼 = − ⋆Φ 𝜕 ⋆Φ 𝛼,

= − ⋆Φ 𝜕 (𝐽�̄� ∧ Ω𝑛−1

(𝑛 − 1)!)
,

= 0,
and so 𝛼 is ∆𝜕,Φ-harmonic. □

Example 4.4 has the purpose of showing that the converse of Proposition
4.3 does not hold as, even in the balanced HKT case, a (1, 0)-form can be ∆𝜕-
harmonic without being closed.

Example 4.4. Weconsider an example of a compact hypercomplex nilmanifold
that is balanced HKT. The structure equations of the associated Lie algebra are
given by

⎧
⎪
⎨
⎪
⎩

𝑑𝑒1 = 𝑑𝑒2 = 𝑑𝑒3 = 𝑑𝑒4 = 𝑑𝑒5 = 0,
𝑑𝑒6 = 𝑒1 ∧ 𝑒2 + 𝑒3 ∧ 𝑒4,
𝑑𝑒7 = 𝑒1 ∧ 𝑒3 + 𝑒4 ∧ 𝑒2,
𝑑𝑒8 = 𝑒1 ∧ 𝑒4 + 𝑒2 ∧ 𝑒3.

The hypercomplex structure is given by

𝐼𝑒1 = −𝑒2, 𝐼𝑒3 = 𝑒4, 𝐼𝑒5 =
1
2𝑒6, 𝐼𝑒7 = 𝑒8,

𝐽𝑒1 = −𝑒3, 𝐽𝑒2 = −𝑒4, 𝐽𝑒5 =
1
2𝑒7, 𝐽𝑒6 = −𝑒8,

and the balanced HKT metric Ω is given by

Ω = −𝜑1 ∧ 𝜑2 + 2𝜑3 ∧ 𝜑4,
where

𝜑1 = 𝑒1 +
√
−1𝑒2, 𝜑2 = 𝑒3 −

√
−1𝑒4, 𝜑3 = 𝑒5 − 2

√
−1𝑒6, 𝜑4 = 𝑒7 −

√
−1𝑒8.

It is easy to check that

𝜕𝜑𝑖 = 𝜕𝐽𝜑𝑖 = 0, for any 𝑖.
The dimension of ∆𝜕-harmonic (1, 0)-forms with respect to 𝐼 is thus 4, but, for
instance, 𝜑3 is not closed.

5. Hyperholomorphic (𝟏,𝟎)-vector fields
Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a hyperhermitian manifold. In this section we in-

vestigate the condition for a vector field of type (1, 0) with respect to 𝐼 to be
hyperholomorphic. A vector field 𝑍 ∈ 𝑇1,0𝐼 (𝑀) is called hyperholomorphic if
ℒ𝑍𝐼 = ℒ𝑍𝐽 = ℒ𝑍𝐾 = 0. We start with the following characterization:



ON BALANCED HKT MANIFOLDS 1129

Proposition 5.1. Let (𝑀, 𝐼, 𝐽, 𝐾) be a hypercomplex manifold. Consider a vector
field 𝑋 ∈ 𝑇𝑀 and denote 𝑍 = 𝑋1,0 ∈ 𝑇1,0𝐼 (𝑀) its (1, 0)-part with respect to 𝐼.
Then the following are equivalent:

(1) 𝑍 is hyperholomorphic;
(2) 𝑋, 𝐼𝑋, are (real) hyperholomorphic;
(3) 𝐽�̄� is hyperholomorphic;
(4) 𝑍 is parallel with respect to the Obata connection;
(5) 𝑋 is parallel with respect to the Obata connection.

Proof. Suppose 𝑍 is hyperholomorphic, we obtain that
ℒ𝑋𝐼 = ℒ𝑋𝐽 = ℒ𝑋𝐾 = ℒ𝐼𝑋𝐼 = ℒ𝐼𝑋𝐽 = ℒ𝐼𝑋𝐾 = 0.

Using the above identities and integrability, we compute

ℒ𝐽𝑍𝐼 = ℒ𝐽𝑋𝐼 −
√
−1ℒ𝐾𝑋𝐼,

= (ℒ𝐽𝑋𝐽)𝐾 + 𝐽 (ℒ𝐽𝑋𝐾) −
√
−1 (ℒ𝐾𝑋𝐽)𝐾 −

√
−1𝐽 (ℒ𝐾𝑋𝐾) ,

= 𝐽 (ℒ𝐾𝐼𝑋𝐾) +
√
−1 (ℒ𝐽𝐼𝑋𝐽)𝐾,

= 𝐽𝐾 (ℒ𝐼𝑋𝐾) +
√
−1𝐽 (ℒ𝐼𝑋𝐽)𝐾,

= 0.
On the other hand, since ℒ𝑋𝐽 = ℒ𝐼𝑋𝐽 = 0, we have that ℒ𝐽𝑍𝐽 = 0. Therefore
we have established the equivalence of the first three assertions.
As∇ preserves 𝐼, 𝐽 and𝐾 it is clear that the last two assertions are equivalent.

Furthermore, since ∇ is torsion-free, for every 𝐿 ∈ {𝐼, 𝐽, 𝐾} and 𝑌 ∈ 𝑇𝑀 we
have

(ℒ𝑋𝐿)(𝑌) = [𝑋, 𝐿𝑌] − 𝐿[𝑋,𝑌]
= ∇𝑋𝐿𝑌 − ∇𝐿𝑌𝑋 − 𝐿∇𝑋𝑌 + 𝐿∇𝑌𝑋
= −∇𝐿𝑌𝑋 + 𝐿∇𝑌𝑋

therefore, every ∇-parallel vector field is hyperholomorphic. Conversely, if 𝑋
and 𝐼𝑋 are hyperholomorphic we have

∇𝐾𝑌𝑋 = 𝐾∇𝑌𝑋 = −𝐽∇𝑌𝐼𝑋 = −∇𝐽𝑌𝐼𝑋 = −𝐼∇𝐽𝑌𝑋 = −∇𝐾𝑌𝑋,
for every 𝑌 ∈ 𝑇𝑀 and so 𝑋 has to be parallel. □

Corollary 5.2. Let (𝑀, 𝐼, 𝐽, 𝐾) be a compact connected hypercomplex manifold
with Euler characteristic 𝜒 ≠ 0. Then, there is no non-trivial hyperholomorphic
(1, 0)-vector field.
Proof. This is a consequence of Theorem 5.1 and the Poincaré-Hopf Theorem.

□

On a compact HKT SL(𝑛,ℍ)-manifold, it turns out that the Riemannian dual
of a hyperholomorphic vector field has a special Hodge decomposition that can
be compared to the Hodge decomposition of a holomorphic vector field on a
Kähler manifold.
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Theorem5.3. Let (𝑀, 𝐼, 𝐽, 𝐾,Φ, 𝑔,Ω) be a compactHKTSL(𝑛,ℍ)-manifold. Sup-
pose that 𝑍 ∈ 𝑇1,0(𝑀) is hyperholomorphic and denote by 𝛼 ∈ Λ1,0

𝐼 (𝑀) the form
given by 𝛼 = Ω(𝑍) = 𝐽 (𝑍)♭, where ♭ denotes the dual by the metric 𝑔. Then,

𝛼 = (𝛼)𝐻 + 𝜕𝑢 + 𝜕𝐽𝑣,
where (⋅)𝐻 is the harmonic part with respect to the Laplacian∆𝜕,Φ = 𝜕𝜕⋆Φ+𝜕⋆Φ𝜕,
and 𝑢, 𝑣 are complex-valued functions.
Proof. First, we compute

ℒ𝑍Ω =
(
�̄�Ω

)
(𝑍) + 𝜕 (Ω(𝑍)) + �̄� (Ω(𝑍)) .

Since 𝑍 is 𝐼-holomorphic then ℒ𝑍Ω ∈ Λ2,0
𝐼 (𝑀). Hence, we have that

ℒ𝑍Ω = 𝜕 (Ω(𝑍)) = 𝜕𝛼.
So,ℒ𝑍Ω is 𝜕-exact. It is also 𝜕𝐽-closed becauseℒ𝑍𝐽 = 0 and thus 𝜕𝐽ℒ𝑍 = ℒ𝑍𝜕𝐽 .
Since the manifold is SL(𝑛,ℍ) the 𝜕𝜕𝐽-Lemma holds and so ℒ𝑍Ω = 𝜕𝜕𝐽𝑣, for
some function 𝑣. We consider the Hodge decomposition of 𝛼 with respect to
∆𝜕,Φ:

𝛼 = (𝛼)𝐻 + 𝜕𝑢 + 𝜕⋆Φ𝜑,
where 𝜑 ∈ Λ2,0

𝐼 (𝑀). We obtain that
𝜕𝛼 = 𝜕𝜕⋆Φ𝜑 = 𝜕𝜕𝐽𝑣.

On the other hand, we claim that 𝜕𝐽𝑣 = −𝜕⋆Φ(𝑣Ω). Indeed
𝜕⋆Φ(𝑣Ω) = − ⋆Φ 𝜕 ⋆Φ (𝑣Ω) ,

= − ⋆Φ 𝜕 (𝑣
Ω𝑛−1

(𝑛 − 1)!)
,

= − ⋆Φ (𝜕𝑣 ∧
Ω𝑛−1

(𝑛 − 1)!)
,

= −𝜕𝐽𝑣.
We deduce that

𝜕𝜕⋆Φ𝜑 = −𝜕𝜕⋆Φ(𝑣Ω).
Since𝑀 is compact, we get

𝜕⋆Φ𝜑 = −𝜕⋆Φ(𝑣Ω) = 𝜕𝐽𝑣.
The Theorem follows. □

Using the decomposition of Theorem 5.3 we can show that on balancedHKT
manifolds the dual of the hyperholomorphic vector field is ∆𝜕-harmonic. To
prove this fact, we begin with the following observation:

Lemma 5.4. Let (𝑀, 𝐼, 𝐽, 𝐾,Φ) be a compact SL(𝑛,ℍ)-manifold. Then there ex-
ists a compatible hyperhermitian structure (𝑔,Ω) such thatΩ𝑛 = Φ. Furthermore,
if𝑋 ∈ 𝑇𝑀 is a real vector field which is holomorphic (with respect to either 𝐼, 𝐽 or
𝐾), then Λ(ℒ𝑋Ω) = 0 and 𝛿𝑋♭ = 0.
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Proof. The first assertion is straightforward, as Φ is a q-positive (2𝑛, 0)-form,
it must be the 𝑛th wedge power of a hyperhermitian metric. We assume that
𝑋 is holomorphic with respect to 𝐼, the argument is similar for 𝐽 and 𝐾. By
holomorphicity ℒ𝑋 commutes with �̄�, thus, we have

0 = ℒ𝑋 �̄�Φ,
= �̄�ℒ𝑋Ω𝑛,
= 𝑛�̄�

(
ℒ𝑋Ω ∧ Ω𝑛−1) ,

= �̄� (Λ (ℒ𝑋Ω)Ω𝑛) ,
= �̄�Λ (ℒ𝑋Ω) ∧ Ω𝑛.

It follows by compactness that Λ(ℒ𝑋Ω) is constant, namely ℒ𝑋Ω𝑛 = 𝑐Ω𝑛 for
some constant 𝑐. Therefore, sinceΩ𝑛 ∧Ω̄𝑛 is, up to a constant, the Riemannian
volume form, we have

𝑐2Ω𝑛 ∧ Ω̄𝑛 = ℒ𝑋(Ω𝑛 ∧ Ω̄𝑛) = 𝑑
(
𝜄𝑋(Ω𝑛 ∧ Ω̄𝑛)

)
.

Integrating and using Stokes’ Theorem we deduce that 𝑐 = 0, i.e. ℒ𝑋Ω𝑛 = 0.
The conclusion follows as ℒ𝑋(Ω𝑛 ∧ Ω̄𝑛) = 𝛿 (𝑋)♭Ω𝑛 ∧ Ω̄𝑛. □

Theorem 5.5. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a compact balanced HKTmanifold. Sup-
pose that 𝑍 ∈ 𝑇1,0𝐼 (𝑀) is a hyperholomorphic vector field and denote by 𝛼 ∈
Λ1,0
𝐼 (𝑀) the form given by 𝛼 = 𝐽 (𝑍)♭. Then 𝛼 and 𝐽�̄� are ∆𝜕-harmonic. In par-

ticular, the Lie algebra of hyperholomorphic (1, 0)-vector fields is given by Killing
vector fields of constant length.

Proof. Since 𝑍 is hyperholomorphic, we can apply Lemma 5.4 with Ω𝑛 = Φ
and deduce 𝜕∗𝛼 = 0. It follows from Theorem 5.3 that

𝛼 = (𝛼)𝐻 + 𝜕𝐽𝑣,

where (⋅)𝐻 is the harmonic part with respect to the Laplacian∆𝜕 and 𝑣 is a func-
tion. We observe that ℒ𝑍Ω = 𝜕𝛼 = 𝜕𝜕𝐽𝑣. From Lemma 5.4 we deduce that
Λ(𝜕𝜕𝐽𝑣) = 0 and since𝑀 is compact, by the maximum principle we conclude
that 𝑣 is constant and thus 𝜕𝛼 = 0. The harmonicity of 𝐽�̄� follows from Propo-
sition 4.1. Also, as ℒ𝑍Ω = ℒ𝑍𝐽 = 0, we deduce ℒ𝑍𝑔 = 0 and so 𝑍 is a Killing
vector field i.e. 𝑋, 𝐼𝑋 are real Killing vector fields, where 𝑋1,0 = 𝑍. Finally, let
𝑌 ∈ 𝑇1,0𝐼 (𝑀) be another hyperholomorphic vector field, since 𝛼 is∆𝜕-harmonic
and𝑌 is Killing, we get 𝜕∗𝜕 (𝛼(𝑌)) = ℒ𝑌𝜕∗𝛼 = 0, thus 𝜕 (𝛼(𝑌)) = 0. We deduce
that 𝛼(𝑌) is constant, so choosing 𝑌 = 𝐽�̄� we get that |𝑍|2𝑔 is constant. □

Corollary 5.6. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a compact balancedHKTmanifold. Then
the following are equivalent for 𝑍 ∈ 𝑇1,0𝐼 (𝑀):

(1) 𝑍 is hyperholomorphic;
(2) 𝑍 is Killing (i.e. 𝑋, 𝐼𝑋 are real Killing vector fields, where 𝑋1,0 = 𝑍);
(3) 𝑍 is parallel with respect to the Bismut connection.
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Proof. If 𝑍 is hyperholomorphic then we have shown in Theorem 5.5 that it
is Killing. The converse is a consequence of [13, Theorem 1.2 (i) (a)] because
balanced HKT structures are Chern–Ricci flat. The equivalence with the fact
that 𝑍 is Bismut-parallel follows from [27]. □

In the next example we show that if we drop the HKT assumption Theo-
rem 5.5 does not hold anymore.

Example 5.7. Consider the nilpotent Lie algebra in [25, Example 3] with struc-
ture equations

⎧
⎪
⎨
⎪
⎩

𝑑𝑒1 = 𝑑𝑒2 = 𝑑𝑒3 = 𝑑𝑒4 = 𝑑𝑒5 = 𝑑𝑒6 = 𝑑𝑒7 = 𝑑𝑒8 = 0,
𝑑𝑒9 = 𝑒1 ∧ 𝑒5,
𝑑𝑒10 = 𝑒1 ∧ 𝑒6,
𝑑𝑒11 = 𝑒1 ∧ 𝑒7,
𝑑𝑒12 = 𝑒1 ∧ 𝑒8,

and hypercomplex structure

𝐼𝑒1 = 𝑒2, 𝐼𝑒3 = 𝑒4, 𝐼𝑒5 = 𝑒6, 𝐼𝑒7 = 𝑒8, 𝐼𝑒9 = 𝑒10, 𝐼𝑒11 = 𝑒12,
𝐽𝑒1 = 𝑒3, 𝐽𝑒2 = −𝑒4, 𝐽𝑒5 = 𝑒7, 𝐽𝑒6 = −𝑒8, 𝐽𝑒9 = 𝑒11, 𝐽𝑒10 = −𝑒12.

Since the structure constants are rational the corresponding simply connected
nilpotent Lie group admits lattices and so the hypercomplex structure descends
to the corresponding compact nilmanifold 𝑀. Note that 𝑀 carries no HKT
metrics because the hypercomplex structure is not abelian (see [6, Theorem
4.6]). On the other hand, 𝑀 admits a quaternionic balanced metric which is
also balanced (cf. [12, Example 9.1]). The Lie algebra of left-invariant hyper-
holomorphic vector fields is generated by 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒9, 𝑒10, 𝑒11, 𝑒12. Further-
more one could see that the space of ∆𝜕-harmonic (1, 0)-forms is generated by
𝜑1, 𝜑2, 𝜑3, 𝜑4, where 𝜑𝑖 = 𝑒2𝑖−1 −

√
−1𝑒2𝑖. Therefore 𝜑5 = 𝑒9 −

√
−1𝑒10 and

𝜑6 = 𝑒11 −
√
−1𝑒12 are not harmonic, even though 𝑒9, 𝑒10, 𝑒11, 𝑒12 are hyper-

holomorphic, so the HKT assumption in Theorem 5.5 cannot be relaxed. We
also note that even though 𝑒1 is hyperholomorphic, 𝑒1 is not Killingwith respect
to any left-invariant metric 𝑔 because, for instance

(ℒ𝑒1𝑔)(𝑒5, 𝑒9) = −𝑔([𝑒1, 𝑒5], 𝑒9) − 𝑔(𝑒5, [𝑒1, 𝑒9]) = 𝑔(𝑒9, 𝑒9) ≠ 0.

Example 5.8. The converse of Theorem5.5 is false as there can be∆𝜕-harmonic
forms on compact balanced HKT manifolds that do not come from hyperholo-
morphic vector fields. An example is provided in Example 4.4. Indeed, in
the notations of Example 4.4 all 1-forms are ∆𝜕-harmonic and yet the only
linearly independent hyperholomorphic vector fields are 𝑒5, 𝑒6, 𝑒7, 𝑒8. Thus,
𝑒1, 𝑒2, 𝑒3, 𝑒4 are not hyperholomorphic but the corresponding forms 𝜑1, 𝜑2 are
∆𝜕-harmonic.

Remark 5.9. As shown in the next examples, we remark that if 𝑋 ∈ 𝑇𝑀 is a
real hyperholomorphic vector field on a HKT manifold, then 𝑋1,0 is not neces-
sarily hyperholomorphic. Also, the balanced condition can not be dropped in
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Corollary 5.6. Moreover, if 𝑋 ∈ 𝑇𝑀 is a real hyperholomorphic vector field on
a balanced HKTmanifold, then𝑋 is not necessarily a (real) Killing vector field.

Example 5.10. Consider the Hopf surface𝑀 = SU(2) × 𝑆1, which is described
by a global frame {𝑒1, 𝑒2, 𝑒3, 𝑒4} and corresponding coframe {𝑒1, 𝑒2, 𝑒3, 𝑒4} with
structure equations

⎧
⎪
⎨
⎪
⎩

𝑑𝑒1 = −2𝑒2 ∧ 𝑒3,
𝑑𝑒2 = 2𝑒1 ∧ 𝑒3,
𝑑𝑒3 = −2𝑒1 ∧ 𝑒2,
𝑑𝑒4 = 0.

We endow𝑀 with the left-invariant hypercomplex structure (𝐼, 𝐽, 𝐾) such that
𝐼𝑒1 = 𝑒2, 𝐼𝑒3 = 𝑒4, 𝐽𝑒1 = 𝑒3, 𝐽𝑒2 = −𝑒4.

Consider the left-invariant hyperhermitian metric

Ω = 𝜑1 ∧ 𝜑2,
where

𝜑1 = 𝑒1 −
√
−1𝑒2, 𝜑2 = 𝑒3 −

√
−1𝑒4.

The metric Ω is HKT for dimensional reasons. On the other hand, it is well-
known that the Hopf surface admits no balanced metric. We note that 𝑒4 is
hyperholomorphic, but 𝑒3 is not. Moreover, (𝑒4)1,0 is not 𝜕-closed. We also note
that 𝑒𝑖 is Killing with respect to 𝑔 for all 𝑖 = 1,… , 4.
Example 5.11. Consider the nilpotent Lie algebra 𝔤 = ⟨𝑒1,… , 𝑒12⟩ with struc-
ture equations

[𝑒1, 𝑒5] = [𝑒2, 𝑒6] = [𝑒3, 𝑒7] = [𝑒4, 𝑒8] = 𝑒9,
[𝑒1, 𝑒6] = −[𝑒2, 𝑒5] = −[𝑒3, 𝑒8] = [𝑒4, 𝑒7] = 𝑒10,
[𝑒1, 𝑒7] = [𝑒2, 𝑒8] = −[𝑒3, 𝑒5] = −[𝑒4, 𝑒6] = 𝑒11,
[𝑒1, 𝑒8] = −[𝑒2, 𝑒7] = [𝑒3, 𝑒6] = −[𝑒4, 𝑒5] = 𝑒12,

and abelian hypercomplex structure

𝐼𝑒1 = 𝑒2, 𝐼𝑒3 = 𝑒4, 𝐼𝑒5 = 𝑒6, 𝐼𝑒7 = 𝑒8, 𝐼𝑒9 = 𝑒10, 𝐼𝑒11 = 𝑒12,
𝐽𝑒1 = 𝑒3, 𝐽𝑒2 = −𝑒4, 𝐽𝑒5 = 𝑒7, 𝐽𝑒6 = −𝑒8, 𝐽𝑒9 = 𝑒11, 𝐽𝑒10 = −𝑒12.

Note that 𝑒1 is hyperholomorphic, however 𝑒2 = 𝐼𝑒1 is not 𝐽-holomorphic as
[𝑒2, 𝐽𝑒5] − 𝐽[𝑒2, 𝑒5] = [𝑒2, 𝑒7] + 𝐽𝑒10 = −𝑒12 − 𝑒12 ≠ 0.

It follows that 𝑒1 is hyperholomorphic but not Obata parallel, namely (𝑒1)1,0 is
not hyperholomorphic. Furthermore, the hyperhermitian metric

𝑔 =
12∑

𝑖=1
𝑒𝑖 ⊗ 𝑒𝑖

is balanced HKT but 𝑒1 is not Killing because
(ℒ𝑒1𝑔)(𝑒5, 𝑒9) = −𝑔([𝑒1, 𝑒5], 𝑒9) − 𝑔(𝑒5, [𝑒1, 𝑒9]) = −1 ≠ 0.
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6. Left-invariant abelian hypercomplex structures
In this section we focus on left-invariant abelian hypercomplex structures on

Lie algebras.

Theorem 6.1. Let𝐺 be a Lie group endowed with a left-invariant abelian hyper-
complex structure (𝐼, 𝐽, 𝐾). Then the Lie algebra of hyperholomorphic (1, 0)-vector
fields is given by the center of 𝑇𝐺 ⊗ ℂ.

Proof. The Obata connection is given by [31]:

∇𝑋𝑌 = 1
2 ([𝑋,𝑌] + 𝐼[𝐼𝑋, 𝑌] − 𝐽[𝑋, 𝐽𝑌] + 𝐾[𝐼𝑋, 𝐽𝑌]) ,

for any pair of vector fields 𝑋,𝑌. Since the hypercomplex structure is abelian
we obtain

∇𝑋𝑌 = 1
2 ([𝑋,𝑌] − 𝐼[𝑋, 𝐼𝑌] − 𝐽[𝑋, 𝐽𝑌] − 𝐾[𝑋,𝐾𝑌]) ,

so it is clear that if 𝑋 ∈ 𝑇1,0𝐼 (𝐺) lies in the center it is Obata parallel and thus
hyperholomorphic by Proposition 5.1. Conversely, if 𝑋 ∈ 𝑇1,0𝐼 (𝐺) is a hyper-
holomorphic vector field,

∇𝑋𝑌 = 1
2 ([𝑋,𝑌] − 𝐼[𝑋, 𝐼𝑌] − 𝐽[𝑋, 𝐽𝑌] − 𝐾[𝑋,𝐾𝑌]) ,

= 1
2 ([𝑋,𝑌] + [𝑋,𝑌] + [𝑋,𝑌] + [𝑋,𝑌]) ,

= 2[𝑋,𝑌].
On the other hand, as ∇ is torsion-free we also have

[𝑋,𝑌] = ∇𝑋𝑌. (9)

We obtain that [𝑋,𝑌] = 0, for any vector field 𝑌. The theorem follows. □

Example 6.2. We exhibit an example of a Lie algebra with non-abelian hyper-
complex structure where the Lie algebra of hyperholomorphic vector fields is
larger than the center, even though there exists a compatible balanced HKT
metric. This shows that the assumption that the hypercomplex structure is
abelian in Theorem 6.1 is necessary. The example is due to Barberis and Fino
[7, Section 3.1]. It is a 12-dimensional solvable Lie algebra 𝔤 = ⟨𝑒1,… , 𝑒12⟩with
structure equations

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝑑𝑒1 = 𝑑𝑒5 = 𝑑𝑒6 = 𝑑𝑒7 = 𝑑𝑒8 = 0,
𝑑𝑒2 = −𝑒5 ∧ 𝑒6 + 𝑒7 ∧ 𝑒8,
𝑑𝑒3 = −𝑒6 ∧ 𝑒8 − 𝑒5 ∧ 𝑒7,
𝑑𝑒4 = 𝑒6 ∧ 𝑒7 − 𝑒5 ∧ 𝑒8,
𝑑𝑒9 = 𝑒1 ∧ 𝑒10,
𝑑𝑒10 = −𝑒1 ∧ 𝑒9,
𝑑𝑒11 = 𝑒1 ∧ 𝑒12,
𝑑𝑒12 = −𝑒1 ∧ 𝑒11,
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and hypercomplex structure

𝐼𝑒1 = 𝑒2, 𝐼𝑒3 = 𝑒4, 𝐼𝑒5 = 𝑒6, 𝐼𝑒7 = 𝑒8, 𝐼𝑒9 = 𝑒10, 𝐼𝑒11 = 𝑒12,

𝐽𝑒1 = 𝑒3, 𝐽𝑒2 = −𝑒4, 𝐽𝑒5 = 𝑒7, 𝐽𝑒6 = −𝑒8, 𝐽𝑒9 = 𝑒12, 𝐽𝑒10 = −𝑒12.
The center of left-invariant (1, 0)-vector fields is generated by 𝑍 = 𝑒3 −

√
−1𝑒4

whereas the space of hyperholomorphic vector fields also contains 𝐽�̄�.

7. HKT–Einstein metrics and hyperholomorphic vector fields
In this section we show the non-existence of hyperholomorphic (1, 0)-vector

fields on compact HKT–Einstein manifolds with non-zero Einstein constant.
Such a result follows from a sort of Bochner-type formula proved in Proposition
7.2. We start with a preliminary lemma:

Lemma 7.1. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a HKT manifold and ∇ the Obata connec-
tion on it. Then for every vector field 𝑋 ∈ 𝑇𝑀 we have

𝛿𝑋♭ = −tr(∇𝑋) + 2𝜃(𝑋) . (10)

Proof. Let ∇LC and 𝐷𝑏 be the Levi-Civita and the Bismut connections of 𝑔,
respectively. Then

𝑔(𝐷𝑏
𝑋𝑌, 𝑍) = 𝑔(∇LC

𝑋 𝑌, 𝑍) + 1
2𝑇(𝑋,𝑌, 𝑍),

where 𝑇 is the torsion of the Bismut connection. We also recall the formula in
[21, Proposition 3.1]:

𝑔(∇𝑋𝑌, 𝑍) = 𝑔(𝐷𝑏
𝑋𝑌, 𝑍) + 𝐴(𝑋,𝑌, 𝑍),

where

𝐴(𝑋,𝑌, 𝑍) ∶= −12
(
𝑇(𝑋, 𝐼𝑌, 𝐼𝑍) + 𝑇(𝐼𝑋, 𝐼𝑌, 𝑍)

+ 𝑇(𝑋,𝐾𝑌,𝐾𝑍) + 𝑇(𝐼𝑋, 𝐾𝑌, 𝐽𝑍)
)
.

Choose an orthonormal basis 𝑒1,… , 𝑒4𝑛 of 𝑇𝑀. Then

tr(∇𝑋) =
4𝑛∑

𝑖=1
𝑔(∇𝑒𝑖𝑋, 𝑒𝑖) = tr(∇LC𝑋) +

4𝑛∑

𝑖=1
𝐴(𝑒𝑖, 𝑋, 𝑒𝑖).

Since tr(∇LC𝑋) =∑4𝑛
𝑖=1(∇

LC
𝑒𝑖 𝑋)(𝑒𝑖) = −𝛿𝑋♭, we only need to show that

4𝑛∑

𝑖=1
𝐴(𝑒𝑖, 𝑋, 𝑒𝑖) = 2𝜃(𝑋).

Using the fact that 𝑇 is a 3-form we deduce

𝑇(𝑒𝑖, 𝐼𝑋, 𝐼𝑒𝑖) + 𝑇(𝐼𝑒𝑖, 𝐼𝑋, 𝑒𝑖) = 0, for all 𝑖 = 1,… , 4𝑛
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and
4𝑛∑

𝑖=1
(𝑇(𝑒𝑖, 𝐾𝑋,𝐾𝑒𝑖) + 𝑇(𝐼𝑒𝑖, 𝐾𝑋, 𝐽𝑒𝑖)) = −2

4𝑛∑

𝑖=1
𝑇(𝐾𝑋, 𝑒𝑖, 𝐾𝑒𝑖)

= −4𝜃(𝑋),

where the last equality can be found, e.g., in [20]. □

Proposition 7.2. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a HKT manifold. Suppose that 𝑍 ∈
𝑇1,0𝐼 (𝑀) is hyperholomorphic and denote by 𝛼 ∈ Λ1,0

𝐼 (𝑀) the form given by 𝛼 =
𝐽 (𝑍)♭. Then

ℒ𝑍(𝜕∗𝐽�̄�) −ℒ𝐽�̄�(𝜕∗𝛼) = (𝜌 − 𝐽𝜌) (𝑍, 𝐼�̄�). (11)

If furthermore𝑀 is compact

‖𝜕∗𝛼‖2𝐿2 + ‖𝜕∗𝐽�̄�‖2𝐿2 + ∫
𝑀
(𝜌 − 𝐽𝜌) (𝑍, 𝐼�̄�)Vol𝑔 = 0. (12)

Proof. Thanks to Lemma 7.1 and Proposition 5.1, we have

ℒ𝑍(𝜕∗�̄�♭) +ℒ𝐽�̄�(𝜕∗(𝐽𝑍♭)) = 2ℒ𝑍(𝜃0,1(�̄�)) + 2ℒ𝐽�̄�(𝜃0,1(𝐽𝑍)),
= 2ℒ𝑍(𝜃0,1)(�̄�) + 2ℒ𝐽�̄�(𝜃0,1)(𝐽𝑍),
= 2𝜕(𝜃0,1)(𝑍, �̄�) + 2𝜕(𝜃0,1)(𝐽�̄�, 𝐽𝑍),
= 2

√
−1

(
𝜕(𝜃0,1) − 𝐽𝜕(𝜃0,1)

)
(𝑍, 𝐼�̄�),

= − (𝜌 − 𝐽𝜌) (𝑍, 𝐼�̄�),

where the last identity is as in the proof of [12, Lemma 4.2]. In the compact
case, integrating this identity we conclude

− ∫
𝑀
(𝜌 − 𝐽𝜌) (𝑍, 𝐼�̄�)Vol𝑔 = ∫

𝑀

(
ℒ𝑍(𝜕∗�̄�♭) +ℒ𝐽�̄�(𝜕∗(𝐽𝑍♭))

)
Vol𝑔,

= ∫
𝑀

(
𝑔(𝜕𝜕∗�̄�♭, �̄�♭) + 𝑔(𝜕𝜕∗(𝐽𝑍♭), 𝐽𝑍♭)

)
Vol𝑔,

= ∫
𝑀

(
(𝜕∗�̄�♭)2 + (𝜕∗(𝐽𝑍♭))2

)
Vol𝑔,

= ‖𝜕∗𝐽�̄�‖2𝐿2 + ‖𝜕∗𝛼‖2𝐿2 ,

and formula (12) is proved. □

From Proposition 7.2 we recover that in the balanced HKT case 𝛼 and 𝐽�̄� are
𝜕∗-closed. Furthermore, for HKT–Einstein metrics that are not balanced we
infer:

Theorem 7.3. Let (𝑀, 𝐼, 𝐽, 𝐾, 𝑔,Ω) be a compact HKT–Einsteinmetric with non-
zero Einstein constant 𝜆. Then there are no non-trivial hyperholomorphic (1, 0)-
vector fields on (𝑀, 𝐼, 𝐽, 𝐾).
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Proof. From Proposition 7.2 we deduce

0 ≥ (𝜌 − 𝐽𝜌) (𝑍, 𝐼�̄�) = 𝜆𝜔(𝑍, 𝐼�̄�) = 𝜆‖𝑍‖2

and since in the compact setting necessarily 𝜆 > 0 [12] we conclude 𝑍 = 0. □

Remark 7.4. The analogue of Theorem 7.3 is false for real hyperholomorphic
vector fields. Indeed, the Hopf surface (Example 5.10) admits a real hyper-
holomorphic vector field and yet it can be equipped with a compatible HKT–
Einstein metric with non-zero Einstein constant as shown in [12, Section 8.1].
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