
New York Journal of Mathematics
New York J. Math. 31 (2025) 1258–1270.

Thurston construction mapping classes
with minimal dilatation

Maryam Contractor and Otto Reed

Abstract. Given a pair of filling curves 𝛼, 𝛽 on a surface of genus 𝑔 with 𝑛
punctures, we explicitly compute the mapping classes realizing the minimal
dilatation over all the pseudo-Anosov maps given by the Thurston construc-
tion on 𝛼, 𝛽. We do so by solving for the minimal spectral radius in a congru-
ence subgroup of SL2(ℤ). We apply this result to realized lower bounds on
intersection number between 𝛼 and 𝛽 to give theminimal dilatation over any
Thurston construction pA map on Σ𝑔,𝑛 given by a filling pair 𝛼 ∪ 𝛽.
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1. Statement of results
Let Σ𝑔,𝑛 denote the orientable surface of genus 𝑔 with 𝑛 punctures and let

Mod(Σ𝑔,𝑛) denote the associated mapping class group. If [𝑓] ∈ Mod(Σ𝑔,𝑛) is an
isotopy class of pseudo-Anosov (pA) homeomorphisms of Σ𝑔,𝑛, then there is an
associated “stretch factor” 𝜆 > 1 which quantifies the scaling of its stable and
unstable foliations ([FM12], Section 13.2.3). This “stretch factor” or dilatation
𝜆 gives multiple perspectives of 𝑓.
Among other things, 𝜆 is the growth rate of the unstable foliation of 𝑓 under

iteration and log(𝜆) is the topological entropy of 𝑓 ([FM12], Theorem 13.2). In
addition, there is a bijective correspondence between the set of dilatations in
Mod(Σ𝑔,𝑛) and the length spectrum of closed geodesics in the moduli space of
Σ𝑔,𝑛. Finally, log(𝜆) gives the Teichmüller translation length, or the realized in-
fimum distance that a point in Teichmüller space (under the Teichmüller met-
ric) is translated after action by Mod(Σ𝑔,𝑛). Thus, finding minimal dilatation
maps extends to minimizing entropy in subsets of the mapping class group,
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the length of closed geodesics in moduli space, and the Teichmüller translation
length.
There is extensive literature on the problemofminimizing dilatation over pA

maps inMod(Σ𝑔,𝑛) [AD10, FLM11, KT11, KT13, Pen91] as well as on minimiz-
ing dilatation of pseudo-Anosov braids on 𝑛 strands, the case of the disc with
𝑛 punctures [HK06, LT11]. We consider a specific class of pA maps related to
filling pairs of curves in Σ𝑔,𝑛. If 𝛼 and 𝛽 are representatives of isotopy classes
of simple closed curves 𝑎 and 𝑏 on Σ𝑔,𝑛 and are in minimal position (i.e., the
geometric intersection number of 𝑎 and 𝑏 equals |𝛼 ∩ 𝛽|) we say 𝛼, 𝛽 fill Σ𝑔,𝑛
if the complement Σ𝑔,𝑛 ⧵ (𝛼 ∪ 𝛽) is a union of topological disks or punctured
disks. To any such filling pair 𝛼∪𝛽, let Γ𝛼,𝛽 be the subgroup generated by Dehn
twists about 𝛼 and 𝛽. Thurston showed that any infinite order element of Γ𝛼,𝛽
not conjugate to a power of 𝑇𝛼 or 𝑇𝛽 is pA (Theorem 1.3). Additionally, we call
pseudo-Anosov elements of Γ𝛼,𝛽 ⊂ Mod(Σ𝑔,𝑛) Thurston pA maps.
In this paper, we minimize dilatation over all Thurston pA elements in Γ𝛼,𝛽

for any genus 𝑔 and number of punctures 𝑛 and find the following:

Theorem1.1. For 𝑔 ≠ 0, 2, 𝑛 > 2 let𝛼, 𝛽 be any filling pair onΣ𝑔,𝑛 and let 𝑖(𝛼, 𝛽)
be the geometric intersection number of 𝛼 and 𝛽. Then the minimal dilatation
over Thurston pAmaps in Γ𝛼,𝛽 is achieved by the product 𝑇𝛼 ⋅ 𝑇𝛽 . This dilatation
equals

1

2
((𝑖(𝛼, 𝛽)2 + 𝑖(𝛼, 𝛽)

√

(𝑖(𝛼, 𝛽))2 − 4 − 2).

We find that the minimum dilatation increases monotonically with the geo-
metric intersection number 𝑖(𝛼, 𝛽) for a filling pair 𝛼, 𝛽. Using realized mini-
mums for intersection number given by Aougab, Huang, and Taylor ([AH15],
Lemma2.1-2.2, [AT14], Lemma3.1, and summarized in section 3), we prove the
following corollary giving a lower bound for the minimal dilatation Thurston
pA map for all possible filling pairs.

Corollary 1.2. The minimal dilatation over all Thurston pA mapping classes in
Γ𝛼,𝛽 for all filling pairs 𝛼, 𝛽 in Σ𝑔,𝑛, 𝑔 ≠ 0, 2 is given for 𝑛 = 0 by

1

2
((2𝑔 − 1)2 + (2𝑔 − 1)

√

(2𝑔 − 1)2 − 4 − 2)

and for 𝑛 ≥ 1 by

1

2
((2𝑔 − 1 + 𝑛)2 + (2𝑔 − 1 + 𝑛)

√

(2𝑔 − 1 + 𝑛)2 − 4 − 2).

Additionally, we have the following characterization:
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Genus Punctures 𝑖(𝛼, 𝛽) Minimal Dilatation Thurston pA

𝑔 = 0 𝑛 ≥ 4 even 𝑛 − 2
1

2
((𝑛 − 2)2 + (𝑛 − 2)

√
(𝑛 − 2)2 − 4 − 2)

𝑔 = 0 𝑛 odd 𝑛 − 1
1

2
((𝑛 − 1)2 + (𝑛 − 1)

√
(𝑛 − 1)2 − 4 − 2)

𝑔 = 2 𝑛 ≤ 2 4 7 + 4
√
3

𝑔 = 2 𝑛 > 2 2𝑔 + 𝑛 − 2
1

2
((2𝑔 + 𝑛 − 2)2 + (2𝑔 + 𝑛 − 2)

√
(2𝑔 + 𝑛 − 2)2 − 4 − 2)

Figure 1. Two filling pairs on the punctured torus: the sec-
ond pair has greater geometric intersection number and con-
sequently corresponds to a higher dilatation pA. Moreover, the
composition of Dehn twists about the curves on the first torus
is the minimal dilatation pA mapping class.

1.1. Proof idea. To prove Theorem 1.1, we use a theorem due to Thurston,
which gives a representation into SL2(ℝ) for the subset ofMod(Σ𝑔,𝑛) generated
by twists about filling pairs of curves ([FM12], Section 14.1).1

Theorem 1.3 (Thurston’s Construction). Suppose 𝛼, 𝛽 are simple closed curves
in Σ𝑔,𝑛, 𝑔, 𝑛 ≥ 0 so that 𝛼 ∪ 𝛽 fill Σ𝑔,𝑛. Let 𝑖(𝛼, 𝛽) denote geometric intersection
number of 𝛼 and 𝛽 and let Γ𝛼,𝛽 be the subgroup generated by Dehn twists 𝑇𝛼 and
𝑇𝛽 about 𝛼 and 𝛽, respectively. Then there is a representation 𝜌 ∶ Γ𝛼,𝛽 → SL2(ℤ)

given by

𝑇𝛼 ↦ [
1 −𝑖(𝛼, 𝛽)

0 1
] 𝑇𝛽 ↦ [

1 0

𝑖(𝛼, 𝛽) 1
] .

Moreover, 𝜌 has the following properties:
(i) For 𝑓 ∈ Γ𝛼,𝛽 , 𝑓 is periodic, reducible, or pseudo-Anosov if 𝜌(𝑓) is elliptic,

parabolic, or hyperbolic, respectively.
(ii) Parabolic elements in 𝜌(𝑓) are exactly powers of 𝑇𝛼 or 𝑇𝛽 .
(iii) If 𝜌(𝑓) is hyperbolic then the dilatation of [𝑓] ∈ Mod(Σ𝑔) is exactly the spec-

tral radius of 𝜌(𝑓).

1The construction also generalizes for multicurves, or disjoint collections of simple closed
curves. Here, we only present the Theorem 1.3 for two filling curves. See [FM12], Section 14.1
for the generalized version.
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Using Thurston’s representation, we minimize dilatation over all mapping
classes in ⟨𝜌(𝑇𝛼), 𝜌(𝑇𝛽)⟩ ⊆ SL2(ℤ) to find theminimal dilatationmapping class
in Γ𝛼,𝛽 . Specifically, the smallest spectral radius matrices in the subgroup of
SL2(ℤ) given by

Λ𝑛 ≔

⟨

[
1 −𝑛

0 1
] , [

1 0

𝑛 1
]

⟩

, 𝑛 ≥ 3

achieve the dilatations given in Corollary 1.2.

1.2. Comparison with prior literature. There are interesting comparisons
between our bounds in Γ𝛼,𝛽 and universal bounds for the entire mapping class
group.
Let 𝓁(𝑔, 𝑛) = min{log 𝜆(𝑓) ∶ 𝑓 ∶ Σ𝑔,𝑛 → Σ𝑔,𝑛 pseudo-Anosov} denote the

minimal dilatation for a pseudo-Anosov map 𝑓 on an orientable surface Σ𝑔,𝑛
of genus 𝑔 with 𝑛 punctures (i.e., the minimal topological entropy). Penner
[Pen91] showed that for closed surfaces with 2𝑔 − 2 + 𝑛 > 0 and 𝑛 ≥ 0

𝓁𝑔,𝑛 ≥
log 2

12𝑔 − 12 + 4𝑛

and for 𝑛 = 0
log 2

12𝑔 − 12
≤ 𝓁𝑔,0 ≤

log 11

𝑔
.

Tsai [Tsa09] later proved that for any 𝑔 ≥ 2 and 𝑛 ≥ 3 there exists a constant
𝑐𝑔 depending only on the genus such that

log 𝑛

𝑐𝑔𝑛
< 𝓁𝑔,𝑛 <

𝑐𝑔 log 𝑛

𝑛

and gave an example of a map 𝑓𝑔,𝑛 ∶ Σ𝑔,𝑛 → Σ𝑔,𝑛 with log 𝜆(𝑓) < 𝑐𝑔 log 𝑛∕𝑛.
In comparison, in the most general case of our bound (𝑔 ≠ 0, 2 and 𝑛 = 0), the
minimal dilatation in Γ𝛼,𝛽 increases monotonically with genus.

The authors would like to thank Benson Farb for posing the question that
motivated this paper, continually supporting them for the duration of the project,
and providing extensive comments on this paper. They thank Faye Jackson
for her invaluable explanations and intuition, and Amie Wilkinson for teach-
ing a wonderful course in analysis where the authors first began collaborating.
The authors would also like to thank Aaron Calderon for his patience in teach-
ing them about entropy, Peter Huxford for his help on Proposition 2.2, Tarik
Aougab for helpful remarks on Section 3, Noah Caplinger for discussing The-
orem 2.1, and Dan Margalit for general feedback; this paper would not have
been possible without their insight.

2. Minimal spectral radii in 𝚲𝒏

Recall we defined Λ𝑛 as

Λ𝑛 =

⟨

[
1 −𝑛

0 1
] , [

1 0

𝑛 1
]

⟩

, 𝑛 ≥ 3.
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The minimal dilatation for any hyperbolic map in Λ𝑛 (and thus pA maps in
Γ𝛼,𝛽) is given by

inf {|𝜆(𝛼)| ∶ |𝜆(𝛼)| > 2, 𝛼 ∈ Λ𝑛},

where 𝜆(𝛼) is the spectral radius of 𝛼. Since Λ𝑛 is discrete, this infimum must
be realized.
Webeginwith casewhen𝑛 = 1. In this case, the solution iswell-known since

Λ1 ≃ 𝑆𝐿2(ℤ) (Theorem 2.5, [FM12]). So, the solution reduces to minimizing
the roots of the characteristic polynomial equation

𝑥2 − tr(𝛼)𝑥 + 1.

In SL2(ℤ), eigenvalues grow monotonically as a function of trace; the small-
est magnitude trace in the infimum is 3, so we have

𝑥2 − 3𝑥 + 1 = 0 ⟹ 𝜆 =
3 +

√
5

2
.

Now, finding 𝛼 =
[
𝑤 𝑥
𝑦 𝑧

]
follows immediately from the conditions 𝑤 + 𝑧 =

3,𝑤𝑧 − 𝑥𝑦 = 1: the solution is given by 𝛼 =
[
2 1
1 1

]
. Furthermore, 𝛼 has two

distinct real eigenvalues, so this solution is unique up to conjugacy.
For the general case, let

𝐴 = [
1 −𝑛

0 1
] , 𝐵 = [

1 0

𝑛 1
] .

We will assume 𝑛 ≠ 2; later (Remark 3.5) we show that Λ2 is not the represen-
tation given by the Thurston construction for any number 𝑔 or 𝑛.

Theorem 2.1. Fix 𝑛 > 2. The minimal spectral radius in Λ𝑛 is given by
1

2
(𝑛2 + 𝑛

√
𝑛2 − 4 − 2)

corresponding to the matrix
[
1−𝑛2 −𝑛
𝑛 1

]
.

Fix 𝑛 > 2. In SL2(ℤ), the spectral radius of a matrix 𝛼 is given by the larger
root of the characteristic polynomial

𝑥2 − tr(𝛼)𝑥 + 1 = 0.

Explicitly, these solutions are

𝑥 =
tr(𝛼) ±

√
(tr(𝛼))2 − 4

2
.

We wish to minimize spectral radius over hyperbolic matrices, so we assume
also that | tr(𝛼)| > 2. For 𝐴 ∈ SL2(ℤ), it is also known that 𝜆(𝐴) increases
monotonically as a function of the magnitude of the trace; it follows that min-
imizing spectral radius is equivalent to minimizing trace magnitude. Here we
minimize the latter and then compute the corresponding dilatation.
To begin, we show the following, which was observed initially by Chorna,

Geller and Shpilrain (Theorem 4(a), [CGS17]):
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Proposition 2.2. Let 𝛼 ∈ Λ𝑛, 𝑛 > 2. Then 𝛼 has the form

[
1 + 𝑘1𝑛

2 𝑘2𝑛

𝑘3𝑛 1 + 𝑘4𝑛
2] 𝑘𝑖 ∈ ℤ.

Proof. For simplicity, we say that a matrix 𝛾 is congruent, denoted

𝛾 ≅ [
1 mod 𝑛2 0 mod 𝑛

0 mod 𝑛 1 mod 𝑛2
] ,

if 𝛾 takes on the form

𝛾 = [
1 + 𝑘1𝑛

2 𝑘2𝑛

𝑘3𝑛 1 + 𝑘4𝑛
2] , 𝑘𝑖 ∈ ℤ. (2.1)

Define 𝑆 ⊆ SL2(ℤ) as

𝑆 ∶= {𝛾 ∈ SL2(ℤ) ∶ 𝛾 ≅ [
1 mod 𝑛2 0 mod 𝑛

0 mod 𝑛 1 mod 𝑛2
]} .

We claim that 𝑆 is a subgroup of SL2(ℤ). Then, since 𝐴, 𝐵 ∈ SL2(ℤ), it would
follow that every 𝛾 ∈ Λ𝑛 would take on the form given by 2.1.
To prove the claim, consider the natural homomorphism 𝜑 ∶ SL2(ℤ) →

SL2(ℤ∕𝑛
2ℤ) given by reduction modulo 𝑛2. Then 𝑆 = 𝜑−1(𝑆′), where

𝑆′ ∶= {[
1 𝑘1𝑛

𝑘2𝑛 1
] ∶ 𝑘1, 𝑘2 ∈ SL2(ℤ∕𝑛

2ℤ)} .

We show that 𝑆′ is a subgroup of SL2(ℤ∕𝑛2ℤ). Define 𝑁,𝑀 ∈ SL2(ℤ∕𝑛
2ℤ) as

𝑁 = [
1 𝑘1𝑛

𝑘2𝑛 1
] ,𝑀 = [

1 𝑘3𝑛

𝑘4𝑛 1
] .

Then we have:

𝑁𝑀−1 = [
1 𝑘1𝑛

𝑘2𝑛 1
] [

1 −𝑘3𝑛

−𝑘4𝑛 1
]

= [
1 − 𝑘1𝑘4𝑛

2 𝑛(𝑘1 − 𝑘3)

𝑛(𝑘2 − 𝑘4) 1 − 𝑘2𝑘3𝑛
2]

≡ [
1 𝑛(𝑘1 − 𝑘3)

𝑛(𝑘2 − 𝑘4) 1
] ∈ 𝑆′.

It follows that 𝑆′ is a subgroup of SL2(ℤ∕𝑛2ℤ). Then 𝑆 = 𝜑−1(𝑆′), so 𝑆 is a
subgroup of SL2(ℤ), giving the desired result. □

Proof of Theorem 2.1. By Proposition 2.2, it suffices to minimize trace over
all matrices of the form

𝛼 = [
𝑘1𝑛

2 + 1 𝑘2𝑛

𝑘3𝑛 𝑘4𝑛
2 + 1

] such that 𝑘𝑖 ∈ ℤ, (𝑘1𝑛
2+1)(𝑘4𝑛

2+1)−𝑘2𝑘3𝑛
2 = 1.

(2.2)
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Note that we impose the second constraint equation because 𝛼 ∈ SL2(ℤ), so
we have the determinant

(𝑘1𝑛
2 + 1)(𝑘4𝑛

2 + 1) − 𝑘2𝑘3𝑛
2 = 1.

Rearranging the determinant equation gives 𝑘2𝑘3 = 𝑘1𝑘4𝑛
2 + (𝑘1 + 𝑘4) ∈ ℤ.

Thus, given any fixed 𝑘1, 𝑘4 ∈ ℤ, there always exists 𝑘2, 𝑘3 such that the matrix[
1+𝑘1𝑛

2 𝑘2𝑛

𝑘3𝑛 1+𝑘4𝑛
2

]
is in SL2(ℤ).

For any 𝛼 given by 2.2, | tr(𝛼)| is given by

|2 + 𝑛2(𝑘1 + 𝑘4)|

which is smallest when 𝑘1 + 𝑘4 = 0. In this case, tr(𝛼) = 2. Then 𝛼 is not
hyperbolic, so we disregard it. When 𝑘1 + 𝑘4 = −1, then | tr(𝛼)| = 2 − 𝑛2. For
𝑘1 + 𝑘4 = 1, then | tr(𝛼)| = 2 + 𝑛2 > 𝑛2 − 2. Finally, for |𝑘1 + 𝑘4| > 1, we have

|2 + 𝑛2(𝑘1 + 𝑘4)| ∈ {(𝑘1 + 𝑘4)𝑛
2 − 2, (𝑘1 + 𝑘4)𝑛

2 + 2},

which in either case is greater in magnitude than 𝑛2 − 2.
It is left to show that a matrix in Λ𝑛 achieves the minimum trace of 𝑛2 − 2.

Choosing 𝑘1 = −1, 𝑘4 = 0 gives the matrix
[
1−𝑛2 𝑘2𝑛

𝑘3𝑛 1

]
, which implies 𝑘2 = −𝑛

and 𝑘3 = 𝑛. But, this matrix is equal to 𝐴𝐵, given by
[
1−𝑛2 −𝑛
𝑛 1

]
. Thus both

𝐴𝐵 and 𝐵𝐴 (which are conjugate) in Λ𝑛 achieve the minimum dilatation of
1

2
(𝑛2 + 𝑛

√
𝑛2 − 4 − 2). □

To prove Theorem 1.1, note that for two filling curves 𝛼, 𝛽 on Σ𝑔,𝑛 where
𝑖(𝛼, 𝛽) = 𝑛, we have Λ𝑛 = ⟨𝜌(𝑇𝛼), 𝜌(𝑇𝛽)⟩ achieves its smallest dilatation map
with 𝜌(𝑇𝛼) ⋅ 𝜌(𝑇𝛽), since 𝜌(𝑇𝛼) ⋅ 𝜌(𝑇𝛽) = 𝐴𝐵 ∈ Λ𝑛. This map corresponds to
𝑇𝛼 ⋅ 𝑇𝛽 in the associated mapping class group.

3. Construction of filling curves
Weexpositwork given byAougab-Huang-Taylor [AH15], [AT14] and Jeffreys

[Jef19]. For a fixed surfaceΣ𝑔,𝑛, our goal is to obtain a lower bound for the inter-
section number of a pair of filling curves and subsequently construct examples
achieving theseminima. Weuse lower bounds given by the filling permutations
of Aougab-Huang [AH15] and Aougab-Taylor [AT14] and the generalized fill-
ing permutations of Jeffreys [Jef19], which gives us an algebraic way to describe
“gluing patterns" of polygons.
The idea is to construct polygons whose sides are identified in such a way

that, once glued, they form the surface Σ𝑔,𝑛 with the glued sides becoming the
filling curves 𝛼, 𝛽. Each polygonwill correspond to a disk in the complement of
𝛼∪𝛽 on Σ𝑔,𝑛, so we can retroactively puncture the polygons to form Σ𝑔,𝑛. Since
we will “place" the punctures, our convention will be to treat them as marked
points and thus exclude them from the Euler characteristic.
We begin with a general lower bound for the intersection number on any

surface Σ𝑔,𝑛 from Aougab-Huang ([AH15], Lemma 2.1).
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Lemma 3.1. Fix 𝑔 ≥ 1, 𝑛 ≥ 0. If 𝛼, 𝛽 fill Σ𝑔,𝑛, then 𝑖(𝛼, 𝛽) ≥ 2𝑔 − 1, where 𝑖
denotes geometric intersection number.

Proof. We model 𝛼, 𝛽 as a 4-valent graph 𝐺 (where vertices 𝑣 are intersection
points) since the complement Σ𝑔 ⧵ (𝛼, 𝛽) is a union of topological discs 𝐷. The
Euler characteristic of the graph must match that of Σ𝑔,𝑛. We know

∑

𝑣∈𝐺

deg
𝑣
(𝐺) = 2|𝐸| = 4|𝑉| = 2𝑖(𝛼, 𝛽).

Then we obtain

𝜒(Σ𝑔) = 2 − 2𝑔 = |𝐷| − 2𝑖(𝛼, 𝛽) + 𝑖(𝛼, 𝛽)

and since |𝐷| ≥ 1, we have the result. □

This bound is only realized in the case when 𝑛 = 0. For punctured sur-
faces, however, we can come very close. To construct an explicit examplewhere
equality is realized, we now introduce the notion of filling permutations from
[AH15] and [Jef19].
Fix a surface Σ𝑔,𝑛 and a filling pair 𝛼, 𝛽. We will label the subarcs of the

curves (segments connecting two intersection points) in the following manner,
beginning with the curve 𝛼. Fix an orientation for 𝛼 and choose a starting in-
tersection point 𝑥0 ∈ 𝛼 ∩ 𝛽. Travel in the direction of 𝛼 until we reach an
intersection point 𝑥1 ≠ 𝑥0 and label the subarc of 𝛼 joining 𝑥0 to 𝑥1 as 𝛼1. Con-
tinue this process until we arrive back at 𝑥0–this will occur since the curve 𝛼
is closed–labeling the subarcs {𝛼1, … , 𝛼𝑚}; note that 𝑚 = 𝑖(𝛼, 𝛽). Repeat this
process with 𝛽 to obtain a labeling {𝛽1, … , 𝛽𝑚}.
Now, cutting the surface along𝛼∪𝛽, we obtain𝑛+2−2𝑔 polygonswhose sides

correspond to subarcs of 𝛼 and 𝛽 and whose vertices are intersection points in
𝛼 ∩ 𝛽. Orient these polygons clockwise. Our goal is to describe the polygons
algebraically in terms of permutations acting on their edges. First, note that
since we cut along 𝛼 and 𝛽 to obtain these polygons, every subarc 𝛼𝑘 of 𝛼 will
have an inverse 𝛼−1

𝑘
with the opposite orientation; similarly for 𝛽. Define

𝐴 = {𝛼1, 𝛽1, … , 𝛼𝑚, 𝛽𝑚, 𝛼
−1, 𝛽−1, … , 𝛼−1𝑚 , 𝛽−1𝑚 }

and identity 𝐴 with the set {1, … , 4𝑚}. Label the sides of the polygons with the
corresponding elements of 𝐴.
Now, we define the filling permutation of a polygon as 𝜎(𝑗) = 𝑘 if, and only

if, traveling clockwise around the polygon the edge labeled by the 𝑗th element
of 𝐴 is followed by the edge labeled by the 𝑘th element of 𝐴. Each filling per-
mutation will be a cycle in 𝑆4𝑚, the symmetric group on 4𝑚 elements, so since
there are 𝑛+2−2𝑔 polygons we have 𝑛+2−2𝑔 corresponding cycles 𝜎 ∈ 𝑆4𝑚.

There are twomore geometrically significant permutations we are interested
in. Take 𝑄 = 𝑄𝛼,𝛽 ∈ 𝑆4𝑚 as 𝑄 = (1, 2, … , 4𝑚)2𝑚. We note that 𝑄 acts on the
edges by reversing their orientation, i.e., it sends 𝑗 to 𝑘 if and only if the 𝑗th and
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Figure 2. The polygons corresponding to a filling pair on
Σ2,3. The associated filling permutations are, from left to right,
(1, 2, 19, 14), (3, 8, 15, 16, 9, 17, 18, 5, 10, 11, 12), and (6, 13, 20, 7)

𝑘th elements of 𝐴 are inverses of each other. Finally, define 𝜏 = 𝜏𝛼,𝛽 ∈ 𝑆4𝑚 as
𝜏 = (1, 3, ..., 2𝑚 − 1)(2, 4, ..., 2𝑚)(4𝑚 − 1, 4𝑚 − 3, ..., 2𝑚 + 1)(4𝑚, 4𝑚 − 2, ..., 2𝑚 + 2).

The first cycle represents sending 𝛼𝑖 to 𝛼𝑖+1, the second 𝛽𝑖 to 𝛽𝑖+1, the third 𝛼−1𝑘
to 𝛼−1

𝑘+1
and the fourth 𝛽−1

𝑘
to 𝛽−1

𝑘+1
. In other words, 𝜏moves each arc in 𝛼 to the

next arc of 𝛼 with the same orientation, and similarly for 𝛽.
Wewill say that a permutation is parity-respecting if it sends even numbers to

even numbers and odd numbers to odd numbers and parity-reversing if it sends
even numbers to odd numbers and odd numbers to even numbers.
The following lemma from Jeffreys ([Jef19], Lemma 2.3) gives the condi-

tions necessary to define a filling permutation on a surface Σ𝑔,𝑛. We will subse-
quently construct the filling curves by finding a permutation that satisfies these
hypotheses.

Lemma 3.2. Let 𝛼, 𝛽 be a filling pair on Σ𝑔,𝑛 with 𝑖(𝛼, 𝛽) = 𝑚 ≥ 𝑖(𝛼, 𝛽), the
minimal intersection number. Then, 𝜎 = 𝜎𝛼,𝛽 satisfies 𝜎𝑄𝜎 = 𝜏. Conversely, a
parity-reversing permutation 𝜎 ∈ 𝑆4𝑚 consisting of𝑚+2−2𝑔 cycles and nomore
than 𝑛 2-cycles that satisfies the above relation defines a filling pair on Σ𝑔,𝑛 with
intersection number𝑚.

Now we have the necessary ingredients to compute the minimal realized
number of intersection points onΣ𝑔,𝑛; we closely follow the one given by [AT14],
Lemma 3.1.

Proposition 3.3. Suppose 𝑔 ≠ 0, 2 and 𝑛 = 0. If 𝛼, 𝛽 are minimally intersecting
filling curves on Σ𝑔,𝑛, then

𝑖(𝛼, 𝛽) = 2𝑔 − 1.

If 𝑛 ≥ 1, then
𝑖(𝛼, 𝛽) = 2𝑔 + 𝑛 − 2.

Proof. Using the same argument as in Lemma 3.1, we have that 𝑖(𝛼, 𝛽) = 2𝑔+

𝑛 − 2 + |𝐷| where |𝐷| is the number of topological disks in the complement of
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𝛼 ∪ 𝛽 in Σ𝑔,𝑛. Thus, we have the lower bounds and it is left to show that these
bounds are realized. The first case is given explicitly by Lemma 3.2; for the
second, we induct on 𝑛. When 𝑛 = 1, then 2𝑔−1 = 2𝑔+𝑛−2. Thus, the filling
curves given in Lemma 3.2, which have a single disk 𝐷 in their complement,
still fill Σ𝑔,1, obtained by puncturing 𝐷 once.
To begin constructing the filling pairs for surfaces with 𝑛 ≥ 1 punctures, we

give an example for when 𝑔 = 1; there is a formula for the intersection number
of curves on the torus ([FM12], Section 1.2.3). Namely, if 𝛼 is a (𝑝, 𝑞) curve and
𝛽 is an (𝑟, 𝑠) curve, then

𝑖(𝛼, 𝛽) = 𝑝𝑠 − 𝑞𝑟.

Taking 𝛼 to be a (𝑛, 1)-curve and 𝛽 to be a (0, 1) gives two curves intersecting
exactly 𝑛 times. The complement of these two curves is 𝑛 topological disks, and
puncturing each gives 2𝑔 + 𝑛 − 2 = 𝑛 intersections on Σ1,𝑛.
Now, we describe the double bigon method, which begins with a filling pair

𝛼, 𝛽 on Σ𝑔,𝑛 and constructs a filling pair on Σ𝑔,𝑛+2 with intersection number
𝑖(𝛼, 𝛽)+2. As before, let 𝛼, 𝛽 be a filling pair on Σ𝑔,𝑛, and orient and label them
into subarcs 𝛼1, … , 𝛼𝑖(𝛼,𝛽) and 𝛽1, … , 𝛽𝑖(𝛼,𝛽). Suppose 𝑖(𝛼1, 𝛽𝑖(𝛼,𝛽) ≠ 0. Then
pushing 𝛼1 across 𝛽𝑖(𝛼,𝛽) and back over forms 2 bigons. Puncturing each of
these bigons gives the same pair of filling curves on Σ𝑔,𝑛+2 with intersection
number 𝑖(𝛼, 𝛽) + 2. See Figure 3 for reference.

Figure 3. The “double bigon method.” Given a pair of filling
curves 𝛼, 𝛽 on a surface Σ𝑔,𝑛 with intersection number 𝑖(𝛼, 𝛽),
the same pair fills Σ𝑔,𝑛+2 with intersection number 𝑖(𝛼, 𝛽) + 2.

Suppose 𝑛 = 2𝑘 + 1 is odd and 𝑔 > 2. Take a pair 𝛼, 𝛽 which fill Σ𝑔,0,
whose complement is connected, i.e. is a single topological disk, and such that
𝑖(𝛼, 𝛽) = 2𝑔 − 1 (we know such an 𝛼, 𝛽 exist by Lemma 3.2). Then, puncturing
this disk gives that 𝛼, 𝛽 fill Σ𝑔,1. For the remaining 2𝑘 punctures, perform the
double bigonmethod 𝑘 times; each timewill increase 𝑖(𝛼, 𝛽) by 2 andwill result
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in 𝛼, 𝛽 filling Σ𝑔,2𝑘+1 with intersection number

𝑖(𝛼, 𝛽) + 2𝑘 = (2𝑔 − 1) + 2𝑘 = 2𝑔 − 2 + 𝑛.

For 𝑛 = 2𝑘 even, the same argument generalizes if there exists a filling pair 𝛼, 𝛽
on Σ𝑔,0 intersecting 2𝑔 times; we refer the reader to [AT14], Lemma 3.1, for the
construction of such a pair. □

A similar application of the double bigonmethod gives minimal intersection
numbers for Σ𝑔,𝑛 for 𝑔 = 0, 2 (see [AT14], Lemma 3.1 and [Jef19] Theorem 3.3).
We summarize the results as follows:

Genus Punctures 𝑖(𝛼, 𝛽)

𝑔 = 0 𝑛 ≥ 4 even 𝑛 − 2

𝑔 = 0 𝑛 ≥ 4 odd 𝑛 − 1

𝑔 = 2 𝑛 ≤ 2 4

𝑔 = 2 𝑛 > 2 2𝑔 + 𝑛 − 2

Remark 3.4. The case 𝑔 = 0, 𝑛 < 4 is not considered because the filling curves
have intersection number zero: if there are two or fewer punctures then a single
curve fills and if there are exactly three punctures then the filling pair does not
intersect.

proof of Corollary 1.2. The proof follows immediately from plugging in the
values from Proposition 3.3 into the matrices in Theorem 2.1 and applying
Thurston’s construction. Fix a surface Σ𝑔,𝑛, 𝑔 ≠ 0, 2 and let {𝛼, 𝛽} be a mini-
mally intersecting filling pair, so that 𝑖(𝛼, 𝛽) = 𝑖𝑔,𝑛.
Letting 𝐴 =

[
1 −𝑖(𝑔,𝑛)
0 1

]
and 𝐵 =

[
1 0

𝑖(𝑔,𝑛) 1

]
, by Thurston’s Construction (Theo-

rem 1.3) the Thurston pAmaps in Γ𝛼,𝛽 ⊂ Mod(Σ𝑔,𝑛)–the subset of the mapping
class generated by Dehn twists 𝑇𝛼, 𝑇𝛽 about the curves 𝛼 and 𝛽–correspond to
the hyperbolic elements ofΛ𝑖(𝛼,𝛽) = ⟨𝐴, 𝐵⟩. Moreover, the spectral radius of the
elements of Λ𝑖(𝛼,𝛽) correspond to the dilatation of the pA maps.
By Theorem 2.1, the minimal nonzero spectral radius in Λ𝑖(𝛼,𝛽) (and thus

minimal dilatation in Γ𝛼,𝛽) is given by

1

2
(𝑖(𝛼, 𝛽)2 + 𝑖(𝛼, 𝛽)

√

𝑖(𝛼, 𝛽)2 − 4 − 2)

achieved by the hyperbolic matrix

𝐴𝐵 = [
1 −𝑖(𝛼, 𝛽)

0 1
] [

1 0

𝑖(𝛼, 𝛽) 1
] = [

1 − 𝑖(𝛼, 𝛽)2 −𝑖(𝛼, 𝛽)

𝑖(𝛼, 𝛽) 1
] .

By Thurston’s Construction, 𝐴𝐵 represents the pA map 𝑇𝛼𝑇𝛽, the product of
Dehn twists about 𝛼 and 𝛽. The specific values for dilatation in Corollary 1.2
are obtained by substituting the corresponding values of 𝑖𝑔,𝑛 from Proposition
3.3 for 𝑖(𝛼, 𝛽). □
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Remark 3.5. We note that the value of 𝑛 = 2 is never realized for any Σ𝑔,𝑛
justifying the exclusion of this value in Proposition 3.3.

4. Future directions
Throughout this paper, we exclusively explored the case where 𝐴 and 𝐵 are

single curves 𝛼 and 𝛽, respectively, but the problem of finding the minimal
dilatation Thurston pA map extends to the general case of multicurves 𝐴 =

{𝛼1, … , 𝛼𝑘}, 𝐵 = {𝛽1, … , 𝛽𝓁} on Σ𝑔,𝑛 (i.e. disjoint collections of simple closed
curves). Themultitwist about 𝐴 and 𝐵 are the products

∏𝑛

𝑖=1
𝑇𝛼𝑖 ,

∏𝑚

𝑖=1
𝑇𝛽𝑖 , re-

spectively. We recall that the Thurston construction generalizes for multicurve
systems which fill Σ𝑔,𝑛 to obtain a representation 𝜌 ∶ Γ𝐴,𝐵 → SL2(ℤ) given by

𝑇𝐴 ↦ [
1 −𝜇1∕2

0 1
] 𝑇𝐵 ↦ [

1 0

𝜇1∕2 1
] ,

where𝜇 is the square of the largest singular value of the 𝑘×𝓁 intersectionmatrix
𝑁 whose (𝑛,𝑚) entry is given by

𝑁𝑛,𝑚 = 𝑖(𝛼𝑛, 𝛽𝑚),

i.e., 𝜇 is the Perron-Frobenius eigenvalue of𝑁𝑇𝑁 (note that we must work with
this matrix instead of𝑁 since the latter is not necessarily square). We refer the
reader to [FM12], Section 14.1.2 for some background onPerron-Frobenius the-
ory. Leininger [Lei04] derived several useful facts regarding minimal pseudo-
Anosov dilatation elements in groups generated by multitwists.
However, as we noted after stating Corollary 1.2, twists about two filling

curves become less representative of the entire mapping class group with in-
creasing genus. Thus, another question to ask is whether 𝜆(Γ𝐴,𝐵) also increases
monotonically with genus, particularly when 𝐴, 𝐵 each consist of 𝑔 multic-
urves, i.e. are twists about 2𝑔 filling curves more characteristic of Σ𝑔,𝑛, par-
ticularly for large 𝑔.
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