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ON INTEGRABILITY OF TRIGONOMETRIC SERIES
WITH QUASI-MONOTONE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Consider the formal sine and cosine series

o0 o0
1
g(x) = E ansinnx and f(z) = §a0+ E Gy, COSNZ.
1 1

The following problem has been studied by many authors: if ¢ is a given
positive function, what hypothesis on {a,} are equivalent to gy € L(0,7) or to
fv e L(0,m)?

First assume that the sequence {a,} is monotonely decreasing to zero as
n — 0.

Boas [4] proved that for ¢(z) =277, 0 < v < 2, the following holds

a, < 00.

(1) gpe L0 &S ‘Z’fl”)

Aljancié, Bojanié, Tomié [1] proved that assertion (1) holds true also for
Y(z) =2 7L (2), 0 <y < 2, where L is a slowly varying function; and Aljanti¢
[3] obtained a similiar result for ¢(z) = K (%) where K € K (0 < p,p < 2).

Here K(p, p) denotes the class of function defined on I, = [a, ), a > 0, which
are O-regularly varying (0-RV) at infinity with lower index p and upper index 7 [2].

More generally, suppose that the sequence {a,} is quasi-monotone, i.e. a, >0
and for some a > 0 o

Gnt1 < Gp (1 + E) )

for n large enough [8].
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Shah [6] and Yong [7] proved, for ¢)(z) =z 7 and (z) =2 7L (1), 0< v <
2, respectively, that formula (1) still remains true if {a,} is quasi-monotone and
tending to zero as n — oo.

Moreover, Igari [5] and Yong [7] considered the integrability of 1¢g?, where
p>1

Similar results are valid for f.

In the present paper we combine the before mentioned results to prove (1)
for both {a,} quasi-monotone and 4 0-regularly varying.

THEOREM 1. Let {a,} be quasi-monotone and a, — 0, n — oo, and let
KeK(1-p<p,p<l+p), for1<p<oc. Then

K (%) g°(x) € L(0,7) & i::np2K(n)an” < 0.

THEOREM 2. Let {a,} be quasi-monotone and a, — 0, n — oo, and let
KeK(l-p<pp<1),forl1<p<oo. Then

K (%) f?(z) € L(0,7) & insz(n)anP < .

REMARK. These theorems give on one hand, a generalisation of Theorems
2 and 3 [3], in which the sequence {a,} is monotone and p = 1, and on the other
hand, a generalisation of Theorems 1 and 2 [7], in which the function K is regularly
varying and the sequence {a,} satisfies the further assumption

(%) 0< M; <nPL(n)a, < My < o0, >0,

where L is a slowly varying function and M;, M, are constants.

In the proof of the theorems we shall have need of the following lemmas. They
are generalisations of Theorem 1 [5] to O-regularly varying functions.

By C, possibly with subscripts, we denote a constant; a C' may stay for
different constants from one appearence to another.

LEMMA 1. Let K € K(p,p<p—1), for 1 < p < oo.
1) Let f > 0 be locally integrable on I, and F(t) = fat fw)du. Then

7K(t) (@)pdt < C]oK(t)f’”(t)dt.
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2) Let ¢, >0 and A, = > _; cx. Then

LEMMA 2. Let K € K(p—1< p,p), for 1 < p < oo.
1) Let f > 0 be locally integrable on I, and G(t) = ftoo f(u)du. Then

7K(t) (@)pdt < C7K(t) FP(t)dt.

2) Let ¢, >0 and B, = Y 4, k- Then

f: K(n) (%) "<c ilo: K (n)en?.

1

CoROLLARY 1. Let K € K(p,p <1—p), for 1 <p < oco. Let f >0 be locally
integrable in (0,1/a) and G(t) = 1/ f(w)du. Then

—Jt

1/a 1/a

(1) (49 w<e [x(2) poa
0 0

COROLLARY 2. Let K € K(1—p < p,p), for 1 < p < oco. Let f >0 be locally
integrable in (0,1/a) and F(t) = fot fuw)du. Then

1/a

(1) (9 w<e [ 1 (1) poa
0 0

2. Properties of O-regularly varying functions

In this section we cite some properties of O-regularly varying functions that
are needed in the proof of the theorems. As before, K is assumed to belong to the
class K(p,p).

(i-1) if o < p then [t~ 71K (t)dt < C12~ " K(x).
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oo
2) if 7 >pthen [t T 1K(t)dt < Cox "K(z).
T
(ii) There exist positive constants Cy, Cs such that

1/(n—1) )
Cin 2K (n) < / K (E) dx < Con 2K(n).

1/n

(iii) If o < p then for g locally integrable in (0, c0)
1) [29g(z)dz < Cy [ g(z)K (z)dz

1/a 1/a
2) { x7g(z)dx < Cy J g(z)K (é) dz.

3. Proofs of the theorems

ProoF oF THEOREM 1. To prove part <= consider

o0 n oo
lg(z)] = Zak sin kz| < Zakkm + Z ay sin kx| .
k=1 k=1 k=n+1

An application of Abel’s transformation to the second sum yields

1 1 1
ZsimZ ;(ak — Qpt1) (cos (n + 5) x — COS (k + 5) m)
n T oo
< wzkak +o Z lax — agpq1]-
k=1 k=n

If we put = <z < "5 then we have

<

lg(z)| < HJZkak +
k=1

n oo

s

(2) lg9(2)| < n_ll;kak-i-nkzmk—aﬂﬂ-
= =n

The sequence {a,} being quasi-monotone, it follows by [8, p. 5]

oo oo
ar,
(3) E lar, — ag+1] < ap + 2a E =
k=n k=n

Therefore we obtain by substituting (3) into (2)

n o
T ar T T
n_lkg_lkak—l—n(an—l—QakE_ ?>, E<m5n—1’

lg(z)] <
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and introducing the notation A, = Y";_, kag, B, = > 5o, 5, we have

1 m 0
4 < _An n Bn ’ - S .
(4) |g(x)|_0(n +na, +n ) n<:1: —]
Now, this implies that
T ) oo w/(n—1) )
r (2 — r (2
[urx (3)a=% [ ek ()<
0 n=1 w/n
~ 1 m/(n—1) )
(5) <cy (—An +na, + an) / K (—) da <
—~\n x
w/n
<C —A, n+ nBp —“K
<Ci T; (n +na, +n ) n (n)

(where for the last inequality we have used property (ii) of 0-RV functions).
An application of Minkowsky’s inequality yields

(6)
. L/r o 1/p
/|g(x)|pK 1 dx <y Z lA + na, +nB pn_zK(n) <
0 n=
S A P l/p [ee] 1/p
<C lz (f) n 2K (n) + Cy Zn”an”nﬁK(n) +
1 1

[ee] 1/10
+C | n”Bn”n_zK(n)] =5+ S5+ Ss.
1

To estimate S1 put ¢, = na, and Ki(n) = n~2K(n). By hypothesis we have
p(K) <1+ p. Thus it follows that p(K;) =p(K) —2<1+p—2=p—1, so that
K satisfies the assumptions of Lemma 1. Applying the second part of this lemma
to S1 we obtain

S1P = n72K(n) (%) =Y Ki(n) (%) <CY Ki(n)e” =
(7) ' 1
= CZn_2K(n)npanp.

To estimate S3 put ¢, = 2= and K»(n) = n**~2K(n). Since p(K) > 1—p, it

n

follows that p(K2) = p(K) +2p—2>1-p+2p—2 = p—1; thus K> satisfies the



140 T. Ostrogorski

assumptions of Lemma 2. Applying this lemma to S3 we obtain

50 =i () = 3 st (%)pscf;m(m%":
- czn2P—2K(n) (a") - CZn” 2K (n

Finally, from (6), (7) and (8) it follows that

1/p

[storx (3)a| <c [f; np—mn)anp] v
0 1

This establishes part < of the theorem.

REMARK. If, like in [7], the sequence {a,} is supposed to satisfy the addi-
tional assumption (*), the proof of part < becomes somewhat shorter. Indeed, it
is easily seen that in this case B, < Ca,; therefore S; in (6) is estimated by Sa.

The proof of part = is very similar to the corresponding part in Theorem 1
[7] (assumption (*) not being used at all for this part). The only difference is that
we replace the class of regularly varying functions by the larger class of 0-regularly
varying functions.

First note that K (1) g?(z) € L(0,7) implies g € L(0, ). Indeed,
m g 1/p T 1/p'
) / lg(2)|dz < / zP|g(z) | de / 2% do
0 0 0

by Holder’s inequality. Chose 3 such that 0 < Bp < p (this is possible, since
p > p—1>0). For such 8 both integrals in (9) converge (the first by property
(iii-2) of 0-RV functions).

Now since the integrability of g implies that a,, are the Fourier coefficients of
g, it follows that

Therefore

(10)
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Now according to the definitions of quasi-monotone sequences it follows that

[

for 3 <k<n
Ak+1 ag Qn
kZ QZZ n—Fk kZan
Ltk (L+%) (1+%)
Hence (10) implies that
1 1
(11) G (E) > — k> —ane *n = Cap,.
n 2n 2n
%]+
Denoting 1(z) = [ [g(t)|dt we have
[by (11)]

in”ﬁK(n)an” < Cin”*zK )GP (n) <
m/(n—1) »
)k (é) e [by (i)

<CZn” 2K (n)y? ()<CIZ¢P() / (5>
x/n
<01§1°;”::”(;)’)K(;) = [ (2) (%) s
o
<0, / K (1) o@)pds

by Corollary 2 (since p(K) > 1 — p). This completes the proof of Theorem 1
Note that in the proof of part = only condition p(K) > 1—pis used; therefore
no restiction on the upper index is necessary for this part of the theorem.

ProOF OF THEOREM 2. To prove part <= consider

Z acoskzr| <

k=n+1

<

ki(ak—akﬂ) (sin (n+ §>x—sm (k+ ) )

2sin 2

< Zak +
< Zak + g Z lak — apq1-
k=1 k=n

7 and apply (3) we obtain

If weset - <z <5

n
|§Zak +n<an+2ak§ %)
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or, introducing the notation A, = Y, ax, Bp = Y o, %,

|f(x)| < C(An + na, + nBy,).

Now we have like in the proof of Theorem 1

m 1/p 00 1/p
[ / (@)K (%) dx] +C |3 (An +nay + By K(m)| <
0 1
oo 1/p 0 1/p
(12) <C ZAnpnﬁK(n) +C Zn”an”n*ZK(n) +
1 1

) 1/p
+C > ann”n_zK(n)‘| =5, + S5, + S;.
1

Since in estimating the sum S3 in (8) only condition p(K) > 1 — p was used,
it follows that (8) remains in this case also.

On the other hand, since p(K) < 1, if we set K3(n) = n?~2K(n) it follows
that p(K3) = p(K)+p—2 < 14+ p—2 =p—1. Therefore Lemma 1.2 may be
applied to K3

57 =3 (5) = L wm (3) <0 Kt -
13 1 1 1
" =C inp2K(n)an”.

Finally, from (12), (8) and (13) it follows that

] P () da

which establishes part < of the theorem.
To prove the converse, first note that fP(z)K (1) € L(0,7) implies f €
L(0,m) (cf. (9)). Therefore

1/p

00 1/p
<C lz n”_QK(n)anp]
1

F(z) = / i =3 % Sin k.
0 1

Denote %= by by. It is easily seen that whenever {a,} is quasi-monotone, then so

is {b,}
(1)

Ak+1 ag (6] ag
= ok < <k
Bt k+1—k+1(1+k)— P (1

|
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Thus we can apply part = of Theorem 1 to the function
oo
F(x) = Z by, sin kx
1

and conclude that the for 0-RV functions K, such that p(K4) > 1 —p the following
holds

S 2Ky (n)b,? < C / K (%) |F(2)|Pdz.
1 0

Putting K4(n) = n?K (n) (for which p(K4) = p+ p(K) > p(K) > 1 — p) we obtain

(14) inp—2nPK(n)bn” < CZK (%) wi%dw.

Therefore, since |F(z)| < [ |f(t)|dt = (), relation (14) yields

i::np—2K(n)anP < Cb/K (é) ¢:—Sv)dx.

Finally we can apply Corollary 1 to the last integral to obtain
o0 7'I' 1
> 0P 2K (n)a,” < Cy /K <5> |f (z)|Pda
1 0

which completes the proof of the theorem.

4. Proofs of the lemmas
Proor or LEMMA 1. Since by hypothesis p < p — 1 and p > 1, it follows

that p < 0. Thus it is possible to chose A such that p < Ap < 0.
Now we have by Holder’s inequality

t 1/p t 1/p'

¢
F(t) = /f(u)du < /u’\pfp(u)du /u*’\p’du <
a a t l/pa

< (thkp'+1)1/p' /u)‘pf”(u)du

a
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or
t

FP(t) < Cyt PHor / W fP (u) du.

a

This implies that

[e’s} [e’s} t
/ K(t) F:Ift) dt < ¢, / K(t)t Pt P+ / u™P fP(u)du dt =
(15) a a - a

oo

= Cl/u)‘pf”(u)/K(t)*Apfldt du.

a

Now since A is closen such that Ap > p, we can apply property (i-2) of 0-RV
functions to the inner integral in (15) and obtain

/K PO g < ¢ / u? FP(u) K (u)u > Pdu = Cy 7fp(u)K(u)du.

This establishes part 1) of the lemma. It is obvious that the proof of part 2) follows
along the same lines.

The proof of Lemma, 2 is very similar to the proof of Lemma 1 (except that
property (i-1) of 0-RV functions has to be used instead of property (i-2)), and we
therefore omit it.

Corollaries 1 and 2 follow from Lemma 1 and 2 respectively, by introducing
an obvious change of variables in the integrals.
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