ON INTEGRABILITY OF TRIGONOMETRIC SERIES WITH QUASI-MONOTONE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Consider the formal sine and cosine series

$$g(x) = \sum_{1}^{\infty} a_n \sin nx$$
 and $f(x) = \frac{1}{2}a_0 + \sum_{1}^{\infty} a_n \cos nx$.

The following problem has been studied by many authors: if ψ is a given positive function, what hypothesis on $\{a_n\}$ are equivalent to $g\psi \in L(0,\pi)$ or to $f\psi \in L(0,\pi)$?

First assume that the sequence $\{a_n\}$ is monotonely decreasing to zero as $n \to \infty$.

Boas [4] proved that for $\psi(x) = x^{-\gamma}$, $0 < \gamma < 2$, the following holds

(1)
$$g\psi \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} \frac{\psi(n)}{n} a_n < \infty.$$

Aljančić, Bojanić, Tomić [1] proved that assertion (1) holds true also for $\psi(x) = x^{-\gamma} L\left(\frac{1}{x}\right), \ 0 < \gamma < 2$, where L is a slowly varying function; and Aljančić [3] obtained a similiar result for $\psi(x) = K\left(\frac{1}{x}\right)$ where $K \in \mathcal{K}$ $(0 < \underline{\rho}, \overline{\rho} < 2)$.

Here $\mathcal{K}(\underline{\rho}, \overline{\rho})$ denotes the class of function defined on $I_a = [a, \infty), a > 0$, which are 0-regularly varying (0-RV) at infinity with lower index $\underline{\rho}$ and upper index $\overline{\rho}$ [2].

More generally, suppose that the sequence $\{a_n\}$ is *quasi-monotone*, i.e. $a_n \geq 0$ and for some $\alpha > 0$

$$a_{n+1} \le a_n \left(1 + \frac{\alpha}{n}\right),$$

for n large enough [8].

Shah [6] and Yong [7] proved, for $\psi(x) = x^{-\gamma}$ and $\psi(x) = x^{-\gamma}L\left(\frac{1}{x}\right)$, $0 < \gamma < 2$, respectively, that formula (1) still remains true if $\{a_n\}$ is quasi-monotone and tending to zero as $n \to \infty$.

Moreover, Igari [5] and Yong [7] considered the integrability of $\psi g^p,$ where $p\geq 1.$

Similar results are valid for f.

In the present paper we combine the before mentioned results to prove (1) for both $\{a_n\}$ quasi-monotone and ψ 0-regularly varying.

Theorem 1. Let $\{a_n\}$ be quasi-monotone and $a_n \to 0$, $n \to \infty$, and let $K \in \mathcal{K}(1-p<\underline{\rho},\overline{\rho}<1+p)$, for $1 \leq p < \infty$. Then

$$K\left(\frac{1}{x}\right)g^p(x) \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} n^{p-2}K(n)a_n^p < \infty.$$

Theorem 2. Let $\{a_n\}$ be quasi-monotone and $a_n \to 0$, $n \to \infty$, and let $K \in \mathcal{K}(1-p < \rho, \overline{\rho} < 1)$, for $1 \le p < \infty$. Then

$$K\left(\frac{1}{x}\right)f^p(x) \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} n^{p-2}K(n)a_n^p < \infty.$$

REMARK. These theorems give on one hand, a generalisation of Theorems 2 and 3 [3], in which the sequence $\{a_n\}$ is monotone and p=1, and on the other hand, a generalisation of Theorems 1 and 2 [7], in which the function K is regularly varying and the sequence $\{a_n\}$ satisfies the further assumption

$$(*) 0 < M_1 \le n^{\beta} L(n) a_n \le M_2 < \infty, \quad \beta > 0,$$

where L is a slowly varying function and M_1 , M_2 are constants.

In the proof of the theorems we shall have need of the following lemmas. They are generalisations of Theorem 1 [5] to 0-regularly varying functions.

By C, possibly with subscripts, we denote a constant; a C may stay for different constants from one appearence to another.

LEMMA 1. Let $K \in \mathcal{K}(\rho, \overline{\rho} , for <math>1 \le p < \infty$.

1) Let $f \geq 0$ be locally integrable on I_a and $F(t) = \int_a^t f(u) du$. Then

$$\int_{a}^{\infty} K(t) \left(\frac{F(t)}{t} \right)^{p} dt \le C \int_{a}^{\infty} K(t) f^{p}(t) dt.$$

2) Let $c_n \geq 0$ and $A_n = \sum_{k=1}^n c_k$. Then

$$\sum_{1}^{\infty} K(n) \left(\frac{A_n}{n}\right)^p \le C \sum_{1}^{\infty} K(n) c_n^p.$$

Lemma 2. Let $K \in \mathcal{K}(p-1 < \rho, \overline{\rho})$, for $1 \le p < \infty$.

1) Let $f \geq 0$ be locally integrable on I_a and $G(t) = \int_t^{\infty} f(u) du$. Then

$$\int_{a}^{\infty} K(t) \left(\frac{G(t)}{t} \right)^{p} dt \le C \int_{a}^{\infty} K(t) f^{p}(t) dt.$$

2) Let $c_n \geq 0$ and $B_n = \sum_{k=n}^{\infty} c_k$. Then

$$\sum_{1}^{\infty} K(n) \left(\frac{B_n}{n}\right)^p \le C \sum_{1}^{\infty} K(n) c_n^p.$$

Corollary 1. Let $K \in \mathcal{K}(\underline{\rho}, \overline{\rho} < 1-p)$, for $1 \leq p < \infty$. Let $f \geq 0$ be locally integrable in (0,1/a) and $G(t) = \int_t^{1/a} f(u) du$. Then

$$\int\limits_{0}^{1/a} K\left(\frac{1}{t}\right) \left(\frac{G(t)}{t}\right)^{p} dt \leq C \int\limits_{0}^{1/a} K\left(\frac{1}{t}\right) f^{p}(t) dt.$$

COROLLARY 2. Let $K \in \mathcal{K}(1-p < \underline{\rho}, \overline{\rho})$, for $1 \leq p < \infty$. Let $f \geq 0$ be locally integrable in (0, 1/a) and $F(t) = \int_0^t f(u) du$. Then

$$\int\limits_{0}^{1/a} K\left(\frac{1}{t}\right) \left(\frac{F(t)}{t}\right)^{p} dt \leq C \int\limits_{0}^{1/a} K\left(\frac{1}{t}\right) f^{p}(t) dt.$$

2. Properties of 0-regularly varying functions

In this section we cite some properties of 0-regularly varying functions that are needed in the proof of the theorems. As before, K is assumed to belong to the class $\mathcal{K}(\underline{\rho}, \overline{\rho})$.

(i-1) if
$$\sigma < \underline{\rho}$$
 then $\int\limits_a^x t^{-\sigma-1}K(t)dt \le C_1 x^{-\sigma}K(x)$.

2) if
$$\tau > \overline{\rho}$$
 then $\int_{\tau}^{\infty} t^{-\tau - 1} K(t) dt \le C_2 x^{-\tau} K(x)$.

(ii) There exist positive constants C_1 , C_2 such that

$$C_1 n^{-2} K(n) \le \int_{1/n}^{1/(n-1)} K\left(\frac{1}{x}\right) dx \le C_2 n^{-2} K(n).$$

(iii) If $\sigma < \rho$ then for g locally integrable in $(0, \infty)$

1)
$$\int_{a}^{\infty} x^{\sigma} g(x) dx \le C_{1} \int_{a}^{\infty} g(x) K(x) dx$$

2)
$$\int_{0}^{1/a} x^{-\sigma} g(x) dx \le C_2 \int_{0}^{1/a} g(x) K\left(\frac{1}{x}\right) dx.$$

3. Proofs of the theorems

Proof of Theorem 1. To prove part ← consider

$$|g(x)| = \left| \sum_{k=1}^{\infty} a_k \sin kx \right| \le \sum_{k=1}^n a_k kx + \left| \sum_{k=n+1}^{\infty} a_k \sin kx \right|.$$

An application of Abel's transformation to the second sum yields

$$|g(x)| \le x \sum_{k=1}^{n} k a_k + \left| \frac{1}{2 \sin \frac{x}{2}} \sum_{k=n}^{\infty} (a_k - a_{k+1}) \left(\cos \left(n + \frac{1}{2} \right) x - \cos \left(k + \frac{1}{2} \right) x \right) \right| \le x \sum_{k=1}^{n} k a_k + \frac{\pi}{x} \sum_{k=n}^{\infty} |a_k - a_{k+1}|.$$

If we put $\frac{\pi}{n} < x \le \frac{\pi}{n-1}$ then we have

(2)
$$|g(x)| \le \frac{\pi}{n-1} \sum_{k=1}^{n} k a_k + n \sum_{k=n}^{\infty} |a_k - a_{k+1}|.$$

The sequence $\{a_n\}$ being quasi-monotone, it follows by [8, p. 5]

(3)
$$\sum_{k=n}^{\infty} |a_k - a_{k+1}| \le a_n + 2\alpha \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

Therefore we obtain by substituting (3) into (2)

$$|g(x)| \le \frac{\pi}{n-1} \sum_{k=1}^{n} k a_k + n \left(a_n + 2\alpha \sum_{k=n}^{\infty} \frac{a_k}{k} \right), \quad \frac{\pi}{n} < x \le \frac{\pi}{n-1},$$

and introducing the notation $A_n = \sum_{k=1}^n k a_k$, $B_n = \sum_{k=n}^\infty \frac{a_k}{k}$, we have

$$(4) |g(x)| \le C\left(\frac{1}{n}A_n + na_n + nB_n\right), \quad \frac{\pi}{n} < x \le \frac{\pi}{n-1}.$$

Now, this implies that

(5)
$$\int_{0}^{\pi} |g(x)|^{p} K\left(\frac{1}{x}\right) dx = \sum_{n=1}^{\infty} \int_{\pi/n}^{\pi/(n-1)} |g(x)|^{p} K\left(\frac{1}{x}\right) dx \le$$

$$\leq C \sum_{n=1}^{\infty} \left(\frac{1}{n} A_{n} + n a_{n} + n B_{n}\right)^{p} \int_{\pi/n}^{\pi/(n-1)} K\left(\frac{1}{x}\right) dx \le$$

$$\leq C_{1} \sum_{n=1}^{\infty} \left(\frac{1}{n} A_{n} + n a_{n} + n B_{n}\right)^{p} n^{-2} K(n)$$

(where for the last inequality we have used property (ii) of 0-RV functions).

An application of Minkowsky's inequality yields

$$\left[\int_{0}^{\pi} |g(x)|^{p} K\left(\frac{1}{x}\right) dx \right]^{1/p} \leq C_{1} \left[\sum_{n=1}^{\infty} \left(\frac{1}{n} A_{n} + n a_{n} + n B_{n}\right)^{p} n^{-2} K(n) \right]^{1/p} \leq$$

$$\leq C_{1} \left[\sum_{1}^{\infty} \left(\frac{A_{n}}{n}\right)^{p} n^{-2} K(n) \right]^{1/p} + C_{1} \left[\sum_{1}^{\infty} n^{p} a_{n}^{p} n^{-2} K(n) \right]^{1/p} +$$

$$+ C_{1} \left[\sum_{1}^{\infty} n^{p} B_{n}^{p} n^{-2} K(n) \right]^{1/p} = S_{1} + S_{2} + S_{3}.$$

To estimate S_1 put $c_n = na_n$ and $K_1(n) = n^{-2}K(n)$. By hypothesis we have $\overline{\rho}(K) < 1 + p$. Thus it follows that $\overline{\rho}(K_1) = \overline{\rho}(K) - 2 < 1 + p - 2 = p - 1$, so that K_1 satisfies the assumptions of Lemma 1. Applying the second part of this lemma to S_1 we obtain

(7)
$$S_1^p = \sum_{1}^{\infty} n^{-2} K(n) \left(\frac{An}{n}\right)^p = \sum_{1}^{\infty} K_1(n) \left(\frac{An}{n}\right)^p \le C \sum_{1}^{\infty} K_1(n) c_n^p = C \sum_{1}^{\infty} n^{-2} K(n) n^p a_n^p.$$

To estimate S_3 put $c_n=\frac{a_n}{n}$ and $K_2(n)=n^{2p-2}K(n)$. Since $\underline{\rho}(K)>1-p$, it follows that $\underline{\rho}(K_2)=\underline{\rho}(K)+2p-2>1-p+2p-2=p-1$; thus K_2 satisfies the

assumptions of Lemma 2. Applying this lemma to S_3 we obtain

(8)
$$S_3^p = \sum_{1}^{\infty} n^{2p-2} K(n) \left(\frac{B_n}{n}\right)^p = \sum_{1}^{\infty} K_2(n) \left(\frac{B_n}{n}\right)^p \le C \sum_{1}^{\infty} K_2(n) c_n^p = C \sum_{1}^{\infty} n^{2p-2} K(n) \left(\frac{a_n}{n}\right)^p = C \sum_{1}^{\infty} n^{p-2} K(n) a_n^p.$$

Finally, from (6), (7) and (8) it follows that

$$\left[\int\limits_0^\pi |g(x)|^p K\left(\frac{1}{x}\right) dx\right]^{1/p} \le C \left[\sum\limits_1^\infty n^{p-2} K(n) a_n^p\right]^{1/p}.$$

This establishes part \Leftarrow of the theorem.

REMARK. If, like in [7], the sequence $\{a_n\}$ is supposed to satisfy the additional assumption (*), the proof of part \Leftarrow becomes somewhat shorter. Indeed, it is easily seen that in this case $B_n \leq Ca_n$; therefore S_3 in (6) is estimated by S_2 .

The proof of part \Rightarrow is very similar to the corresponding part in Theorem 1 [7] (assumption (*) not being used at all for this part). The only difference is that we replace the class of regularly varying functions by the larger class of 0-regularly varying functions.

First note that $K\left(\frac{1}{x}\right)g^p(x)\in L(0,\pi)$ implies $g\in L(0,\pi)$. Indeed,

(9)
$$\int_{0}^{\pi} |g(x)| dx \leq \left(\int_{0}^{\pi} x^{-\beta p} |g(x)|^{p} dx \right)^{1/p} \left(\int_{0}^{\pi} x^{\beta p'} dx \right)^{1/p'}$$

by Hölder's inequality. Chose β such that $0 < \beta p < \underline{\rho}$ (this is possible, since $\rho > p-1>0$). For such β both integrals in (9) converge (the first by property (iii-2) of 0-RV functions).

Now since the integrability of g implies that a_n are the Fourier coefficients of g, it follows that

$$G(x) = \int_{0}^{x} g(t)dt = \sum_{k=1}^{\infty} \frac{a_k}{k} (1 - \cos kx) = 2 \sum_{k=1}^{\infty} \frac{a_k}{k} \sin^2 \frac{kx}{2}.$$

Therefore

(10)
$$G\left(\frac{\pi}{n}\right) = 2\sum_{k=1}^{\infty} \frac{a_k}{k} \sin^2 \frac{k\pi}{2n} \ge 2\sum_{k=\left[\frac{n}{2}\right]}^{n} \frac{a_k}{k} \sin^2 \frac{k\pi}{2n} \ge 2\sum_{k=\left[\frac{n}{2}\right]}^{n} \frac{a_k}{k} \left(\frac{2}{\pi} \frac{k\pi}{2n}\right)^2 \ge \frac{2}{4n} \sum_{k=\left[\frac{n}{2}\right]}^{n} a_k.$$

Now according to the definitions of quasi-monotone sequences it follows that for $\frac{n}{2} < k \leq n$

$$a_k \ge \frac{a_{k+1}}{1 + \frac{\alpha}{k}} \ge \dots \ge \frac{a_k}{\left(1 + \frac{\alpha}{k}\right)^{n-k}} \ge \frac{a_n}{\left(1 + \frac{\alpha}{k}\right)^k} \ge a_n e^{-\alpha}.$$

Hence (10) implies that

(11)
$$G\left(\frac{\pi}{n}\right) \ge \frac{1}{2n} \sum_{\left[\frac{n}{2}\right]+1}^{n} a_k \ge \frac{1}{2n} a_n e^{-\alpha} n = C a_n.$$

Denoting $\psi(x) = \int_0^x |g(t)| dt$ we have

$$\sum_{1}^{\infty} n^{p-2} K(n) a_n^p \le C \sum_{1}^{\infty} n^{p-2} K(n) G^p \left(\frac{\pi}{n}\right) \le$$
 [by (11)]
$$\le C \sum_{1}^{\infty} n^{p-2} K(n) \psi^p \left(\frac{\pi}{n}\right) \le C_1 \sum_{1}^{\infty} \psi^p \left(\frac{\pi}{n}\right) \int_{\pi/n}^{\pi/(n-1)} \left(\frac{1}{x}\right)^p K \left(\frac{1}{x}\right) dx$$
 [by (ii)]
$$\le C_1 \sum_{1}^{\infty} \int_{\pi/n}^{\pi/(n-1)} \left(\frac{1}{x}\right)^p K \left(\frac{1}{x}\right) \psi^p(x) dx = C_1 \int_{0}^{\pi} K \left(\frac{1}{x}\right) \left(\frac{\psi(x)}{x}\right)^p dx \le$$

$$\le C_2 \int_{0}^{\pi} K \left(\frac{1}{x}\right) |g(x)|^p dx$$

by Corollary 2 (since $\rho(K) > 1 - p$). This completes the proof of Theorem 1.

Note that in the proof of part \Rightarrow only condition $\underline{\rho}(K) > 1-p$ is used; therefore no restiction on the upper index is necessary for this part of the theorem.

PROOF OF THEOREM 2. To prove part \Leftarrow consider

$$|f(x)| = \left| \sum_{k=1}^{\infty} a_k \cos kx \right| \le \sum_{k=1}^{n} a_k + \left| \sum_{k=n+1}^{\infty} a_k \cos kx \right| \le$$

$$\le \sum_{k=1}^{n} a_k + \left| \frac{1}{2 \sin \frac{x}{2}} \sum_{k=n}^{\infty} (a_k - a_{k+1}) \left(\sin \left(n + \frac{1}{2} \right) x - \sin \left(k + \frac{1}{2} \right) x \right) \right| \le$$

$$\le \sum_{k=1}^{n} a_k + \frac{\pi}{x} \sum_{k=n}^{\infty} |a_k - a_{k+1}|.$$

If we set $\frac{\pi}{n} < x \le \frac{\pi}{n-1}$ and apply (3) we obtain

$$|f(x)| \le \sum_{k=1}^{n} a_k + n \left(a_n + 2\alpha \sum_{k=n}^{\infty} \frac{a_k}{k} \right)$$

or, introducing the notation $A_n = \sum_{k=1}^n a_k$, $B_n = \sum_{k=n}^\infty \frac{a_k}{k}$

$$|f(x)| \le C(A_n + na_n + nB_n).$$

Now we have like in the proof of Theorem 1

$$\left[\int_{0}^{\pi} |f(x)|^{p} K\left(\frac{1}{x}\right) dx\right]^{1/p} + C \left[\sum_{1}^{\infty} (A_{n} + na_{n} + nB_{n})^{p} n^{-2} K(n)\right]^{1/p} \leq$$

$$\leq C \left[\sum_{1}^{\infty} A_{n}^{p} n^{-2} K(n)\right]^{1/p} + C \left[\sum_{1}^{\infty} n^{p} a_{n}^{p} n^{-2} K(n)\right]^{1/p} +$$

$$+ C \left[\sum_{1}^{\infty} n^{p} B_{n}^{p} n^{-2} K(n)\right]^{1/p} = \overline{S}_{1} + S_{2} + S_{3}.$$

Since in estimating the sum S_3 in (8) only condition $\underline{\rho}(K) > 1 - p$ was used, it follows that (8) remains in this case also.

On the other hand, since $\overline{\rho}(K) < 1$, if we set $K_3(n) = n^{p-2}K(n)$ it follows that $\overline{\rho}(K_3) = \overline{\rho}(K) + p - 2 < 1 + p - 2 = p - 1$. Therefore Lemma 1.2 may be applied to K_3

(13)
$$\overline{S_1}^p = \sum_{1}^{\infty} n^{p-2} K(n) \left(\frac{A_n}{n}\right)^p = \sum_{1}^{\infty} K_3(n) \left(\frac{A_n}{n}\right)^p \le C \sum_{1}^{\infty} K_3(n) a_n^p = C \sum_{1}^{\infty} n^{p-2} K(n) a_n^p.$$

Finally, from (12), (8) and (13) it follows that

$$\left[\int\limits_0^\pi |f(x)|^p K\left(\frac{1}{x}\right) dx\right]^{1/p} \le C\left[\sum\limits_1^\infty n^{p-2} K(n) a_n^p\right]^{1/p}$$

which establishes part \Leftarrow of the theorem.

To prove the converse, first note that $f^p(x)K\left(\frac{1}{x}\right) \in L(0,\pi)$ implies $f \in L(0,\pi)$ (cf. (9)). Therefore

$$F(x) = \int_{0}^{x} f(t)dt = \sum_{1}^{\infty} \frac{a_k}{k} \sin kx.$$

Denote $\frac{a_k}{k}$ by b_k . It is easily seen that whenever $\{a_n\}$ is quasi-monotone, then so is $\{b_n\}$

$$b_{k+1} = \frac{a_{k+1}}{k+1} \le \frac{a_k}{k+1} \left(1 + \frac{\alpha}{k} \right) \le \frac{a_k}{k} \left(1 + \frac{\alpha}{k} \right) = b_k \left(1 + \frac{\alpha}{k} \right).$$

Thus we can apply part \Rightarrow of Theorem 1 to the function

$$F(x) = \sum_{1}^{\infty} b_k \sin kx$$

and conclude that the for 0-RV functions K_4 such that $\underline{\rho}(K_4) > 1 - p$ the following holds

$$\sum_1^{\infty} n^{p-2} K_4(n) b_n^p \le C \int_0^{\pi} K_4\left(\frac{1}{x}\right) |F(x)|^p dx.$$

Putting $K_4(n)=n^pK(n)$ (for which $\underline{\rho}(K_4)=p+\underline{\rho}(K)>\underline{\rho}(K)>1-p)$ we obtain

(14)
$$\sum_{1}^{\infty} n^{p-2} n^p K(n) b_n^p \leq C \int_{0}^{\pi} K\left(\frac{1}{x}\right) \frac{|F(x)|^p}{x^p} dx.$$

Therefore, since $|F(x)| \leq \int_0^x |f(t)| dt \equiv \psi(x)$, relation (14) yields

$$\sum_{1}^{\infty} n^{p-2} K(n) a_n^p \le C \int_{0}^{\pi} K\left(\frac{1}{x}\right) \frac{\psi^p(x)}{x^p} dx.$$

Finally we can apply Corollary 1 to the last integral to obtain

$$\sum_{1}^{\infty} n^{p-2} K(n) a_n^p \le C_1 \int_{0}^{\pi} K\left(\frac{1}{x}\right) |f(x)|^p dx$$

which completes the proof of the theorem.

4. Proofs of the lemmas

PROOF OF LEMMA 1. Since by hypothesis $\overline{\rho} < p-1$ and $p \ge 1$, it follows that $\overline{\rho} < 0$. Thus it is possible to chose λ such that $\overline{\rho} < \lambda p < 0$.

Now we have by Hölder's inequality

$$F(t) = \int_{a}^{t} f(u)du \le \left(\int_{a}^{t} u^{\lambda p} f^{p}(u)du\right)^{1/p} \left(\int_{a}^{t} u^{-\lambda p'} du\right)^{1/p'} \le$$
$$\le (Ct^{-\lambda p'+1})^{1/p'} \left(\int_{a}^{t} u^{\lambda p} f^{p}(u)du\right)^{1/p}$$

or

$$F^p(t) \le C_1 t^{-\lambda p + \frac{p}{p'}} \int_{0}^{t} u^{\lambda p} f^p(u) du.$$

This implies that

(15)
$$\int_{a}^{\infty} K(t) \frac{F^{p}(t)}{t^{p}} dt \leq C_{1} \int_{a}^{\infty} K(t) t^{-p} t^{-\lambda p + \frac{p}{p'}} \int_{a}^{t} u^{\lambda p} f^{p}(u) du \ dt = C_{1} \int_{a}^{\infty} u^{\lambda p} f^{p}(u) \int_{a}^{\infty} K(t)^{-\lambda p - 1} dt \ du.$$

Now since λ is closen such that $\lambda p > \overline{\rho}$, we can apply property (i-2) of 0-RV functions to the inner integral in (15) and obtain

$$\int\limits_{a}^{\infty}K(t)\frac{F^{p}(t)}{t^{p}}dt\leq C_{2}\int\limits_{a}^{\infty}u^{\lambda p}f^{p}(u)K(u)u^{-\lambda p}du=C_{2}\int\limits_{a}^{\infty}f^{p}(u)K(u)du.$$

This establishes part 1) of the lemma. It is obvious that the proof of part 2) follows along the same lines.

The proof of Lemma 2 is very similar to the proof of Lemma 1 (except that property (i-1) of 0-RV functions has to be used instead of property (i-2)), and we therefore omit it.

Corollaries 1 and 2 follow from Lemma 1 and 2 respectively, by introducing an obvious change of variables in the integrals.

REFERENCES

- S. Aljančić, R. Bojanić, M. Tomić, Sur l'intégrabilité de certaines séries trigonometriques, Publ. Inst. Math. 8 (1955) 67-84.
- [2] S. Aljančić, D. Aranđelović, 0-regularly varying functions, Publ. Inst. Math. 22 (36) (1977)
 5-22.
- [3] S. Aljančić, Some applications of 0-regularly varying functions, to appear.
- [4] R.P. Boas, Integrability theorems for trigonometric transforms, Springer-Verlag Berlin 1967.
- [5] S. Igari, Some integrability theorems of trigonometric series and monotone decreasing functions, Tôhoku Math. J. 12 (1960) 139-146.
- [6] S.M. Shah, Trigonometric series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 13 (1962) 266-273.
- [7] C.-H. Yong, Integrability theorems of power of trigonometric series with quasi-monotone coefficients, Math. Zeitschr. 91 (1966) 280-293.
- [8] C.-H. Yong, Asymptotic behaviour of trigonometric series with modified monotone coefficients, The Chinese University of Hong Kong, 1974.