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ON THE EMBEDDING OF PROPOSITIONAL MODELS

Marica D. Presié

Abstract. We consider the problem of isomorpical embedding for propositional models
(where propositional letters are represented by propositional letters and, more generally, by propo-
sitional formulae) and prove some general theorems which parallel to those due to Los [1] and
Keisler [2]. As a consequence of the proved theorems we obtain necessary and sufficient condions
for embedding each model a of the language P in some model 3 of the set F of propositional
formulae in the language @. In the second part of the paper, in the case P, @ are finite and F is
empty we prove that such embedding can be characterised in some other ways.

1. A Propositional language is any non-empty set of symbols which are called
propositional letters. We suppose that each propositional language is indexed by
some well-odered set. Let P be a propositional language, or simply language. By
model of P we mean each mapping a of the forme a: P — {T,L}. If P, Q are
languages and a: P — {T, T}, 8:Q — {T, L} their models, then § is an extension
of « iff then following conditions are satisfied:

() P C Q.

(ii) Restriction of the mapping 3 to P equals a, i.e. 8 |p= a. If 8 is an extension
of a, then it is easy to see that for each formula F' in P the following equivalence

(1) aEFiff BEF

holds.

Further, let f: P — @ be an 1-1 mapping such that § o f is an extension of a,
where «, # are models of the languages P, @) respectively. Then we say that a is
f-embedded in 3. In other words:

a is f-embedded in B iff Bof=a

def

MWhere o is defined as follows: (8o f)(z) = B(f(z))
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If a if f-embedded in 8 and F(u1,... ,un), u; € P is any formula in P, then the
following equivalence

(2) a = Fluy,... un) iff 8= F(f(u1),...,f(un))

holds, what can easily be proved.

If a, 8 are models of the languages P, @) raspectively, then we say that « is
isomorphically embedable in g iff there exists an 1-1 mapping f: P — @ such that
a is f-embedded in §. For example,

a — po pl .- .. pn .- .. /3 — pO pl ... q2n q2n+1 ...
N T I T 1L - T L
n<w n<w
then « is isomorphically embeddable in 8. One embedding is:
f — (po pl .- .. pn ... )
ql q3 .- .. q2"+1 .- .. n<w

Let now P = {p; | i € I}, Q = {q; | j € J} be languages, o and [ respectively
their models, and let a(p;) = a;(i € I), B(g;) = B;(j € J). It is easy to see that
the following lemma holds.

LEMMA 1. [ is an extension of a iff B is a model of the set P*, where

P e lien)
2

The set P% is the diagram of a and it parallels to the notion of diagram in the
predicate logic.

Let futher o be a model of P and let F be a set propositional formulae in
the language @@, P C (). Similar to the predicate case the following problem often
arises: Decide wheather it is possible to extend « to some model 3 of the set F.
The sufficient and necessary conditions for this gives the following theorem.

THEOREM 1. The model o can be extended to some model B of the set F iff
a is a model for each consequence A of F which is of the form

(3) u* Vug? V- Vgt

where a; € {T, L}, u; € P, such that i # j = u; # u;, i.e. iff for each formula of
the form (3) the following condition

(4) FrA—salEA

24T, ul designate the formulae u, —u respectively.
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holds.

PROOF. Only if: Suppose that 8 is an extension of a which is a model of F.

Further, let A be any formula in P such that F + A, then 8 = A. Using (1) we
immediately conclude « = A.
If: Suppose that (4) holds for each formula A of the form (3) and that « cannot be
extended to a model of F. That means that the set F U P® has no model. Using
the compactness theorem we conclude that the set F U K, where K is some finite
subset of P, has no model. Let

i (67
K:{pzl,... ,pikk}
Then the set
(e 71 g
Fu{p,* V---Vpik’“}

has no model. Therefore
F ﬁ(pZiZ \/...Vp?:'k}

i.e.
fl—p;ail Vv ...Vp;aik}

k
The formula
p;a’l VI Vp;ca”“

is obviously of the form (3), but it is not true on «, what contradicts (4).

We now generalise the notion of isomorphic embedding in the following way.
Let P, @ be languages and For(Q) the set of all propositional formulae in Q.
Further, let a, 8 be models of P, ) respectively and let f be an 1-1 mapping from
P to For(Q)3. We say that a is f-embedded in 3 iff Bo f = a. If a is f-embedded
in f and P = @Q, than  is an f-extension of a. In the case f is identity mapping,
the notion of f-extension reduces to the notion of extension defined in the first part
of the paper.

We give an example. Let P = {p1,p2,ps,ps1}, @ = {q1,¢2,¢3} and let

a= (Pt P2 P3 Pa 8= @1 Q2 g3
L T T 1) T 1L 7T
If f is the following mapping

f= h b2 b3 Py
g1 ¢1VG@ @B=>¢ ¢V q

then a is f-embedded in 8, for

B-q) =1L, B@aVe)=T, Bla=>qa)=T, BleV-qa)=1

3This implies that P < For(Q).

~
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therefrom it follows immediately 8o f = a.

Let a, 8 be models of P, @) respectively. We say that « is ismorphically
embeddable in B (in the generalised sense) iff there exists an 1-1 maping f: P —
For (@) which is an f-embedding, i.e. such that the equality 8o f = « holds.

If a is f-embedded in 3, where a, 8 are models of P, @) respectively, then the
equivalence (2) remains true for each formula F'(uq,... ,u,) in P.

The following lemma parallels to lemma 1.

LEMMA 2. LetP ={p;|i€ I}, Q={q;|j € J} belanguages, a and B their
models, where a(p;) = o;(i € I) B(q;) = B; (j € J). Further, let f: P — For(Q)
be an 1-1 mapping, where f(p;) = P;(i € I). Then « is f-embedded in B iff B is a
model of the set f(P)%, where

[Py = (P

iel}
We prove the following theorem which is a generalisation of theorem 1.

THEOREM 2. Let P={p;|i €I}, Q ={q; |j € J} be languages, a a model
of P, where a(p;) = a;, and let F be a set of forumlae in Q. o can be f-embedded
in some model B3 of the set F, where f is an 1-1 mapping from P to For(Q), iff
for each formula A in Q) which is of the form

(5) UprvUu?v---vU  (Uie f(p), Ui#Ujif i #j)
the following condition

(6) FRA=salE f1(4)

holds, where f~1(A) is the formula

(7) FHO) VO VeV T UR)

PROOF. Only if: Suppose that a is f-embedded in B, where 3 is a

model of F. Futher, let A be a formula in @ which is built up from the
formulae in f(P), i.e. A is of the form A(Ui,...,Us), where U; € f(P). If
FEAU,...,U), then g = A(Us, ... ,Uy) therefrom, using (2), we immediately
conclude a |= A(f~1(U1),..., f~H(Uk)).
If: Suppose now that (6) holds for each formula A of the form (5) and that o cannot
be f-embedded in a model of F, where f: P — For(Q) is a given 1-1 mapping,.
This means that the set FU f(P)* has no model. Then there exists a finite subset
K C f(P)“ such that F UK has no model. Let

K= {f(pil)ail PR 7f(pik)aik}
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Similar to the proof of theorem 1 we deduce

FEfpin)™ % V-V fpi) 7%
The formula
f(ph)_‘ail V-V f(pik)ﬂaik
is obviously of the form (5) but its unverse image

p;ah V- \/pf'aik

1k
is not true on «, what contradicts (6).

Using the preceding theorem it is easy to obtain the following result.

THEOREM 3. Fach model a can be f-embedded in some model 8 of the set
of formulae F iff there is no formula A of the form (5) which is a consequence of

F.

PrOOF. From the proceding theorem it follows that each model a can be f-
embedded in some model 3 of F iff for each formula A of the form (5) the following
condition

(Vo) (FF A= al f1(A4), ie, FF Ao f1A)

holds. But the formula f~!(A) is of the form
uf V.- Vug (u; € P, w; #uy if @ #j)

and it cannot be a tautology. Thus, F F A is not posible if A is of the form (5).
2. Let now P ={p1,...,pn}, @ ={q1,--. ,qm} be finite languages, F = @ and let

f be the 1-1 maping
f — pl p2 .- .. pn
A Ay -+ A,

where A; € For(Q). Obviously, each model a of P can be f-embedded in some
model 8 of @ iff the sequence

(9) (A17A27"' JATL)
can take each value (a1, a9,... ,ap) € {T, L} ie. iff
(10) (Vai,...,an € {T,L1)3B:Q = {T,1)BA1 = au,...,B4A, = ayn

It is easy to see that (10) implies the condition n < m. Further if (10) holds for the
sequence (9) with n = m, then it also holds for each subsequence of (9). Therefore
it suffices to consider the case m = n. Thus, let P = {p1,... ,pn}, @+ {aq1,--- ,qn}
and let f be 1-1 mapping from P to For(Q) determined by (8). Each model a of
P can be f-embedded in some model of @ iff the condition (10) holds. Obviously,
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there are just 27! n-tuples® (9) satisfying (10). Namely, the sequence (9) has
n members and as it must take each value, each permutation of the set {T,L}"
determines one sequence (9) satisfying the condition (10). For example, if n = 2,
the number of such sequences is 22!, i.e. 24. It is easy to see that all possible sets
{A1, A} are the following:

{a, 2}, {ar, 72}, {~a,a}, {~a,~e}, {6n,a € e}, {60, ~(@a € e)}

{7q1,01 © @2}, {~a,~ (@1 © @)}, {0 € e}, {@ (e el
{~@, a1 & @} {~g, (& ¢)}

(11)

Therefrom we immediately obtain all 24 ordered pairs (A, As).

Generally, for a given permutation
(12) (Oql, a12,- .. ,aln), ((121, a2, ... agn), ey (agnl, - 7(12"”)

of the set {T, L}" any formula A; in (9) is determined by®

A1 A A
\% ax,...\ g5 - -qom
O Anye{T, Ly A A @27

where the sequence (ax,...x,)(Ar,...,An)<(T....,T) €quals to (a;;);j<2n. In what follows
we are going to give some other sufficient and necessary conditions for f-embedding
each model a: P — {T, L} in some model 3: Q — {T, L}. First of all we give some
definitions.

Let A, B be propositional formulae in some given language and F;, F» be
sets of formulae. Then we defined

(D1) AequB iff =A< B

FrequF iff (VF, € F1)(3F, € Fo)FiequFs

(D2)
(VFQ S .7:2)(3F1 S .7:1)F2€q’u,F1

4That means, 2"! n-tuples which are not equivalent to each other, i.e. which do not have
equivalent corresponding cordinates.
5Throughout the paper instead of
(- (AT AASZ)A - A ADR),

where A1, ..., A, are formulae and a1,... ,a, € {T, L}, we write

a1 pa2 a
A1A%2 |, A%n
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We note that equ is an equivalence relation for formulae, i.e. for sets of formulae.
Further, if elements of F;, J» respectively are nonequivalent formulae, then the

condition FiequF, implies F; = F,. We now prove the folowing theorem.

THEOREM 4. Let Ay,...,A, be formulae in Q@ = {q1,-..,q,}. Then the
condition (10) is equivalent to

{APAG AR | (0 an) €T, L} Yequ{ar a5 -~ |

(14)
| (617--- 7ﬂn) € {T,J_}"}

ProOOF. The implication (14) — (10) follows immediately. To prove (10) —
(14) we first note that (10) is equivalent to

(15) (Val, s, 0 € {T,J_})(ElﬂQ — {T,J_}ﬂAl = Q1,.-- 7/6An = Oy

what can easily be proved. Suppose now (10) i.e. (15) and let (aq,... ,a,) be an
element of {T, L}". By disjunctive normal form we have

16 A9 A%2 .. A% ooy V. B1 B2 . Bn
(16) 1A nequ Ve

where I C{T, L}" If T > 2, then there would be at least two values
(Brs--sBn)y (Brs.-.,Bn) €1
such that for the corresponding models 3, 3, say the following eqalities
BATIAT - AP ) =T, BAPAS - AZ") =T
hold what contradicts (15). So I= 1, i.e. for some (B1,...,0n) € {T,L}"
APAS - A equel g g
Thus, we have just proved

(Vai,...,an, € {T,L})(3b,-..,

(17)
B (T, LYATAS2 - AN equatay” - 4"

It remains to prove

(VB2,...Bn € {T,L})(Ba,-..,

18
(%) an €{T, L})AF AS? - A% equgl*qy® -+ - ¢Bn.
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Let (B1,-..,0n) be an element of {T, L}" and 8 be the following model

Q142" 4n
19 =
(19) o= (%)
Defining a;, ... ,a, as BA;1,...,BA, respectively we immediately conclude

= qllqu ---qg" = ATTAS? - AS e

(20) A 8A
Iqulqéh---qg":hélf 1A§ 2...AQA"

Using (15) it is easy to see that conversly

= AJTAS? - A = ql’alqzﬁ2 ---qg",i.e.

(21) A 8A
|:14/13 lAg 2...Ag‘4" :>q1ﬁlq2'62...q£"

From (20) and (21) we obtain
(22) Eday g o AT AR AT

where  is defined by (19), wherefrom (18) follows immediately. The proof of the
theorem is complete.

We now give another characterisation of the sequence (9) so that each model
a:P — {T,1} can be f-embedded in some model 5:Q — {T, L}.

THEOREM 5. FEach formula F in Q = {qi, ... ,q2} can be expressed in terms
of Ay,..., A, in the unique way, i.e. there exitst the unique 2™-tuple

(f17f27"' 7f2") € {T7J-}2"
such that the equivalence
(23)  FequfiA[AJ - ALV AT AT - ALV -V fon AR AT - AL

holds iff the equivalence (14) holds.

ProoF. If (14) holds, then using the fact that each formula F(g,... ,qn) is
equivalent to some formula of the form

a1q) g5 -Gy Va2q) 3 < gy VoV agngi gy gy
the eqgivalence (23) follows immediately, where (f1, fa,... , fan) is a permutation of
(al,ag, . ,a2n).

Suppose now that each formula F(g1,... ,qn) can be expressed, in the unige
way, in terms of Aq,..., A,. By uniqueness it follows that no formula of the form

a1 Qn
A9r... A
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is a contradiction. Thus for each a1,...,a, € {T, L} there exists 8:Q — {T,L}"
such that
B(AT - Aom) =T, ie. A =ai,...,04, =an.

Therefrom we conclude that (10) holds and thus (14) holds what follows by theorem
4.

Using the preceding two theorems we immediately obtain the following con-
sequence.

Consequence. Let P = {py,... ,pn}, Q@ ={q1,-..,qn} be languages and

f= pbip2---Pn

AAy--- A,
an 1-1 mapping from P to For (Q). Then each model « of P can be f-embedded in
some model g of @ iff the sequence (A, ..., A,) satisfies the following condition:

Each formula F in @Q can be expressed in the unique way in terms of
A1,... Ay, i.e. there ezists a unique 2"-tuple (f1, fa,... , fan), such that the equiv-
alence (23) holds.

Problem. In the paper we give some caracterisations for f-embedding each
model a of P in some model g of @), when P, () are finite languages. The problem
is how to caracterise the same thing in the case P, () are infinite.

Acknowledgement. In the first version of the paper the proofs of the theo-
rems 4 and 5 were more comlicate. It was Z. Mijajlovi¢ who sugested me to shorten
them in the previous way.
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