INTEGRABILITY THEOREMS FOR TRIGONOMETRIC SERIES WITH POSITIVE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Let g be an odd function and let f be an even function defined on $(0, \pi)$, periodic with period 2π , and let their Fourier series be

$$g(x) = \sum_{1}^{\infty} b_n \sin nx$$
 $f(x) = \frac{1}{2}a_0 + \sum_{1}^{\infty} a_n \cos nx$

with $a_n \geq 0$, $b_n \geq 0$. In his book [3] Boas proved the following two theorems concerning integrability of g (similar statements hold for f).

Theorem A. Let $0 < \gamma < 1$. Then

$$\int_{-\infty}^{\pi} x^{-\gamma} g(x) dx < \infty \Leftrightarrow \sum_{1}^{\infty} n^{\gamma - 1} b_n < \infty$$

 $\Big(\ \textit{where} \ \smallint_{\to 0}^\pi = \lim_{\varepsilon \to 0} \smallint_\varepsilon^\pi \ \textit{is the integral in Cauchy's sense}\ \Big).$

Theorem B. Let $1 < \gamma < 2$. Then

$$x^{-\gamma}g(x) \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} n^{\gamma-1}b_n < \infty.$$

Izumi and Izumi [4] have proved a generalization of Theorem A in which the function $x^{-\gamma}$ is replaced by a monotone decreasing function $\xi(x)$, and Hasegawa [5] has proved a generalization of Theorem B in which $x^{-\gamma}$ is replaced by a function $\alpha(x)$ having the following properties: $x\alpha(x)$ is decreasing and $t^{-1}\int_{t}^{\eta}\alpha(x)dx \leq C\alpha(t)$, for some η , $0<\eta\leq\pi$ and all t, $0< t\leq\eta$.

statement.

In the present paper we prove another generalization of Theorem B (Theorem 1). We remark that no monotony condition iz required for the multiplier function K. This is a consequence of the following observations: different properties of the function $x^{-\gamma}$ are essential for Theorems A and B. While the monotony of $x^{-\gamma}$ plays a central role in the proof of Theorem A, in Theorem B no use is made of monotony, but only of the regular variation of $x^{-\gamma}$. Indeed, the main step in the proof of both theorems is the estimation of the integral $\int\limits_0^\pi x^{-\gamma} \sin nx dx = n^{\gamma-1} \int\limits_0^{n\pi} x^{-\gamma} \sin x dx$. For $1 < \gamma < 2$ this integral is absolutely convergent, and this is a consequence of the regular variation properties of $x^{-\gamma}$ only (cf. [1]). On the other hand, for $0 < \gamma < 1$, the integral converges nonabsolutely and the monotony of $x^{-\gamma}$ is essential for this

For the definition and properties of 0-regularly varying (0 - RV) functions (in the sense of Karamata) we refer to [2]. The symbol $\mathcal{K}(\underline{\varrho}, \overline{\varrho})$ denotes the class of all 0 - RV functions with lower index $\underline{\varrho}$ and upper index $\overline{\varrho}$. The symbol \approx iz defined by: $f(x) \approx g(x)$ on $[a, \infty)$ if there are two positive constants C_1, C_2 such that $0 < C_1 g(x) \le f(x) \le C_2 g(x) < \infty$. By the letter C, possibly with subscripts, we denote a positive constant, not necessarily the same at each appearence.

Theorem 1. Let $b_n \geq 0$ and let g be defined by $g(x) = \sum_{1}^{\infty} b_n \sin nx$. Let K be a positive function defined on $(1/\pi, \infty)$ such that $xK\left(\frac{1}{x}\right) \in L(0,\pi)$ and

(1)
$$\int_{1/\pi}^{u} t^{-2}K(t)dt \approx u^{-1}K(u), \quad \text{for } u > \frac{1}{u}.$$

Then

(a)
$$\sum_{1}^{\infty} n b_n \int_{0}^{1/n} x K\left(\frac{1}{x}\right) dx < \infty \Rightarrow g(x) K\left(\frac{1}{x}\right) \in L(0, \pi)$$

and conversely

(b)
$$g(x)K\left(\frac{1}{x}\right) \in L(0,\pi) \Rightarrow \sum_{1}^{\infty} b_n \frac{K(n)}{n} < \infty.$$

Theorem 2. Let $a_n \geq 0$ and let f be defined by $f(x) = \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos nx$.

Let K be a positive function defined on $(1/\pi, \infty)$ such that $x^2K\left(\frac{1}{x}\right) \in L(0, \pi)$ and condition (1) is satisfied. Then

(a)
$$\sum_{1}^{\infty}n^{2}a_{n}\int\limits_{0}^{1/n}x^{2}K\bigg(\frac{1}{x}\bigg)dx<\infty\ \Rightarrow\ (f(0)-f(x))K\bigg(\frac{1}{x}\bigg)\in L(0,\pi)$$

and conversely

(b)
$$(f(0) - f(x))K\left(\frac{1}{x}\right) \in L(0,\pi) \Rightarrow \sum_{1}^{\infty} a_n \frac{K(n)}{n} < \infty.$$

COROLLARY 1. Let $b_n \geq 0$ and let $g(x) = \sum_{1}^{\infty} b_n \sin nx$. Let $K \in \mathcal{K}(1 < \underline{\varrho}, \overline{\varrho} < 2)$. Then

$$g(x)K\left(\frac{1}{x}\right) \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} b_n \frac{K(n)}{n} < \infty.$$

Corrolary 2. Let $a_n \geq 0$ and let $f(x) = \frac{1}{2}a_0 + \sum_{1}^{\infty} a_n \cos nx$. Let $K \in \mathcal{K}(1 \leq \underline{\varrho}, \ \overline{\varrho} < 3)$. Then

$$(f(0) - f(x))K\left(\frac{1}{x}\right) \in L(0,\pi) \Leftrightarrow \sum_{1}^{\infty} a_n \frac{K(n)}{n} < \infty.$$

2. Some properties of 0-RV functions

Let us remark that condition (1) is a characteristic property for 0-regularly varying functions ([2]), i.e. a function K satisfying (1) is an 0-RV function with lower index $\underline{\varrho} > 1 : K \in \mathcal{K}(1 < \underline{\varrho}, \overline{\varrho})$. In the following lemma we list some properties of 0-RV functions which follow from (1).

Lemma. Let K be a positive function defined on $(1/\pi, \infty)$ such that (1) holds. Then

1° $u^{-1}K(u)$ is almost increasing $(u^{-1}K(u)\nearrow\nearrow)$, i.e. there is a constant $C\geq 0$ such that $u^{-1}K(u)\leq Cv^{-1}$, for $1/\pi< u< v$.

2° There is a $\tau < 1$ such that $u^{-\tau}K(u)$ is almost decreasing $(u^{-\tau}K(u) \searrow)$, i.e. there is a constant $C \geq 0$ such that $u^{-\tau}K(u) \geq Cv^{-\tau}K(v)$, for $1/\pi < u < v$.

3° If
$$K\left(\frac{1}{x}\right)g(x) \in L(0,\pi)$$
, then $x^{-1}g(x) \in L(0,\pi)$.

$$4^{\circ}$$
 Let $F(x) = \int\limits_{0}^{x} |f(t)| dt$. Then

$$\int_{0}^{1} K\left(\frac{1}{x}\right) F(x) dx \le C \int_{0}^{1} K\left(\frac{1}{x}\right) x |f(x)| dx$$

for some positive constant C.

5° If $c_n \downarrow 0$, then the series $\sum_{1}^{\infty} c_n \frac{K(n)}{n}$ and $\sum_{1}^{\infty} (c_n - c_{n+1}) \frac{K(n)}{n}$ are equiconvergent.

Proof.

 1° and 2° cf. [2].

3° It is easily seen that

$$\begin{split} & \int\limits_{0}^{\pi} x^{-1} |g(x)| \, dx = \int\limits_{0}^{\pi} |g(x)| K\bigg(\frac{1}{x}\bigg) \bigg(x K\bigg(\frac{1}{x}\bigg)\bigg)^{-1} \, dx \\ & \leq \sup_{0 < x < \pi} \bigg(x K\bigg(\frac{1}{x}\bigg)\bigg)^{-1} \int\limits_{0}^{\pi} |g(x)| K\bigg(\frac{1}{x}\bigg) \, dx = C \sup_{1/\pi < 1 < \infty} (t^{-1} K(t))^{-1} \\ & = C(\inf_{1\pi < t < \infty} (t^{-1} K(t))^{-1} = C_1 \bigg(\pi K\bigg(\frac{1}{\pi}\bigg)\bigg)^{-1}, \end{split}$$

since $t^{-1}K(t)$ is almost increasing, by 1°.

4° We by changing the order of integration and by making use of (1)

$$\begin{split} & \int\limits_0^1 K\bigg(\frac{1}{x}\bigg) F(x) dx = \int\limits_0^1 K\bigg(\frac{1}{x}\bigg) \int\limits_0^x |f(t)| dt \, dx = \int\limits_0^1 |f(t)| \int\limits_t^1 K\bigg(\frac{1}{x}\bigg) \, dx \, dt = \\ & = \int\limits_0^1 |f(t)| \int\limits_1^{1/t} K(u) u^{-2} du dt \leq C \int\limits_0^1 |f(t)| \bigg(\frac{1}{t}\bigg)^{-1} K\bigg(\frac{1}{t}\bigg) dt = C \int\limits_0^1 |f(t)| t K\bigg(\frac{1}{t}\bigg) dt. \end{split}$$

 5° this is Lemma 2 of [1].

3. Proof of the Theorems

We prove Theorem 1 only, the proof of Theorem 2 being very similar.

a) First, by the definition of g, we have

$$\int_{0}^{\pi} K\left(\frac{1}{x}\right) |g(x)| dx = \int_{0}^{\pi} K\left(\frac{1}{x}\right) \left| \sum_{1}^{\infty} b_{n} \sin nx \right| dx \le \int_{0}^{\pi} K\left(\frac{1}{x}\right) \sum_{1}^{\infty} |b_{n}| \sin nx |dx$$

$$= \sum_{1}^{\infty} b_{n} \int_{0}^{\pi} K\left(\frac{1}{x}\right) |\sin nx| dx.$$

Next we prove that

(3)
$$\int_{0}^{\pi} K\left(\frac{1}{x}\right) |\sin nx| \, dx \le Cn \int_{0}^{1/n} xK\left(\frac{1}{x}\right) dx.$$

Really,

$$\int_{0}^{\pi} K\left(\frac{1}{x}\right) |\sin nx| \, dx = \int_{0}^{1/n} + \int_{1/n}^{\pi} = I_{1} + I_{2}.$$

Now for the first integral we have obviously

(4)
$$I_1 = \int_0^{1/n} K\left(\frac{1}{x}\right) |\sin nx| \, dx \le n \int_0^{1/n} xK\left(\frac{1}{x}\right) dx$$

and for the second

(5)
$$I_2 = \int_{1/n}^{\pi} K\left(\frac{1}{x}\right) |\sin nx| \, dx \le \int_{1/n}^{\pi} K\left(\frac{1}{x}\right) dx = \int_{1/\pi}^{n} K(t) t^{-2} \, dt \le C n^{-1} K(n),$$

since K satisfies (1).

Now, by Lemma 1°, the function $u^{-1}K(u)$ is almost increasing, thus

(6)
$$n \int_{0}^{1/n} xK\left(\frac{1}{x}\right) dx = n \int_{n}^{\infty} t^{-1}K(t)t^{-2} dt \ge Cn \cdot n^{-1}K(n) \int_{n}^{\infty} t^{-2} dt = CK(n) \cdot n^{-1}.$$

From (5) and (6) it follows that

$$I_2 \le Cn \int_{0}^{1/n} xK\left(\frac{1}{x}\right) dx$$

which, together with (4), proves (3).

Finally, by substituting (3) into (2), we obtain

$$\int_{0}^{\pi} K\left(\frac{1}{x}\right) |g(x)| dx \le C \sum_{0}^{\infty} |b_{n}| n \int_{0}^{1/n} x K\left(\frac{1}{x}\right) dx$$

which proves part a) of the Theorem.

b) Assume that $g(x)K\left(\frac{1}{x}\right) \in L(0,\pi)$. By Lemma 3° it follows that $x^{-1}g(x) \in L(0,\pi)$; hence by Theorem 4.1. [3] the seies $\sum_{i=1}^{\infty} b_i$ is convergent.

Denote $B_k = \sum_{j=0}^{\infty} b_{2j+k+1}$. Then B_k decreases to zero and we obtain by partial summation (cf. Lemma 2.2. [3])

$$g(x) = \sum_{1}^{\infty} b_n \sin nx = B_0 \sin x + 2 \sum_{1}^{\infty} B_n \cos nx \sin x$$

or

$$h(x) = \frac{g(x)}{\sin x} = B_0 + 2\sum_{1}^{\infty} B_0 \cos nx.$$

Denote $\varphi(x) = h(x) - B_0 = 2 \sum_{n=1}^{\infty} B_n \cos nx$. It is easily seen that

(7)
$$\varphi(x)xK\left(\frac{1}{x}\right) \in L(0,\pi).$$

Indeed,

$$\int_{0}^{\pi} |\varphi(x)xK\left(\frac{1}{x}\right)dx \le \int_{0}^{\pi} |h(x)xK\left(\frac{1}{x}\right)dx + B_{0} \int_{0}^{\pi} xK\left(\frac{1}{x}\right) =$$

$$= \int_{0}^{\pi} |g(x)| \frac{x}{\sin x} K\left(\frac{1}{x}\right)dx + B_{0} \int_{0}^{\pi} xK\left(\frac{1}{x}\right)dx$$

and both integrals converge by the assumptions of the theorem. Since φ is integrable and B_n monotone, it follows that B_n are the Fourier coefficients of φ and we can put

$$\Phi(x) = \int_{0}^{x} \varphi(t)dt = 2\sum_{1}^{\infty} \frac{B_{k}}{k} \sin kx$$

$$F(x) = \int_{0}^{x} \Phi(t) dt = 2\sum_{1}^{\infty} \frac{B_{k}}{k^{2}} (1 - \cos kx) = 4\sum_{1}^{\infty} \frac{B_{k}}{k^{2}} \sin^{2} \frac{kx}{2}.$$

Next we prove that

(8)
$$F\left(\frac{1}{n+1}\right) \ge C\frac{B_n}{n}$$

Indeed.

$$F\left(\frac{1}{n+1}\right) = 4\sum_{k=1}^{\infty} \frac{B_k}{k^2} \sin^2 \frac{k}{2(n+1)} \ge 4\sum_{k=1}^{\infty} \frac{B_k}{k^2} \sin^2 \frac{k}{2(h+1)}$$
$$4\left(\frac{2}{\pi}\right)^2 \sum_{k=1}^n \left(\frac{k}{2(n+1)}\right)^2 = \frac{4}{\pi^2} \frac{1}{(n+1)^2} \sum_{k=1}^n B_k \ge \frac{4}{\pi^2} \frac{1}{n} B_n \cdot n = \frac{4}{\pi^2} \frac{B_n}{n}$$

where we have used that $\sin\frac{k}{2(n+1)} \ge \frac{2}{\pi} \frac{k}{2(n+1)}$, for $\frac{k}{2(n+1)} < \frac{1}{2}$ and that B_n is a monotone decreasing sequence.

Next, put $\Phi^+(x)\int\limits_0^x|\varphi(t)|\,dt$ and $F^+(x)=\int\limits_0^x|\Phi(t)|\,dt$. The functions Φ^+ and F^+ are positive and increasing and

(9)
$$|F(x)| \le F^+(x) \le \int_0^x \Phi^+(t) \, dt \le x \Phi^+(x).$$

Therefore, by (8) and (9) it follows that

(10)
$$\frac{B_n}{n} \le C \frac{1}{n+1} \Phi^+ \left(\frac{1}{n+1}\right).$$

Now we are ready to prove

(11)
$$\sum_{1}^{\infty} \frac{B_n K(n)}{n^2} \le \int_{0}^{1} |\varphi(x)| x K\left(\frac{1}{x}\right), dx$$

The proof runs as follows

$$\sum_{1}^{\infty} \frac{B_n}{n} \frac{K(n)}{n} \le C \sum_{1}^{\infty} \frac{1}{n+1} \Phi^+ \left(\frac{1}{n+1}\right) \frac{K(n)}{n} \quad \text{[by (10)]}$$

$$\le C \sum_{1}^{\infty} \frac{1}{n+1} \Phi^+ \left(\frac{1}{n+1}\right) \int_{n}^{n+1} \frac{K(t)}{t} dt \quad \text{[since } u^{-1}K(u) \nearrow \nearrow]$$

$$= C \sum_{1}^{\infty} \frac{1}{n+1} \Phi^+ \left(\frac{1}{n+1}\right) \int_{1/(n+1)}^{1/n} xK\left(\frac{1}{x}\right) x^{-2} dx$$

$$\le C \sum_{1}^{\infty} \int_{1/(n+1)}^{1/n} x\Phi^+(x)K\left(\frac{1}{x}\right) x^{-1} dx \quad \text{[since } x\Phi^+(x) \uparrow]$$

$$= C \int_{0}^{1} K\left(\frac{1}{x}\right) \Phi^+(x) dx$$

Applying Lemma 4° to the last integral we obtain (11). Thus, by (7) if follows that the series $\sum_{1}^{\infty} B_n \frac{K(n)}{n^2}$ is convergent. To complete the proof of the theorem we have to prove that this implies that the series $\sum_{1}^{\infty} b_n \frac{K(n)}{n}$ is convergent. First, by Lemma 5° it follows that

(12)
$$\sum_{1}^{\infty} (B_n - B_{n+1}) \frac{K(n)}{n} < \infty$$

and since $u^{-1}K(u)$ is almost increasing

(13)
$$\sum_{1}^{\infty} (B_{n+1} - B_{n+2}) \frac{K(n)}{n} \le C \sum_{1}^{\infty} (B_{n+1} - B_{n+2}) \frac{K(n+1)}{n+1}$$
$$= C \sum_{1}^{\infty} (B_n - B_{n+1}) \frac{K(n)}{n}.$$

Thus from (12) and (13) the following series

(14)
$$\sum_{1}^{\infty} (B_n - B_{n+2}) \frac{K(n)}{n} = \sum_{1}^{\infty} b_{n+1} \frac{K(n)}{n}$$

is also convergent. Now, since by Lemma 2° there is a $\tau > 1$ such that $u^{-\tau}K(u)$ is almost decreasing, we have

$$\frac{K(n+1)}{n+1} = (n+1)^{-\tau} K(n+1)(n+1)^{\tau-1} \le Cn^{-\tau} K(n) C_1 n^{\tau-1} = C_2 n^{-1} K(n).$$

Whence

$$\sum_{1}^{\infty} b_{n+1} \frac{K(n+1)}{n+1} \le C_2 \sum_{1}^{\infty} b_{n+1} \frac{K(n)}{n}$$

and the last series is convergent, by (14). Thus we have proved that $\sum_{n=1}^{\infty} b_n \frac{K(n)}{n}$ is convergent, which completes the proof of the theorem.

Proof of Corollary 1.

Let $K \in \mathcal{K}(1 < \underline{\varrho}, \overline{\varrho} < 2)$. The assumption $\underline{\varrho} > 1$ implies condition (1) of Theorem 1. On the other hand, from the assumption $\overline{\varrho} < 2$ it follows that

$$\int_{u}^{\infty} t^{-3} K(t) dt \approx u^{-2} K(u).$$

Thus

$$n\int_{0}^{1/n} xK\left(\frac{1}{x}\right)dx = n\int_{0}^{\infty} t^{-1}K(t)t^{-2} dt \approx n n^{-2}K(n) = n^{-1}K(n)$$

which means that the series

$$\sum_{1}^{\infty} n b_n \int_{0}^{1/n} x K\left(\frac{1}{x}\right) dx \quad \text{and} \quad \sum_{1}^{\infty} b_n \frac{K(n)}{n}$$

are equiconvergent. Now Corollary 1 follows from Theorem 1.

REFERENCES

- S. Aljančić, Some applications of O-regularly varying functions, Proc. Internat. Conference "Approximation and Function Spaces", Gdansk, 1979, North-Holann & PWN-Polish Scientific Publishers, 1981. pp. 1-15.
- [2] S. Aljančić and D. Aranđelović, O-regularly varying functions, Publ. Inst. Math. 22 (36), 1977, 5-22.
- [3] R. P. Boas, Integrability theorems for trigonometric transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 38, Berlin, Heidelberg, New York 1967.

- [4] M. Izumi and S. Izumi, Integrability theorem or Fourier series and Parseval equation, J. Math. Anal. Appl. 18, 1967, 252–261.
- [5] Y. Hasegawa, Integrability theorems for Fourier series and Parseval's formulae, J. Math. Anal. Appl. 33, 1971, 544-561.

Matematički Institut Knez Mihailova 35 Beograd