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INTEGRABILITY THEOREMS FOR TRIGONOMETRIC SERIES
WITH POSITIVE COEFFICIENTS

Tatjana Ostrogorski

1. Introduction and results

Let g be an odd function and let f be an even function defined on (0, ),
periodic with period 27, and let their Fourier series be

oo o0
1
g(z) = E by sin nz flz) = 240 + E Gy, COS NI
1 1

with a, > 0, b, > 0. In his book [3] Boas proved the following two theorems
concerning integrability of g (similar statements hold for f).

THEOREM A. Let 0 < v < 1. Then

™

/af”g(m)daz <o & Zn”’*lbn < oo

1

-0
™ ™

( where [ =lim [ is the integral in Cauchy’s sense )
) e—0

THEOREM B. Let 1 < v < 2. Then

x 7g(z) € L(0,7) & Zn”‘lbn < 0.
1

Izumi and Izumi [4] have proved a generalization of Theorem A in which the
function z~7 is replaced by a monotone decreasing function £(x), and Hasegawa
[5] has proved a generalization of Theorem B in which 2~7 is replaced by a func-

n
tion a(z) having the following properties: za(z) is decreasing and t=* [ a(z)dz <
t

Caf(t), for somen, 0 <np<mandallt, 0<t<n.



132 Tatjana Ostrogorski

In the present paper we prove another generalization of Theorem B (Theorem
1). We remark that no monotony condition iz required for the multiplier function
K. This is a consequence of the following observations: different properties of the
function =7 are essential for Theorems A and B. While the monotony of =7 plays
a central role in the proof of Theorem A, in Theorem B no use is made of monotony,
but only of the regular variation of z77. Indeed the main step in the proof of both

theorems is the estimation of the integral f T 7sin nzdr = n7 ! f 7 sin zdz.

For 1 < v < 2 this integral is absolutely conx(/)ergent, and thisis a consoequence of the
regular variation properties of 7 only (cf. [1]). On the other hand, for 0 < v < 1,
the integral converges nonabsolutely and the monotony of =7 is essential for this
statement.

For the definition and properties of 0-regularly varying (0 — RV) functions
(in the sense of Karamata) we refer to [2]. The symbol K(g,2) denotes the class
of all 0 — RV functions with lower index ¢ and upper index 9. The symbol <
defined by: f(z) =< g(z) on [a,o0) if there are two positive constants Cy, Co such
that 0 < Cig(z) < f(z) < Cag(x) < oo. By the letter C, possibly with subscripts,
we denote a positive constant, not necessarily the same at each appearence.

o0
THEOREM 1. Let b, > 0 and let g be defined by g(x) = > by sin nz. Let K
1

be a positive function defined on (1/m,00) such that xK(%) € L(0,7) and

u

(1) / t2K(t)dt < u 'K(u), for u> %

1/m
Then

oo 1/n
(a) ;nbn / xK(%) dz < 00 = g(m)K(%) € L(0, )
0

and conversely
(b) g(m)K(i) € L(0,7) = ibn@ < 00

1

THEOREM 2. Let a, > 0 and let f be defined by f(x) = % + > an cos nx.
1

Let K be a positive function defined on (1/m, 00) such that x2K(%) € L(0,7)
and condition (1) is satisfied. Then

1/n

(a) Zn an/ (%)dm <00 = (F(0) —f(x))K(%) € L(0, )
0
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and conversely
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COROLLARY 1. Let b, > 0 and let g(x) = > by sin nx. Let K € K(1 < 9,0 <
1
2). Then

g(w)K(%) € L(0,7) & ibn@ < o0.
1

o
CORROLARY 2. Let a, > 0 and let f(z) = %ao + Y apcos nz. Let K €
1
K1 <o, 2<3). Then

(£(0) - f(m))KG) crm) & Y a, i <o

n

2. Some properties of 0-RV functions

Let us remark that condition (1) is a characteristic property for O-regularly
varying functions ([2]), i.e. a function K satisfying (1) is an 0 — RV function with
lower index ¢ > 1: K € K(1 < g, 9). In the folloving lemma we list some properties
of 0 — RV functions which follow from (1).

LEMMA. Let K be a positive function defined on (1/m, oo) such that (1) holds.
Then

1° u=1K (u) is almost increasing (u= K (u) /), i.e. there is a constant C' >
0 such that u K (u) < Cv ™!, for 1/m <u <w.

2° Thereis a T < 1 such that u="K (u) is almost decreasing (="K (u) \),
i.e. there is a constant C > 0 such that u="K(u) > Cv™"K(v), for 1/m < u < v.

30 IfK(l) g(z) € L(0,7), then 2~ 'g(z) € L(0, ).

4° Let F(z f|f )| dt. Then

O/IK(%)F 0/1 ()m|f )| da

for some positive constant C.

o XK ad K(n) )
5° If cy | 0, then the series ) c,—;= and ) (cn — Cnq1) =~ are equicon-
1 1

vergent.
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Proof .
1° and 2° cf. [2].
3° It is easily seen that

™

[ g1 ae = / sl ;) (wK(%))dx
0 0

-1 7
< sup (mK(l)) /|g(m)|K<l> de =C sup (t'K(t)™*
o<z<m x 4 z 1/7<1<00

=C( inf (K@) =0 (wK(%»l

Ir<t<oo

since 1 K (t) is almost increasing, by 1°.
4° We by changing the order of integration and by making use of (1)

0/1 K(i)”ﬂ’)d“ / K(i) / |£(0)|dt do = / (1) / K(l) d dt —
1 1/t 1 .

:/|f(t)|1/K(u)u‘2dudt§C/|f(t)|(%) _IKG)dt:co/|f(t)|tKG)dt.

0 0

5° this is Lemma 2 of [1].

3. Proof of the Theorems

We prove Theorem 1 only, the proof of Theorem 2 being very similar.

a) First, by the definition of g, we have

(2)
ZK(1>Ig(w)|dx = ZK(%) | ibnsin na | do < ZKG) iwnusm na|de

oo n 1
= an/K<—> | sin nz|dz.
x
0

Next we prove that

T 1/n

(3) /K(%) |sin na| dz < Cn / a:K(%) dz.

0 0
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Really,
T 1/n T
1 .
/K<E>|s1nmr|dx= /+/ =1 + b.
0 0 1/n

Now for the first integral we have obviously

1/n 1/n

(4) I = /K(£)|sin nx|dx5n/xK(é> dz
0 0

and for the second

135

5) Ih= /ﬂK(%)|sin na|dz < /WK(%) dz = /nK(t)t_2dt§Cn_1K(n),

1/n 1/n 1/7

since K satisfies (1).

Now, by Lemma, 1°, the function »~! K (u) is almost increasing, thus

1/n

(6) n /xK(%) dx = n]ot_ll('(t)t_2 dt > Cn-n"'K(n) 77?_2 dt =
0 n

n
=CK(n)-n""
From (5) and (6) it follows that
1/n
I, <Cn / xK(%) dx
0
which, together with (4), proves (3).
Finally, by substituting (3) into (2), we obtain

O/WK(%) l9(2)| dz < Ci bl ://an(é) i

which proves part a) of the Theorem.

b) Assume that g(m)K(%) € L(0, 7). By Lemma 3° it follows that z=1g(x)

o0
€ L(0,); hence by Theorem 4.1. [3] the seies Y b, is convergent.
T

(o ]
Denote By, = ) bajyr+1. Then By decreases to zero and we obtain by partial

j=0
summation (cf. Lemma 2.2. [3])

oo [o ]
g(z) =ansin na::Bosin:c+2ZBncos n sin
1 1
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or

g(x) -
hiz) = =By +2 B .
() sin = 0o+ Zl: 0 COS N

Denote ¢(z) = h(xz) — By = 2> B, cos nz. It is easily seen that
1

(7) w(x)xKG) € L0, 7).

/|<p wK( )dw</|h ;cK( )dw—{—BgO/ﬂwK(%):
/|g ()/ k(1)

and both integrals converge by the assumptions of the theorem. Since ¢ is integrable
and B,, monotone, it follows that B,, are the Fourier coefficients of ¢ and we can
put

®(x) :/ i sin kx

1

> k > Bk kx
— — 102
F(w)—/ 2—2 1—coskx)—4zk—251n -
o 1 1
Next we prove that
1 B
8 F >C—=
(®) <n+ 1) - n
Indeed,
1 — By k — By k
F =4) —sin? >4 2
(n+1> ; 2O om+) = &R T 2 D)
2\? & k 24 1 " 4 B,
4| — = B,>—-B = —=—
(w) ,;(2<n+1>> w2 <n+1>2k§ FE T
where we have used that sin 2(nk+1) > %2(71’11), for 2(n’“+1) < 2 and that B, is a
monotone decreasing sequence.
Z
Next, put &+ (z) [ |p(t)|dt and F*(z f |®(t)| dt. The functions ®* and
0

F* are positive and increasing and

T

(9) F(2)] < F*(2) < / B+ (t) dt < 23 (2).

0
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Therefore, by (8) and (9) it follows that

B 1 1
1 =< ot )
(10) n _Cn+1 <n+1>

Now we are ready to prove

1
2. B,K(n) 1
) > 2 < [lotarc (1 ) s
1 0
The proof runs as follows

Yooy e () oo

1

n+1

— 1 1 K(t) : -
_C;n+1®+<n+1)/ : dt  [since u 'K (u) 2

1/n

() [ oG

1/(n+1)

= 1
:C;n+1

< C’Z / z®F( )K(i) z lde [since z®F (x) 1]

1/(n+1)

o[ x(}
o[ ()r

Applying Lemma 4° to the last integral we obtain (11). Thus, by (7) if follows that
e

is convergent. To complete the proof of the theorem we have

K()

o0
to prove that this implies that the series 3 by, is convergent. First, by Lemma
1

5° it follows that

o0

(12) Z(Bn - Bn+1)

1

K(n)

< 0

and since 41K (u) is almost increasing

(13) Ci By ).
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Thus from (12) and (13) the following series

1 1

is also convergent. Now, since by Lemma 2° there is a 7 > 1 such that v~ " K (u) is
almost decreasing, we have

K(n+1)
n+1
Whence

=(n+1) "Kn+1)n+1)"1<Cn TKn)Cin™ !t = Con LK (n).

Z bn+1 02 Z bn+1

o0
and the last series is convergent, by (14). Thus we have proved that ) b,
1

Kn) 4o

convergent, which completes the proof of the theorem.

Proof of Corollary 1.

Let K € K(1 < g, 0 < 2). The assumption ¢ > 1 implies condition (1) of
Theorem 1. On the other hand, from the assumption g < 2 it follows that
o
/t—3K(t) dt < u™2K (u).

u

Thus
I/TL [ele}
1
n / xK(E) do = 7”L/t*1K(t)t*2 dt xnn 2K(n) =n 1K(n)
0 n

which means that the series

inbn/xK(%) dxr and ibn@
0

1

are equiconvergent. Now Corollary 1 follows from Theorem 1.
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