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REPRODUCTIVITY OF SOME EQUATIONS OF ANALYSIS, II

Jovan D. Keckié

This note is a direct continuation of (1).

4. Equations for linear functionals

4.1. Introduction. Let V be a vector space over a field S and let Ay,..., A,
be linear functionals mapping V into S. In this part we shall consider various
equations in z € V of the form

n
(4.1.1) b+ apdrz =0
k=1
and
n
(4.1.2) r=b+ Z apArx
k=1
where b, a1,...,a, € V are given. By analogy with integral equations, equations

of the form (4.1.1) will be called equations of the first kind, and equations of the
form (4.1.2) will be called equations of the second kind. They are homogeneous if
b=0.

4.2. Equations of the first kind. 4.2.1. Let V be a vector space over
and let A :V — S be a linear functional on V. Consider the equation in z:

(4.2.1) Az =0.

Suppose that there exists zg € V such that Az # 0; otherwise (4.2.1) holds
for all z € V. Then, since A is linear, we have o # 0, and the equation (4.2.1) is
equivalent to the equation

(4.2.2) T =1+ ArgAzx (A€ S;X#0),
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i. e. to the equation
z = Fuz,

where
Fr=x+ AxoAx.

The condition for reproductivity F2 = F becomes

(1 4+ MAzo)Az = 0.

Hence, for A = —1/Ax, the equation (4.2.2) is reproductive, and its general
solution, and so the general solution of (4.2.1) is given by
At
4.2.3 -t
( ) T AIL’() Zo,

where t € V is arbitrary.
Ezample 1. If g # 0 is a given continuous function on [a, b], then there exists
a function h € Cla, b] such that / g(z)h(z)dz # 0, and the general solution of the

equation in f:
b
[ s@m@ds =o,

is given by
b b -1
f() = T(=) - Bigg( g(m)T(x)dw> ( / g(m)h(w)dx> h(a),
where T' € Cla, b] is arbitrary.
So, for example, the general solutions of the equations
b

/f(x)da:zO and /f(m)sinmdmz@

a

are
b 7r
f@)=T(z) - b i a /T(;c)dm, f(z) =T(x) — % /T(m) sin zdz,

respectively, where in both cases T is arbitrary; in the first case T' € C[a, b], and in
the second T' € C[—m,7].

Ezample 2. The form of the general solution (4.2.3) of the equation (4.2.1)
shows that there exist different formulas for the general solution; the element z
is any element of V' such that Azg # 0, and by varying z, we obtain different
general solutions of (4.2.1) Naturally, all the obtained formulas are equivalent.
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Nevertheless, in applications those formulas may lead to different conclusions. The
following example is an illustrations of that fact.

The well known Rolle’s theorem states that if f € C[a,b], f is differentiable
in (a,b) and if f(a) = f(b), then there exists ¢ € (a,b) such that f'(c) = 0. In order
to remove the third supposition f(a) = f(b), we solve the equation

(4.2.4) f@ - fB)=0 (azb),

which is an equation of the form (4.2.1). Since for the function f(z) = = we have

f(a) — f(b) = a—b#0, the general solution of (4.2.5) is
T(a) — T(b)x
a—b ’

(4.2.5) f(z) =T(z) -

Applying Rolle’s theorem to the function f, defined by (4.2.5), we obtain the La-
grange mean-value theorem: If T' € Cla, b], and if T is differentiable in (a, b), then
there exists ¢ € (a, b) such that

T(a) - T(b)

p— =T'(c).

However, the general solution of (4.2.4) can also be written in the form

(426) @) = T@) - 53 51 5@

where S(a) # S(b). Applying Rolle’s theorem to the function f defined by (4.2.6) we
obtain the Cauchy mean-value theorem: If T, S € CJa,b], if they are differentiable
in (a,b), and if S(a) # S(b), then there exists ¢ € (a,b) such that

T(a) —T(b)
S(a) — S(b)
The additional hypothesis S'(z) # 0 for = € (a,b), which implies S(a) — S(b) # 0,
enables us to write (4.2.7) in the familiar form

T(a) -T(®) _ T'(¢)

S(a) = S®) ~ S'(o)°

(4.2.7) T'(c) = S'(c),

Ezample 3. Suppose that f € C[a,b]. The general solution of the equation in

bia/fwww=f(”;b)

is given by
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Ezample 4. Let V be the set of all real functions defined on [a, b], such that
for a fixed zo € (a,b) the limit ILm f(z) exists. Then f € V is continuous at zg if
x o

and only if
f(z) =T(z) + (T(xa) — lim T(z))sgn (z — x0)?,

T—T0

where T' € V is arbitrary.

4.2.2. We now turn to the nonhomogeneous equation
(4.2.8) Az =«

where A : V — S is a linear functional, a € S is given, and a # 0. Suppose that
zg € V is such that Az # 0. Then the general solution of (4.2.8) is
At

a
rT=—x+t— —2x
A.’L'() 0 A.CL'() 0>

where t € V is arbitrary.

Notice that the equation (4.2.8) is possible if and only if there exists zg € V
such that Azg # 0. Hence, if the equation (4.2.8) is possible for a fixed a € S, it is
possible for all a € S.

Example 5. Let c be the set of all convergent real sequences. The general
solution of, the equation

limz, =«
is given by
a o lim¢
(4.2.9) Tn = 5 +tn — limx:); 0

where (t,) € c is arbitrary, and lim 2% = 3. In particular we may take (z0) = (3),
and (4.219) takes the simpler form

Ty = a+t, —limt,.

Ezxample 6. Let F be the set of all complex analytic functions for which z = a
is a regular point or an isolated singularity. The general solution of the equation
in feF:

Res f(z) = a
zZ=a
is
f2)= 2 4+ T() - ResT'(2),

zZ—a zZ — a z=a

where T' € F is arbitrary,

Example 7. Let V be unitary vector space over S. The general solution of
the equation in z:
(z,0) =
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where @ € V and a € S are fixed, is given by

aa (t,a)
T = +1t- a,
(a,a) (a,a)
where t € V is arbitrary.
4.2.3. Let Ay,..., A, be linear functionals on a vector space V over S and
consider the equation in z:
n
(4210) Z akAk.r = 0,
k=1
where a,...,a, € V are given. Since those vectors can be taken to be linearly

independent, the equation (4.2.10) splits into the system
(4.2.11) Az =0A---N Az =0,
which consists of n equations of the form (4.2.1).

Example 8. The integral equation
1
(4.2.12) / (5tu® + 42u)z()du =0 (3 € C[=1,1])
1
can be replaced by the system
1 1
(4.2.13) /usx(u)du =0A /ux(u)du =0.
21 21
The general solution of the first equation of this system is
1
(4.2.14) o(t) = S(t) — gt / BSWdt (S € C[-1,1))
1

and substituting (4.2.14) into the second equation of the system (4.2.13) we obtain

the equation for S:
1
/ (u — gu3> S(u)du =0,

-1

with the general solution
105
(4.2.15) S(t) = T(t) + 2228 / (u - gu3) T(u)du,

where T' € C[-1,1] is arbitrary.
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Combining (4.2.14) and (4.2.15) we obtain the general solution of the equation
(4.2.9):

1

(4.2.16) ﬂﬂ=ﬂﬂ+%0ﬁ—@/m@ﬁ+%%&4ﬁ/ﬁT@ﬁ

—1

where T' € C[-1,1] is arbitrary.

Notice that (4.2.16) is not only the general solution of (4.2.12), but of any
equation of the form

/mmw+3@mumm:m
1

where A and B are linearly independent functions.

Remark. The nonhomogeneous equation
n
ZakAk:c =b (;é 0)
k=1

can be treated in a similar manner. Indeed, from the equation itself follows that b
n

must be of the form Z aray; otherwise the equation has no solutions. Hence, it

k=1
can be reduced to

Z ak(Akx — Oék) = 0,

k=1
and the last equation splits into the system

Ak.fll‘:()ék (k:l,...,n).

Ezample 9. The equation
1
/(5tu3 + 4t%u)z(u)du = 16t*
1
splits into the system

1 1
/u%(u)du =0A /ux(u)du =4,
21 41

and its general solution is easily obtained. It is:

1
1 1
x(t) =T(t) — %ts + %ﬁ/ (u — gu3> T (u)du,
1
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where T' € C[-1,1] is arbitrary.

Again, the obtained solution is also the general solution of the equation
1
/ (A()u® + B(t)u)z(u)du = 4B(1),
-1

where A and B are linearly independent functions.

4.2.4. Let Ay : V — S (k=1,...,n) be linear functionals on V', and suppose
that there exist a, € V (k =1,...,n) such that Aja; = d;; (i,j =1,...,n) where
0;; is the Kronecker delta.

Then the general solution of the system
Az =0 (k=1,...,n)

is
n

(4.2.17) z=t—Y (Ast)a,
k=1
where ¢ € V is arbitrary.

Hence, if Ay,..., A, is a complete set of linear functionals (i. e. Agz = 0 for
k=1,...,n implies x = 0), from (4.2.17) follows the representation

n

(4218) t= Z(Akt)ak

k=1

for arbitrary t € V. Moreover, the condition A;a; = §;; implies that the vectors ay,
are linearly independent, which means that the representation (4.2.18) is unique.

Ezample 10. Let P, be the set of all real polynomials with degree < n. Then
if P € P,, the functionals Ay,..., A, defined by

AP = P(zk) (k=1,...,n+1)

where z1,...,2Zp41 are distinct real numbers, form a complete set. Moreover, for
the polynomials ay, € P, (k=1,...,n+ 1) defined by

(z—21)...(x —2p—1)( — 1) - - (T — Tpy1)
Tk — 1) .. (Tp — Tp—1(Tk — Tht1) - - (T — Tpg1)

ak(x)z( (k=1,...,n+1)

we have A;a; = d;;. Hence, if P € P,, we obtain the Lagrange interpolation formula

P(m):% (x—z1) ... (x —zp—1)(® —Tpg1) .. (T — Tpg1) Play).

pat (kg — 1) ... (zp — 1) (@ — Tpg1) - - - (Tk — Tpg1)
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Again, the functionals F}, defined by F,P = P%)(qa) for k = 0,1,...,n, also
form a complete set and the corresponding polynomials aj such that Fia; = J;; are
defined by ay,(z) = (z — a)¥/k!. This implies the Taylor expansion

P(z) = Zn: Mp(k)(a)‘

k!
k=0

Ezxample 11. Let V be an n-dimensional unitary vector space with an or-
thonormal basis (ej,...,e,). Then the system of linear functionals Aj,..., A,,
defined by

Az = (z,e) (k=1,...,n)

is a complete system. Since A;e; = d;;, we obtain the familiar representation

(z, ex)ek.
1

n

Tr=
k=

Remark. Similar conclusions can be obtained in the case when A;, A,, ...

is a countable set of linear functionals, but in this case it is necessary to examine
o

the convergence of the series Z(Akt)ak. As special cases we mention the Taylor
k=1

expansion for analytic functions, the Fourier expansion for elements of a Hilbert

space, etc.

Remark. It is interesting to note that the representation (4.2.18) is itself
reproductive; namely, if we denote the right hand side of (4.2.18) by Ft, then
F?2=F.

4.2.5. At the end of this section we mention one more possibility, of a rather
formal nature. Suppose that V' is the space of all functions which map a vector
space U into the scalar field S, and that A : V — V is a linear operator. The
equation in f € V:

(4.2.19) Af=0

is a functional equation. However, for a fixed a € U the expression (Af)(a) defines
a linear functional on V', and the equation

(4.2.20) (Af)(a) =0

can be solved by the method exposed here. Suppose that S, is the set of all solutions
of the equation (4.2.20). Then if S denotes the set of all solutions of the equation
(4.2.19), we have, formally,

S=1{) S.-

acU

Example 12. If S is the set of all solutions of the equation
(4.2.21) flz+1) = f(x) (f:R— R)
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then, since the general solution of the equation
fla+1) = f(a) (a € R is fixed)
is
fl@)=T(z) - (T(a+1)-T(a))x (T : R — R arbitrary)

we have

S= ﬂ {flf(z) =T(z) — (T(a+1) —T(a))z; T € RE arbitrary}.
a€ER

The set S defined by (4.2.22) gives one more formal expression for the general
solution of (4.2.21).

4.3. Equations of the second kind. Let V be a vector space over S and
let A:V — S be a linear functional on V. Consider the equation in z:

(4.3.1) z = b+ aAx,

where a,b € V are given. From (4.3.1) follows

(4.3.2) (1 - Aa)Az = Ab.
We distinguish between the following cases:
(i) Aa # 1. Then from (4.3.2) follows

_Ab
11— Ad’
which, substituted into (4.3.1), gives the unique solution of that equation:

Ab
1-— Aa

Az

r=b+ a.

(ii) Aa =1, Ab# 0. Then the equation (4.3.1) has no solutions.

(iii) Aa = 1, Ab = 0. Then it is easily verified that the equation (4.3.1) is
reproductive, and hence its general solution is

(4.3.3) z =b+ aAt,

where t € V is arbitrary.

Remark. In the special case b = 0, i. e. in the case of the homogeneous
equation

(4.3.4) r = aAz

we have the following possibilities:

(i) Aa # 1. The trivial solution z = 0 is the only solution of the equation
(4.3.4).
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(ii) Aa = 1. The equation (4.3.4) is reproductive, and its general solution
is
(4.3.5) x = aAt,
where t € V is arbitrary.

Remark. Unless Az = 0 for all z € V, A maps V onto S, and hence in
the solutions (4.3.3) and (4.3.5) At can be replaced by a where a € S is arbitrary.

In a similar manner we may treat the equation in x:

n
(4.3.6) z=b+) apdz,
k=1
where b,a1,...,a, € V are given, and A; : V — S (k = 1,...,n) are linear
functionals on V. We again suppose that ai,...,a, are linearly independent.

Now, from (4.3.6) follows

(4.3.7) Apr = Aeb+ ) (Apai)(Aiz)  (k=1,...,n)
i=1
and this is a linear system in Ayz,..., Apz. Let A = ||4iajllnxn, B = ||Akb|lnx1-

If det(I — A) # 0, the system (4.3.7) has a unique solution, (a4,...,a,) say, and
the equation (4.3.6) has the unique solution z = b+ >, _; aay.

If det(I — A) = O Arank (I — A) < rank ||I — A|B||, the system (4.3.7) has
no solutions, implying that the equation (4.3.6) has no solutions.

If det(f — A) = 0 Arank (I — A) = rank || — A|B]||, then some of the Ax's
can be expressed as linear combinations of others. When this is done, the equation
(4.3.6) becomes

z=b+> beAiz  (ix €{1,...,n}),
k=1

where m < n, and it is easily verified that it is a reproductive equacion with the
general solution

z=b+Y bydyt,  (t€V arbitrary)
k=1

or equivalently,

r=b+ Z agby (ar € S arbitrary).
k=1

Remark. Notice that the equation (4.3.6) implies that its solution =z, if it
exists, must be of the form

n
r=>b+ Zakak.
k=1
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The scalars oy, are obtained by substituting (4.3.8) into (4.3.6) and equating coef-
ficients. Though this is a simpler method, we have emphasized here the method
which uses the notion of reproductivity.

Ezample 13. Let V = Cla, b], and let Apz = / by, (u)z(u)du. The equation

b n
x(t) = b(t) + / (Zak(t)bk(u)> x(u)du,
w  \k=1

and we see that the complete theory of Fredholm integral equations of the second
kind with degenerate kernel is a consequence of the above result. Concrete examples
of such equations need not be given here.

(4.3.6) becomes

Ezample 14. Suppose that f is an integrable function on [0, 1] and consider
the equation in f:

@) x—l/f Yz + 2 f (1) — (z — 1) £(0).
0

This is a homogeneous equation and it has the trivial solution f(xz) = 0. We look
for nontrivial solutions.

From (4.3.9) follows

[ @ = =5 [ 1@z + 310) + 310) 1) = 105 5O = 10O

Hence,

(f(1) + £(0)),

ﬂloa

(4.3.10) /1 flz

and substituting (4.3.10) into (4.3.9), we obtain the reproductive equation

F(2) = 2307 +42)f(1) + £(3¢ = 102 + T)£(0),
with the general solution
f(z) = (32 + 42)T(1) + (32 — 10z + 7)T(0),
where T is an arbitrary function, integrable on [0, 1] or equivalently,

f(z) = (3a + 3b)z* + (4a — 10b)x + T,
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where a(= T'(1)) and b(= T'(0)) are arbitrary real numbers.
By a direct verification we see that (4.3.11) satisfies (4.3.9) which means
that (4.3.1 1) is the general solution of the given equation (4.3.9).

I am indebted to Professor D. D. Adamovié for careful reading of this paper. His
comments and suggestions have greatly improved the original version.
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