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ON SOME INEQUALITIES FOR CONVEX SEQUENCES

Josip E. Pecarié

1. A sequence a = (ay,as,...) is said to be convex if A%a,, >0,n=1,2,...
where
A?a, = A(Aap) = ango — 2an41 + Gn,  Aap = Gpy1 — an.
If a and p are real sequences, then the well-known Abel identity holds:

n n n
(1) Zp,-ai =a1 P + Z PkAak_l, (Pk = sz> .
=k

i=1 k=2
The following generalization of (1) is given in [2]: I

If 35,0, 05 (1 <4 <n,1<j<m) are real numbers, then
n

m n m
Z sz’jaibg‘ =athi Xi1+ b0 ZXr,lAar—1 + a1 Z Xi,sAbs_1+

i=1 j=1 r=2 §=2
(2) 0 m
+ Z Z Xr,sAar—lAbs—l
r=2 s=2
where
n m
3) Koo =D D @is-
i=r j=s

Using (1) and (2), we can get the following identity:

n m

Z Za:ijaibj = allel,l + blAalel,l + alAlei2 + Aa1b1X§72+

i=1 j=1

n m m
(4) +b Y X} A%an s +ar » X7 A%+ Aay Y X5 A% o+
r=3 s=3 s=3
n n m
+Ab Y X2, A%, s+ YD X3P A%a)r — 247,
r=3 r=3 s=3
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where

n m n m
XTl,l = ZZ(/L -r+ 1)$”, Xlz,s = ZZ(] — s+ 1)1'137

i=r j=1 i=1 j=s

Xps =D Y (i—r+1)(G—s+ 1)y

i=r j=s

(5)

Indeed, we have

n n n n
ZXT,IAGT—I = Aay Z-X’r‘,l + Z (ZXk,l) A’a,_o =
r=2 r=2 r=3 k=r

n
= Aay X3, + Z X1 A2,

r=3

in,sAbs—l = Ab; in,s + Z <ZX1,]') A%by_y =
§=2 §=2 s=3 \ j=s

m
= Ab X[, + ) X7 A%, s;

s=3
i iXT,sAak—lAbs—l = AalAbl i in,s + Abl i (i iXk’j> AQGT_1+
r=2 s=2 r=2 s=2 r=3 k=r j=2
+Aa Z (Z Z X&j) A2b3_2 + Z Z (Z Z Xk’j) A2ar_2A2b3_2 =
=3 \ k=2 j=s r=3 s=3 \ k=r j=s
= Aa; Ab X3, + Aby Zn: X2, A% + Aay f: X5 sA%b,_o+
r=3 s=3
+ i i XE,SAZGT—2bs—2:
r=3 s=3

so, from (2), we obtain (4).
Using (4), we can easily obtain the following theorem:

THEOREM 1. Let z;; (1 <i<n, 1<j<m) be real numbers. Inequality

(6) Z Z zijab; >0

holds for all conver sequences a and b if and only if
X11=0,X,,=0(r=2,...,n), X7, =0

(7 ng (r=2,...,n), X23,s=0(s=3,...,m),
Xf,s >0,(r=3,...,n:8=3,...,m)

(s=2,...,m),
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where X11, X}, X7, and X, , are given by (3) and (5).

Remark 1. An analogous result for convex functions can be obtained from
Vasié-Lackovié’s result for bilinear operators ([3]).

2. If a is a convex sequence, then

Qg Qe

© [k, 1,m,a] = (k— 16)1(k_m) + (l—m)(l—k)+
+m >0 (k,I,meN).

Indeed, if a is a convex sequence, then the sequence ((a, —a1/(n—1))p=2,3,...
is nondecreasing, i.e. the sequence ((an — ax)/(v — k))n=k+1,k+2,.. is also nonde-
creasing. If k£ <1 < m, we have

(e — ax) /(1 = k) < ((am — ar)/(m — k))
wherefore we obtain (8). Analogously, we can get (8) in other cases (k < m <
1, etc.).

Using (8), analogously to the proof which is given in [2], we can get the
following theorem:

THEOREM 2. Let a and b be convex sequences, e = (1,2,...,n),pr > 0
(k=1,...,n; P, >0); then
(9) F(ab)=F(a)F(b) > (F(ea)~F(e)F(a))(F(eb)~F(e)F(b)/ (F(e*) = F(e)?),

where ab = (a1b1,...,a,b,) and F(a) = P% S piai. If a or b is an arithmetic
sequence, then the equality in (9) holds.
Using Theorem 2, we can prove the following result:

THEOREM 3. If a and b are convexr sequences, then
n

n 1 n n 12 k
(10) ;aibi—ﬁgai;bizFﬁ_l);(k (n+1)/2)a Z (n+1)/2)b;

with equality when at least one of the sequences a, b is an arithmetic sequence.

Proof. We select F(a) = £3 %" a;. Then F(e) = (n+1)/2, F(e®) =
(n+1)(2n 4+ 1)/6 and from (9), we obtain (10).

COROLLARY 1. Let a and b be convex sequences, and assume that

(11) Z(k—n;_1>bk:0

k=1

Then Cebysev’s inequality

n 1 n n
Zaib,’— EZG,Z(), Z 0
i=1 i=1 i=1

holds.
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Remarks: 2° If by = by, g1 (k=1,...,n), then (11) holds.
3° Theorems 2 and 3 are discrete analogues of Lupas’ inequalities [2]. Corol-
lary 1 is a discrete analogue of the Atkinson inequality [4].

3. We can easily show that (10) can be rewritten in the form of inequality
(6) for n = m. Using this fact, from Theorem 1, we can obtain the following result:

LEMMA 1. Let p and w be real sequences. Inequality

(12) Zaibi — lzakZb, > szkakzwibi
i=1 n k=1 i=1 k=1 i=1

is walid for every pair a and b of convex sequences if and only if

(13) szzw o

(14) szk —r+1)i wj =0 (r=2,...,n)

k=r j=1

(15) K2w13—3+1)i =0(s=2,...,n)
j=s k=1

(16) szk —r+ 1) wi(j—1) =
k=r j=2

:Z(i—r+1)(i—(n+1)/2) (r=2,...,n)
1) K> pe(k-1)> wi(—s+1)=

k=2 j=s

:i(i—s+1)(i—(n+1)/2) (s=3,...,n)

(18) Ky prk—r+1)) wi(j—s+1)<
k=r j=s

n n

< i(i—r+1)(z’—s+1)—%Z(i—r+1)2(i—s+1).

i=max(r,s) i=r i=s

Now we will introduce the following notation:

n n n n
w=Y pr, v=) wi, P=Y (k—pe, Q=) (i— 1w,
k=1 =1 k=2 =2
n

Ur)=> (i-r+1)(i-(n+1)/2).

i=r

(19)
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From condition (16) for » = 2, i.e. from

(20) KPQ=U(2) =n(n*—1)/12

it follows that we have

(21) K#0, P#0, Q#0,
and

(22) K =n(n* —1)/12PQ.

Using (21) again on the basis of (14) and (15) we find that
(23) u=v=0.

In such a way we find that if condition (23) is valid, then the conditions (13), (14)
and (15) are satisfied.

Conditions (21) and (16), i.e. (17), imply that

(24) Y ik —r+1) = 12PU(r) /(n(n® — 1)) (r=2,...,n)
(25) Zwk(k —r+1)=12QU(r)/(n(n®> = 1)) (r=2,...,n).
k=r

By substitution of (24) and (25) in (18), we have

n n

> (i—r+1)(i—s+1)—%Z(i—r+1)2(i—s+1)2

i=max(r,s) i=s

UV ) = s Y=+ 1)

i=r

—(n+1)/2) i]—s-l-l )i —(n+1)/2).

Since the sequences a and b defined by
ar=0(k=1,...,r—=1) and ay=k—r+1 (k=r,...,n),
and
bp=0(k=1,...,s—1) and by =k—s+1 (k=s,...,n)
are convex, from (10) we have (26), i.e. (26) is true.
From what we have said above infer the following lemma:

LEMMA 2. Conditions (13) — (18) are valid for a pair of seguences p and w
if and only if conditions (21), (22), (23), (24) and (25) are satisfied, where u, v, P,
Q, and U are defined by (19).
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Now, we shall show that py = k1 (k — (n + 1)/2) where k; is a real constant.
From (24), for r = k and k + 1, we have
pr=ki(Uk)-2U(k+1)+U(k+2) =ki(k—(n+1)/2)

where k1 = 12P/(n(n? —1)) and k=1,...,n — 2.

For r = n, from (24) we have

pn=hkU(n) =ki(n —(n+1)/2),
and for r =n — 1, we have p, 1 + 2p, = k1U(n — 1), i.e.
Pn1 =ki(U(n—1)—2U(n)) =ki(n—1— (n+1)/2).

Analogously, we can get that wy = k2(k — (n + 1)/2) where k is a real constant. 2
So, in virtue of Lemma 2 we find that the following lemma is valid:

LEMMA 3. Let us suppose that p and w are real sequences. Then the sequences
p and w satisfy conditions (13)—(18) if and only if these sequences are of the form

where the real constants are arbitrarily chosen such that k; # 0 (i = 1,2), and
where we have

(28) K =12/(n(n* — 1)k1k).

On the basis of the results above it can be directly concluded that the following
theorem is valid:

THEOREM 4. Suppose that p and w are real sequences. The inequality of
the form (12) holds for every pair of convex sequences a and b if and only if these
sequences p and w are of the form (27) where the real constants ky # 0 and ko #
0 are arbitrary and where the constant K is given by (28). In other words, for
every pair of convex sequences a and b inequality (12) holds true if and only if that
inequality is of the form (10).

Remark 4. Theorem 4 is a discrete analogue of Vasi¢ — Lackovié¢’s result from

[5].
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