ON A FUNCTIONAL WHHICH IS QUADRATIC ON A-ORTHOGONAL VECTORS

Hamid Drljević

Abstract. Let X be a complex Hilbert space, $\dim X \geq 3$ and A be a bounded selfadjoint operator defined on X. We give a representation of a continuous functional H defined on X under the condition that H is quadratic on A-orthogonal vectors.

In [3] a continuous functional $F:X\to\Phi$ is studied which is additive on A-orthogonal vectors. Let us note that the square of functional which is additive on A-orthogonal vectors does not have to be quadratic. The purpose of this paper is to give a representation of the functional $H:X\to\Phi$ under the condition that is quadratic on A-orthogonal vectors. In [2] a representation is given in the case when A=I (I denotes the identical operator).

The following theorem will be proved:

Theorem 1. Let H be a continuous functional defined on a (real or complex) Hilbert space X with dim $X \geq 3$. Suppose that if (x, Ay) = 0 $(x, y \in X)$ then

$$H(x+y) + H(x-y) = 2H(x) + 2H(y), \tag{*}$$

where $A:X\to X$ is a continuous selfadjoint operator with $\dim A(X)\neq 1,2,3$. Then there is a continuous linear operator B and quasi-linear continuous operator C and D such that

$$H(x) = (Bx, x) + (Cx, x) + (x, Dx) \tag{**}$$

for all $x \in X$.

We will use the same technique as in [2] and the proof of the theorem will be based upon the following lemmas.

Lemma 1. Under the hypotheses of Theorem 1 there exist functionals B(x), C(x) and D(x) (defined on X) satisfying (*) such that for all complex numbers λ and for all x in X:

$$B(\lambda x) = |\lambda|^2 B(x), \quad C(\lambda x) = \lambda^2 C(x), \quad D(\lambda x) = \bar{\lambda}^2 D(x)$$

AMS Subject Classification (1980): Primary 39B70. Izrada ovog rada potpomognuta je od strane Republičkog fonda za naučni rad SRBiH.

Moreover, H(x) = B(x) + C(x) + D(x).

Proof. We first show that for the functional H(x) we have $H(rx) = r^2 H(x)$ for all $x \in X$, where r is a real number. It is obvious that H(0) = 0.

1° Let (x, Ax) = 0 for some $x \in X$ $(x \neq 0)$; then, applying relatio (*), we obtain $H(2x) = 2^2 H(x)$. Thus

$$H(3x) + H(x) = 2H(2x) + 2H(x),$$
 $H(3x) = 2H(2x) + H(x)$
= $2 \cdot 2^2 H(x) + H(x),$ $H(3x) = 3^2 H(x).$

Similarly we obtain $H(4x) = 4^2 H(x)$, $H(5x) = 5^2 H(x)$,.... Suppose that $H(nx) = n^2 H(x)$ holds for a natural number n. We shall prove that $H[(n+1)x] = (n+1)^2 H(x)$. For this we have:

$$H[(n+1)x] + H[(n-1)x] = 2H(nx) + 2H(x)$$

$$H[(n+1)x] = 2H(nx) + 2H(x) - H(n-1)x$$

$$= 2n^2H(x) + 2H(x) - (n-1)^2H(x).$$

$$H[(n+1)x] = [2n^2 + 2 - (n-1)^2]H(x), \quad H[(n+1)x] = (n+1)^2H(x).$$

Thus, $H(nx) = n^2 H(x)$ holds for all natural n.

Similarly we obtain $H(nx) = n^2 H(x)$, if $n = -1, -2, -3, \ldots$ It also follows easily (because of the continuity of H) that $H(rx) = r^2 H(x)$ for all real r.

2° Let $(Ax, x) \neq 0$. Then there exist a $y \in X$ $(y \neq 0)$ such that (x, Ay) = 0 and $(Ay, y) = \pm (Ax, x)$.

(a) If (Ay, y) = (Ax, x), then the vectors nx+y and x-ny are pairwise A-orthogal. According to (*) we can write

$$H[(nx+y)+(x-ny)]+H[(nx+y)-(x-ny)]=2H(nx+y)+2H(x-ny), (1)$$

$$H[(n+1)x-(n-1)y]+H[(n-1)x+(n+1)y]=2H(nx+y)+2H(x-ny), \text{ or }$$

$$H[(n+1)y-(n-1)x]+H[(n-1)y+(n+1)x]=2H(ny+x)+2H(y-nx) (2)$$

If we add (1) and (2) and take into consideration (*), we get

$$2H[(n+1)x] + 2H[(n-1)y] + 2H[(n-1)x] + 2H[(n+1)y]$$

= $4H(nx) + 4H(y) + 4H(x) + 4H(ny)$

or

$$H[(n+1)x] + H[(n-1)y] + H[(n-1)x] + H[(n+1)y]$$

= $2H(nx) + 2H(y) + 2H(x) + 2H(ny)$.

Let

$$H(kx) + H(ky) = k^{2}[H(x) + H(y)]$$
(3)

hold for all k = 0, 2, 3, ..., n. It is easy to prove that (3) is true for n = k + 1. In [1] it has been proved that there exists a $z \in X$ such that (x, Az) = (y, Az) = 0 and (Ax, x) = (Ay, y) = (Az, z), and on the basis of (3) we can write

$$H(nx) + H(ny) = n^{2}[H(x) + H(y)]$$
(3')

$$H(nx) + H(nz) = n^{2}[H(x) + H(z)]$$
(3")

$$H(ny) + H(nz) = n^{2}[H(y) + H(z)]. (3''')$$

Subtracting (3''') from (3"), we obtain $H(nx) - H(ny) = n^2[H(x) - H(y)]$, which together with (3') gives $H(nx) = n^2H(x)$. Due to the continuity of the functional H, $H(rx) = r^2H(x)$ holds for all real numbers r.

(b) Let (Ay, y) = -(Ax, x). It follows that $(A(x \pm y, x \pm y) = 0$ and according to 1° we get $H[n(x+y)] = n^2 H(x+y)$, $H[n(x-y)] = n^2 H(x-y)$. Besides that we have H[n(x+y)] + Hn(x-y) = 2H(nx) + 2H(ny) or

$$n^{2}H(x+y) + n^{2}H(x-y) = 2H(nx) + 2H(ny).$$
(4)

In [1] it has been shown that there exists a $z \in X$ such that (Ax, z) = 0 and (Az, z) = -(Ax, x), (Ay, z) = 0, (Ay, y) = (Az, z). On the basis of (a) we can write

$$n^{2}H(y+z) + n^{2}H(y-z) = 2H(ny) + 2H(nz) = 2n^{2}H(y) + 2n^{2}H(z)$$
 (5)

or

$$n^{2}H(x+z) + n^{2}H(x-z) = 2H(nx) + 2H(nz).$$
(6)

If we subtract (5) from (6), we get

$$n^{2}H(x+z) + n^{2}H(x-z) - n^{2}H(y+z) - n^{2}H(y-z) = 2H(nx) - 2H(ny).$$

If we add this last relation to (4) we obtain

$$n^{2}H(x+z) + n^{2}H(x-z) - n^{2}H(y+z) - n^{2}H(y-z) + n^{2}H(x+y) + n^{2}H(x-y) = 4H(nx)$$

or

$$2n^{2}H(x) + 2n^{2}H(z) - 2n^{2}H(y) - 2n^{2}H(z) + 2n^{2}H(x) + 2n^{2}H(y) = 4H(nx)$$

or $H(nx) = n^2 H(x)$. Since the functional H is continuous then $H(rx) = r^2 H(x)$ holds for all real numbers r. Therefore $H(rx) = r^2 H(x)$ holds for all real numbers r nad for each $x \in X$.

Let 2B(x) = H(ix) + H(x). It is easy to see that B(x) is a continuous and quadratic functional on A-orthogonal vectors, as well as it satisfies $B(rx) = r^2 B(x)$, that B(ix) = B(x).

1° Let (Ax, x) = 0 for some $x \in X$. Then $(A\alpha x, i\beta x) = 0$ $(\alpha, \beta \text{ real numbers})$. For $\lambda = \alpha + i\beta$ we have

$$B(\lambda x) + B(\bar{\lambda}x) = B((\alpha + i\beta)x) + B((\alpha - i\beta)x) = B(\alpha x + i\beta x) + B(\alpha x - i\beta x)$$

= $2B(\alpha x) + 2B(i\beta x) = 2\alpha^2 B(x) + 2\beta^2 B(ix)$
= $2\alpha^2 B(x) + 2\beta^2 B(x) = 2(\alpha^2 + \beta^2)B(x) = 2|\lambda|^2 B(x).$

Hence
$$B(\lambda x) + B(\bar{\lambda}x) = 2|\lambda|^2 B(x)$$
.

 2° Let $(Ax, x) \neq 0$. Then there exists a $y \in X$ such that (x, Ay) = 0 and $(Ay, y) = \pm (Ax, x)$. Let us consider the case when (a) (Ay, y) = (Ax, x). Then if $\lambda = \alpha + i\beta$ $(\alpha, \beta \text{ real})$ and $e_1 = (x + y)/2$, $e_2 = (x - y) \mid 2i$, it follows that

$$B(\lambda x) + B(\lambda y) + B(\bar{\lambda}x) + B(\bar{\lambda}y) = 2|\lambda|^2 [B(x) + B(y)].$$

We can select a $z \in X$ such that (x, Az) = 0, (y, Az) = 0 and $(x, Ax) = (y, Ay) = \pm (z, Az)$. Let us consider the case when the sign is \pm . By analogy with the equation above, we can write the following.

$$B(\lambda x) + B(\lambda z) + B(\bar{\lambda}x) + B(\bar{\lambda}z) = 2|\lambda|^2 [B(x) + B(z)]$$

$$B(\lambda y) + B(\lambda z) + B(\bar{\lambda}y) + B(\bar{\lambda}z) = 2|\lambda|^2 [B(y) + B(z)].$$

From the last three equalities we have $B(\lambda x) + B(\bar{\lambda}x) = 2|\lambda|^2 B(x)$.

Let us consider the case when (b) (Ay, y) = -(Ax, x). Then $(A(x \pm y), x \pm y) = 0$. On the basis of 1° we have

$$B(\lambda(x+y)) + B(\bar{\lambda}(x+y)) = 2|\lambda|^2 B(x+y)$$

$$B(\lambda(x-y)) + B(\bar{\lambda}(x-y)) = 2|\lambda|^2 B(x-y).$$

Summing these two equations we obtain

$$B(\lambda(x+y)) + B(\lambda(x-y)) + B(\bar{\lambda}(x+y)) + B(\bar{\lambda}(x-y)) = 2|\lambda|^2(B(x+y) + B(x-y))$$

or

$$2B(\lambda x) + 2B(\lambda y) + 2B(\bar{\lambda}x) + 2B(\bar{\lambda}y) = 4|\lambda|^2 B(x) + 4|\lambda|^2 B(y)$$

or

$$B(\lambda x) + B(\lambda y) + B(\bar{\lambda}x) + B(\bar{\lambda}y) = 2|\lambda|^2 (B(x) + B(y)). \tag{7}$$

As before, there exists a $z \in X$ such that (Ax, z) = (Ay, z) = 0, (Ay, y) = (Az, z) and (Az, z) = -(Ax, x). We have

$$B(\lambda x) + B(\lambda z) + B(\bar{\lambda}x) + B(\bar{\lambda}z) = 2|\lambda|^2(B(x) + B(y))$$
(8)

$$B(\lambda y) + B(\lambda z) + B(\bar{\lambda}y) + B(\bar{\lambda}z) = 2|\lambda|^2(B(y) + B(z)) \tag{9}$$

$$B(\lambda x) - B(\lambda y) + B(\bar{\lambda}x) - B(\bar{\lambda}y) = 2|\lambda|^2 B(x) - 2|\lambda|^2 B(y). \tag{10}$$

From (7) and (10) it follows that $B(\lambda x) + B(\bar{\lambda}x) = 2|\lambda|^2 B(x)$. Thus from these considerations we can conclude that for each $x \in X$ and each complex λ we have

$$B(\lambda x) + B(\bar{\lambda}x) = 2|\lambda|^2 B(x) \tag{11}$$

If in (11) we replace λ by $e^{i\varphi}$ (φ real) and ix by $e^{i\varphi}x$, we obtain $B(e^{2i\varphi}x) + B(x) = 2B(e^{i\varphi}x)$. Similarly we get $B(e^{-2i\varphi}x) + B(x) = 2B(e^{-i\varphi}x)$. Thus we have

$$B(e^{2i\varphi}x) - B(e^{-2i\varphi}x) = 2[B(e^{i\varphi}x) - B(e^{-i\varphi}x)]. \tag{12}$$

For fixed $x \in X$ let us set

$$I(\alpha) = B(\alpha x) - B(\alpha^{-1} x) \quad (\alpha = e^{i\varphi}). \tag{13}$$

It is easy to show that $I(\alpha) = 0$ for all $\alpha = e^{i\varphi}$ (φ real). From this fact it follows that $B(\bar{\lambda}x) = B(\lambda x)$, and from that (due to (11)) we have

$$B(\lambda x) = |\lambda|^2 B(x) \quad (x \in X \text{ and } \lambda\text{-complex}).$$

Let us put

$$2S(x) = H(ix) - H(x).$$
 (15)

The functional S(x) is continuous, quadratic on A-orthogonal vectors and quadratic homogenous, i.e. $S(rx) = r^2 S(x)$, and besides that

$$S(ix) = -S(x), \quad (x \in X). \tag{16}$$

In the same way as with the functinal B(x), we obtain

$$S(\lambda x) + S(\bar{\lambda}x) = (\lambda^2 + \bar{\lambda}^2)S(x) \tag{17}$$

for each x in X and for each λ . If in (17) we put $\lambda = \alpha$ ($|\alpha| = 1, \alpha^{4n} \neq 1, n = 1, 2, ...$) and αx instead of x, we obtain

$$S(\alpha^2 x) + S(x) = (\alpha^2 + \bar{\alpha}^2)S(x) \tag{17'}$$

or

$$\alpha^4/(\alpha^8 - 1) \cdot [S(\alpha^2 x) - \bar{\alpha}^4 S(x)] = \alpha^2/(\alpha^4 - 1) \cdot [S(\alpha x) - \alpha^2 S(x)].$$

By induction we can prove

$$\alpha^{2n}/(\alpha^{4n} - 1) \cdot [S(\alpha^n x) - \alpha^{2n} S(x)] = \alpha^2/(\alpha^4 - 1) \cdot [S(\alpha x) - \bar{\alpha}^2 S(x)].$$

If $\beta = \alpha^n$, then

$$\beta^2/(\beta^4 - 1) \cdot [S(\beta x) - \bar{\beta}^2 S(x)] = \alpha^2/(\alpha^4 - 1) \cdot [S(\alpha x) - \bar{\alpha}^2 S(x)]$$

or

$$1/(\beta^2 - \bar{\beta}^2) \cdot [S(\beta x) - \bar{\beta}^2 S(x)] = 1/(\alpha^2 - \bar{\alpha}^2) \cdot [S(\alpha x) - \bar{\alpha}^2 S(x)]. \tag{17''}$$

In the last relation α and β are arbitrary numbers such that $|\alpha| = |\beta| = 1$, $\alpha^4 \neq 1$ and $\beta^4 \neq 1$ and (17) holds for each x in X. Since $S(rx) = r^2 S(x)$, from (17") it follows immediately that

$$[S(\lambda x) - \bar{\lambda}^2(x)]/(\bar{\lambda}^2 - \lambda^2) = [S(\lambda_1 x) - \bar{\lambda}_1^2 S(x)]/(\lambda_1^2 - \bar{\lambda}_1^2)$$
(17")

 $(\lambda^2 \neq \bar{\lambda}^2, \ \lambda_1^2 = \bar{\lambda}_1^2) \text{ for all } x \text{ in } X.$

The right-hand side of relation (17") is constant, for any λ ($\lambda^2 = \bar{\lambda}^2$) and if for fixed λ_1 we put

$$C(x) = [\bar{\lambda}_1^2 S(x) - S(\lambda_1 x)]/(\lambda_1^2 - \bar{\lambda}_1^2)$$

we obtain $C(\lambda x) = [\bar{\lambda}_1^2 S(\lambda x) - S(\lambda_1 \lambda x)]/(\lambda_1^2 - \bar{\lambda}_1^2)$. According to (17''') we conclude that C(x) and $C(\lambda x)$ do not depend on λ_1 , and if we put $\lambda_1 = \lambda$ (in the relation for C(x)), $\lambda_1 = \bar{\lambda}$ (in the relation for $C(\lambda x)$), we obtain $C(\lambda x) = \lambda^2 C(x)$, for each complex λ and x in S. Let us put $D(x) = -S(x) - C(x) = [S(\lambda_1 x) - \lambda_1^2 S(x)]/(\lambda_1^2 - \bar{\lambda}_1^2)$. Then it follows that $D(\lambda x) = \bar{\lambda}^2 D(x)$ (x in X, λ a complex number). Since H(x) = B(x) - S(x) and -S(x) = C(x) + D(x) it follows that H(x) = B(x) + C(x) + D(x) Q.E.D.

Lemma 2. Suppose that the functional H satisfies the conditions of THeorem 1 and that

$$H(\lambda x) = |\lambda|^2 H(x) \tag{18}$$

for all in X and for every complex number λ . Then there exists a unique continuous linear operator B such that for all x in X

$$H(x) = (Bx, x). (19)$$

Proof. Let us put

$$F(x,y) = H(x+y) - H(x-y) \quad (x,y \text{ in } X)$$
 (20)

Let further

$$X_y = \{x \mid x \in X, \ (Ax, y) = 0\}. \tag{21}$$

For a fixed y and for x in X, F(x,y) is a continuous functional (on X) and moreover from (x,Az)=0, x, z in X it follows that F(x+z,y)=F(x,y)+F(z,y). On the basis of [3] there exist unique vectors a_y and b_y in X_y and a unique complex number α_y such that

$$F(x,y) = 2(a_y, x) + 2(x, b_y) + 2\alpha_y(Ax, x)$$
 (22)

for all x in X_y . Since the functional H is quadratic on A-orthogonal vectors we have

$$H(x+y) = H(x) + H(y) + (a_u, x) + (x, b_u) + \alpha_u(Ax, x), \quad ((Ax, y) = 0). \quad (23)$$

1° Let $x \in X$ be such that (Ax, x) = 0. Then the relation (23) has a form

$$H(x + y) = H(x) + H(y) + (a_u, x) + (x, b_u), \quad ((Ax, y) = 0).$$

 2° Let $x \in X$ be such that $(Ax, x) \neq 0$. Then due to the continuity of the functional F we conclude that $\alpha_y = 0$, and relation (23) becomes

$$H(x+y) = H(x) + H(y) + (a_y, x) + (x, b_y), \quad ((Ax, y) = 0).$$
 (23')

We can write the space X as the direct sum of orthogonal and A-orthogonal invariant subspaces X^0 , X^- , X^+ of the operator A, where $X^0 = \{(\in X \mid Ax = 0\}.$ In X^- it holds that (Ax, x) < 0 for $x \neq 0$, and in X^+ it holds that (Ax, x) > 0 for $x \neq 0$. In each of these subspaces we can select a maximal A-orthonormal system. Let $\{e_i\}$ be a maximal A-orthonormal system in the space X, which

is equal to the union of these maximal A-orthonormal systems. Let us take an arbitrary x in X; then $x = \sum_{i=1}^{\infty} \alpha_i e_i$. Let us put $x_n = \sum_{i=1}^n \alpha_i e_i$. Applying relation (23') we obtain $H(x_n) = H_1(x_n) + H_2(x_n)$ where $H_1(x_n) = \sum_{i=1}^n |\alpha_i|^2 H(e_i)$; $H_2(x_n) = \sum_{k=1}^{n-1} [(\alpha_k a_k, \bar{x}_{k+1}) + (\bar{x}_{k+1}, \alpha_k b_k)], \ a_k = a_{e_k}, \ b_k = b_{e_k}, \ \bar{x}_k = \sum_{i=k}^n \alpha_i e_i \ (1, 2, \dots, n-1).$ We claim that $H_1(x_n)$ and $H_2(x_n)$ are quadratic on vectors of the form $x_n = \sum_{i=1}^n \alpha_i e_i$. Let $x_n = \sum_{i=1}^n \alpha_i e_i, \ y_m = \sum_{i=1}^m \beta_i e_i$ (Set $n = \max\{n, m\}$).

$$\begin{split} &H_{1}(x_{n}+y_{m})+H_{1}(x_{n}-y_{m})=H_{1}(\sum(\alpha_{i}+\beta_{i})e_{i})+H_{1}(\sum(\alpha_{i}-\beta_{i})e_{i})\\ &=\sum(|\alpha_{i}+\beta_{i}|^{2}H(e_{i})+\sum|\alpha_{i}-\beta_{i}|^{2}H(e_{i})=\sum[|\alpha_{i}+\beta_{i}|^{2}+|\alpha_{i}-\beta_{i}|^{2}]H(e_{i})\\ &=\sum(2|\alpha_{i}|^{2}+2|\beta_{i}|^{2})H(e_{i})=2\sum|\alpha_{i}|^{2}H(e_{i})+2\sum|\beta_{i}|^{2}H(e_{i})=2H_{1}(x_{n})+2H_{1}(y_{m}). \end{split}$$

Thus, $H_1(x_n + y_m) + H_1(x_n - y_m) = 2H_1(x_n) + 2H_1(y_m)$. Similarly it can be proved that

$$H_2(x_n + y_m) + H_2(x_n - y_m) = 2H_2(x_n) + 2H_2(y_m).$$

Therefore for all vectors $x_n = \sum \alpha_i e_i$, $y_m = \sum \beta_i e_i$,

$$H(x_n + y_m) + H(x_n - y_m) = 2H(x_n) + 2H(y_m).$$

Thus the functional H is quadratic on the set $S = \{x_n \mid x_n = \sum \alpha_i e_i, e_i - A \}$ orthonormal vectors $\}$. Taking into consideration that the set S is everywhere Xdense and that H is a continuous functional, the equation H(x+y) + H(x-y) =2H(x) + 2H(y) holds for x, y in X. Hence Lemma 2 follows from (18) and the continuity of H. Q.E.D.

Lemma 3. If the functional H satisfies the conditions of Theorem 1 and moreover

$$H(\lambda x) = \lambda^2 H(x)$$
 (or $H(\lambda x) = \bar{\lambda}^2 H(x)$)

holds for every complex number λ and all $x \in X$, then

$$H(x+y) + H(x-y) = 2H(x) + 2H(y)$$
 holds for all $x, y \in X$.

Proof. 1° Let (Ax, y) = 0 for some x, y in X. Then due to the hypothesis the statement holds.

2° Let $(Ax, y) \neq 0$ for some x, y in X^2 . We can suppose that $(Ax, x) \neq 0$. Then there exists a $z \in X$ such that $(Az, z) \neq 0$ and (Ax, z) = 0, (Ay, z) = 0. We can write H(x+z) + H(x-z) = 2H(x) + 2H(z), H(x+iz) + H(x-iz) =2H(x) - 2H(z).

Thus

$$4H(x) = H(x+z) + H(x-z) + H(x+iz) + H(x-iz).$$
 (24)

 $[\]frac{1}{2} \sum_{i=1}^{n} \operatorname{means} \sum_{i=1}^{n}.$ We can suppose that $(Ax, x) \neq 0$

Let us select the number α such that $(Ax + y), x - y) + \bar{\alpha}(Az, z) = 0$. Taking this condition into consideration we obtain

$$(A(x+y+z), x-y+\alpha z) = 0,$$
 $(A(x+y-z), x-y-\alpha z) = 0$
 $(A(x+y+iz), x-y+\alpha iz) = 0,$ $(A(x+y-iz), x-y-\alpha iz) = 0.$

Applying relation (24) we get

$$4H(x+y) = H(x+y+z) + H(x+y-z) + H(x+y+iz) + H(x+y-iz)$$

$$4H(x-y) = H(x-y+z) + H(x-y-z) + H(x-y+iz) + H(x-y-iz).$$

Now making use of the fact that the functional H is quadratic on A-orthogonal vectors we obtain

$$H(x + y) + H(x - y) = 2H(x) + 2H(y).$$

This holds when $(A(x+y), x-y) \neq 0$. If (A(x+y), x-y) = 0, the statement obviously holds. From 1° and 2° we conclude that H(x+y) + H(x-y) = 2H(x) + 2H(y) holds for $x, y \in X$. Now, let us consider the functional H with the property $H(\lambda x) = \lambda^2 H(x)$. As with the proof of Lemma 2 it is also easy to show that

$$F(x,y) = 2(a_y, x) + 2(x, b_y)$$
(25)

and that F(x,y) = H(x+y) - H(x-y). Relation (25) holds for all $x,y \in X$. Besides that

$$F(x,y) = H(x+y) - H(x-y) = H(y+x) - H(y-x) = F(y,x)$$

and

$$\begin{split} F(x_1+x_2,y) &= 2(a_y,x_1+x_2) + 2(x_1+x_2,b_v) \\ &= 2(a_y,x_1) + 2(x_1,b_y) + 2(a_y,x_2) + 2(x_2,b_y) \\ &= F(x_1,y) + F(x_2,y). \end{split}$$

Thus

$$F(x_1 + x_2, y) = F(x_1, y) + F(x_2, y), \quad F(x, y_1 + y_2) = F(x, y_1) + F(x, y_2).$$

It is now easy to obtain

$$a_{y_1+y_2} = a_{y_1} + a_{y_2} \quad b_{y_1+y_2} = b_{y_1} + b_{y_2}$$

$$a_{\lambda y} = \bar{\lambda}^2 / \lambda \cdot a_y \qquad (\lambda - \text{complex number} \neq 0)$$

$$b_{\lambda y} = \bar{\lambda}b$$

$$(26)$$

since $a_y=0$ for y in X. Thus $H(x+y)-H(x-y)=(x,b_y)$ holds for all $x,y\in X$. For $x=y,\,H(2x)=(x,b_x)$ or H(x)=(x,Dx) where $Dx=b_x/4$ and D is a quasi-linear operator. For H(x) instead of $H(\lambda x)=\lambda^2 H(x)$, the condition $H(\lambda x)=\bar{\lambda}^2 H(x)$, should be added and it is easy to show in this way that H(x)=(Cx,x), and that C is a quasi-linear operator. Continuity of D and C is clear. So, we obtain

Lemma 4. If the functional H satisfies the conditions of Lemma 2, there exists a unique continuous quasi-linear operator D(C) such that

$$H(x) = (x, Dx), \quad (H(x) = (Cx, x)).$$

REFERENCES

- [1] H. Drljević, On the stability of the functional quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) (N.S.) **36**(**50**) (1984), 111–118.
- [2] F. Vajzović, Über das Funktional H mit der Einschaft: (x,y)=0, H(x+y)+H(x-y)=2H(x)+H(y), Glass. Mat. (Zagreb) $\mathbf{2}$ (22) (1967), 73–81.
- [3] F. Vajzović, On a functional which is additive on A-orthogonal pairs, Glas. Mat. (Zagreb) (21) (1966), 75–81.

Ekonomski fakultet 88000 Mostar Jugoslavija (Received 22 07 1985) (Revised 16 07 1986)