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ON THE REPRESENTATION OF S5 ALGEBRAS
AND THEIR AUTOMORPHISM GROUPS

Zarko Mijajlovié

Abstract. This paper deals with the representation theory of Boolean algebras operators
and their automorphism groups. Mainly S5 algebras are considered, and it is shown that these
operators can be represented by relatively complete Boolean subalgebras.

1. Introduction. We shall consider the representation theory of Boolean
algebras with additional closure operators and their automorphism groups. We
shall study mainly S5 closure operators, and it will appear that these operators are
represented by relatively complete Boolean subalgebras introduced by Koppelberg
[4]. First we introduce some terminology and notation.

The pair (B, ) denotes a Boolean algebra (abbreviated by BA) B = (B, +,-,,
0,1) with an additional unary operation *x over B. Sums and products (finite or
infinite) of elements x; € B, i € I, are denoted respectively >, z;, [[; z;. Occasion-
ally, we use expansions (B, A) or (B, a),c4, where A C B. If B is generated by the
set AU{u1,...,u,}, then we write B = A(u1,...,u,). In such a case we say that
B is a finitary extension of A. A set {v1,...,v,} of elements of B is a partition of
1if1 =3, v;, and vv; = 0 for i # j. If B is a finitary extension of A, then B is
finitary extension of A by partition of 1. We shall call such extensions normal. All
model-theoretic notions are as in [1].

The following proposition for arbitrary algebras, and more generally for ar-
bitrary models, will be useful later.

PROPOSITION 1.1. 1° Let A, B be algebras of the same language L, and let
€: A — B be an onto homomorphism. Then the map

®: Aut (A, kere) - AutB
defined by ®(g) = h iff he = €g, is a homomorphism.
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2° If A, B are models of a language L, and € is a strong homomorphism
(cf. [1]), i.e. for all n-ary relation symbols R of L, and a1, ...,a, € A, R*a, ...a,
iff RBeay ...ca, then 1° still holds.

Proof. 1° Observe that h is well-defined, as for R, = textkere, given g and
z,y € A we have R.xy iff R.gxgy. Further more, if w is an n-aryfunction symbol
of L, then for by,...,b, € B there are ay,...,a, € A such that

hwBb; ... b, = hwBea; . .. EQp = hswAal .G = sgwAal e Qp =

= hwBegay ...cg9a, = wBhb; ... hb,.

Claim 2° can be proved in a similar manner. O

If A C B, by Aut (B/A) we denote the group of automorphisms of B which
fix A pointwise. Therefore Aut (B/A) is the Galois group of B over A.

2. Closure operators. We remind the reader about the following clo-

sure operators over Boolean algebras. A Boolean algebra with a closure operator
(B, ) is:

1° a T-algebra if it satisfies the following axioms

2° an S4-algebra if (B, *) is a T-algebra and * satisfies the axiom z** = z*,

3° an S5-algebra if (B, %) is an S4-algebra and * satisfies the axiom z*° = z*,
where ° is the dual operator, i.e. z° = z'*'.

We have the following slight generalization of a result of Drake [2]:

PRrOPOSITION 2.1. Let H be a finite set of homomorphisms of B into B so
that idp € H. Define an operator * on B in the following way:

(2.1.1) ¥ = Z g9(z), z€B.
9€EH

Then: 1° (B,*) is a T-algebra.
2° If H is closed under the composition of maps, then (B,*) is an S4-algebra.
3° If H is subgroup of AutB then (B,*) is an S5-algebra.

The proofs of these facts are straightforward, so they are omitted. We shall
discuss later which operators can be represented in the form (2.1.1). For finite BA’s
this problem was solved by Drake. Now we remark that a refinemant can be made
in the case of complete BA’s. Namely, if B is a k-complete BA and H is a set of
cardinality < k of k-complete endomorphisms, an assertion similar to Proposition
2.1 holds.
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Finally, if H is a subgroup of Aut B, then for every x € B and g € H, if * is
defined by (2.1.1), we have

9@ = 3 gh(@) = 3 hx) = o*;

heH heH

so for all € B the following holds: x = z* iff for all g € H, g(x) = x.

3. Relativly complete sets. Let B be BA and A a subset of B. Then the
set A is upward relatively complete in bf B iff every « € B there is a largest a € A
such that a < z. We denote that bound by z°, and we say that the operator ° is
inducted by A.

A subset A C B is downward relatively complete in B iff for every ¢ € B
there is a smallest b € A such that x < b. That bound is denoted by z*, and we
say the operator * is induced by A.

Some simple properties of these notions are stated in the following proposi-
tions. The term “relatively complete” is abbreviated by “r.e.”.

PROPOSITION 3.1. Let B be a BA, and A subset of B. Then

1° If A is upward r.c. in B, and if ° is induced by A, then 0° = 0, z° < z,
r<y—z°<y°, z°=2x°, (Vre A z°=u.
If, in addition, A is closed under the operation -, then also (xy)° = z°y°.

2° If A is downward complete, and if * is induced by A, then 1* = 1, x < x*,
r<y—z*<y*, z* =z, (VreA z*=uz.

3° If A is upward r.c., and if ° is the associated operator, then the set A =
{z'°" : x € B} is downward r.c.. Thus still holds if the words “upward”,

“downward”, and the sings °,* are interchanged.

PROPOSITION 3.2. Let B be a BA, and let * and ° be induced operators as in
Proposition 3.1. Then

1° If A is upward r.c. in B, and A is closed under -, then A is closed under the
operation +, and (B,*) is an S4 algebra, and (A,+,-) is a Heyting algebra,
2° If A is a r., (i.e. upward and downward r.c.) Boolean subalgebra of B, then
(B,*) is an S5 algebra.
If * is a closure operator of B, then the set A = {z* : z € B} is associated
to (B,*), and we have

PROPOSITION 3.3. 1° If (B,*) is an S4 algebra, then (A,+,-) is a Heyting
algebra. 2° If (B,*) is an S5 algebra, then A is a r.c. Boolean subalgebra of B.

In fact, these correspondences are 1-1; namely, if an operator is induced by a
r.c. set A, then the set associated with * is A, and vice versa.

Some of the above statements are well known (see e.g. [6]), and the proofs of
the others are simple; so, they are omitted.
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4. S5 algebras. In this section we shall study in more detail S5 algebras
(B,*) in which B is a finitary extension of the subalgebra A = {z* : z € B}. First,
we consider an S5 algebra which will appear later as a canonical example of such
a kind of algebras.

Algebra (A™, A). Let A be a Boolean algebra, n € w, and A isr.c. in A", and
therefore (A", A) is an S5 algebra. Observe that the induced operator * is defined
in the following way:

z* =(a,aq,...,a), where x = (z1,%2,...,Zpn), a:in.
i

Let v; = (1,0,...,0),...,v,4(0,...,0,1), and for a € A definea = (a,...,a).
Then we have immediately for any z € A", = = (21,...,2,), T =), Tiv;.

Therefore, A™ = A(v1,...,v,) and vy, ..., v, is a partition of 1, i.e. A™ is a
normal extension of A. These algebras are important since all S5 algebras (B, A),
where B is a finitary extension of A, are generated by them.

PROPOSITION 4.1 An S5 algebra (B, A) is a finitary extension of A iff (B, A)
is a homomorphic image of (A™, A) for some n € w.

Proof. Suppose B = A(uy,...,u,). We may assume that uq,...,u, is a
partition of 1. Then the map 6 : A — B defined by

0(a) = Zaiui, a=(a,...,a,), a€ A"

is a homomorphic image of (A", A) under a homomorphism 6, then
AOvy,...,0uv,).

The following example shows that there may exist many S5 algebras with the
same Boolean part B. In this example we shall assume the Continuum Hypothesis
(CH).

Let T,, a € wi, be a family of almost disjoint infinite subsets of w, i.e.
a < f < w; implies |T, N Tg| < w. Furthermore, let B = {0,a,a’,b,¥,¢,c',1} be
an eight-element BA, and for n € T, define S¥ = {0,qa,a’,1} and for n € T° take
S = {0,1}. Finally, let D be the filter of cofinite subsets of w, and define reduced
products by

is a homomorphism of (A", A) onto (B,A). On the other hand, if (B, A)
B =
|

(B,5.) = [[(B,57).

D

Then we have:

1° TIp 2 is a proper subset of S, and S, is a proper subset of B, 2 = {0,1};
2° B2 S, =[],2for all a € wi;

3° for all o, B € w1, (B,S,) = (B,Sp);
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4° if a < B < wi, then S, N Ss =T[]p 2.

To see that claim 1° holds, define the function f by f(i) = ¢, ¢ € w. Then
fp € Sa. As T, is infinite, there is a g € [, S such that {n € w: g(n) # 0,1} is
infinite. Then gp € S — [[p 2.

Claims 2° and 3° hold by the saturation property of the filter of cofinite
subsets of w under CH, see [1].

Furthermore, suppose a < 8 < w; and fp € S, N Sz. Then for some
g€ Hn S%, he Hn Sﬁ we have fp = gp, fp = hp. Thus

X =né€:g(n)=h(n), g(n), h(n) #0,1CT,NTp

i.e. X is finite, therefore gp, hp € [[ 2, so fp € [[, 2. Observe that the Stone
space of [, 2 is fw — w (the growth of the discrete topology on w).

Therefore, we constructed wy different S5 algebras on B, but all these algebras
are isomorphic.

We shall use occasionally the following assertion:

PRrOPOSITION 4.2. If (B, A) is an S5 algebra, then the induced operator *
satisfies

*
*
(E aia:z-) :E a;iT;, G1,...,0an €A, 21,...,2, € B.
i i

*

Proof. If * is an S5 operator, then for any z,y € B, (z*y)* = z*y*.

PROPOSITION 4.3. Suppose B is a Boolean algebra, and A C B is Boolean
subalgebra of B. Furthermore, let uy,...,u, be partition of 1 in B such that B =
A(ui,y...,un). Then A is r.c. in B iff for each u; there is a least v; € A such that
Uj S V.

Proof. We see that each z € B has the form = = ), z;v; for some z; € A.
Now, if x =), x;u;, x; € A, define z* =}, z;v;. Furthermore:

1° The map =z — z* is well defined: Assume ), z;u; = >, yiui, i,y € A.
Multiplying both sides of this equation by u;, we obtain z;u; = y;u;, therefore
u; < 2y + xpyl. As xiy; + xhy; € A, by definition of v;, we have v; < z;y; + zly},
S0 x;y; = yiv;. Hence, ), xiv; = ), Yili.

2° Let a € A. Then av; is the least element in A such that au; < av;. Indeed,
assume t € A. Then we have au; < t iff u; < a’' +t. Since @’ +t € A, it follows
that u; <a' +tiff v; < a' +t,but vy; <a' +tiff ay; <t,soforallt € A, au; <t
iff av; < t, and this implies claim 2°.

3°. 3, x;v; is the least element of A which is greater than x: Let ¢t € A be such

that z <t. Then zu; < tu;, so, since Tu; = x;u;, we have z;u; < tu;, and therefore
ziu; < t. Then by 2°, z;v; <t; thus ), zv; < t.
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If B is a finitary extension of A, then we can find conditions under which
(B, A) = (A", A). These conditions are described in the following proposition:

PROPOSITION 4.4. Let (B, A) be an S5 algebra such that B = A(uy,...,u,),
and let 6 : (A", A) — (B, A) be the homomorphism constructed in Proposition 4.1.
Then the following statements, are equivalent:

1° 0:(B,A) = (A", A);
2° (Vi <n)ul =1,
3° Ma€e A)(uja=0—a=0), i=1,...,n.

Proof. (1° — 2°) If v; = (1,0,...,0),...,v, = (0,...,0,1), then v} = 1 in
(A", A); thus 1 = 0(v)) = 0(v;)* = uf, ie. uf =1.

(2° — 3°) If a € A, then a* = a; therefore, by Proposition 4.2. we have
(au;)* = aulst = a-1 = a. Hence, if au; = 0, then (au;)* =0, i.e. a = 0.

(3° = 1°) We show that 6 is 1-1. Assume a,b € A™, and let fa = 6b. Then
> aiu; = Y, byug; thus, for all i < n au; = bsuy, ie. (ajb; + abl)u; = 0. Since
aib; + a;b} € A, using condition 2°, we have a}b; + a;b; = 0 i.e. a; = b; for all i < n.
Therefore a = b.

5. Filters over algebras. Let (B,*) be an S5 algebra and A an r.c.
subalgebra induced by *, i.e. A = {z* : £ € B}. Furthermore, assume D is a
filter over A, and let Fp be the filter of B induced by D. Then Fp = {z € B :
Jt € D (t < x)}. Also, we can define a congruence relation ~p over B induced by
D:z~py iff IteD tx=ty, z,y€ B.

If z,y are elements of B such that x ~p y, then for some t € D, tx = ty; so
tr* = (tx)* = ty*, i.e.

Ve,y€ Bz ~py—z* ~py.

Therefore, ~p is a congruence relation of the algebra (B,*) too, and we can define
in a natural way an S5 operator in the quotient algebra Bp = B/Fp by (z/F}, =
z*/Fp, z € B.

Koppelberg introduced in [4] a relation over B induced by point of the dual
space X of A, i.e. an ultrafilter over A. This relation is rather technical, but it
plays an important role in descriptions of automorphisms of the algebra (B, A).
We found an equivalent description of this relation in therms of the operation *.
We remind the reader that in [4] B is identified with the set of global sections I'(S)
of asheaf S = (S, m, X, u), where SUpex By, m: S — X where n(s) = piff s € B,
and o : p = By, p € X. Therefore, each b € B may be considered as a function
from X to S. Now we review the definition of the relation mentioned above:

Definition 5.1. Let p € X. For z,y € B, = ~ y at piff there is a neighborhood
u of p such that for ¢ € u, z(q) = 0iff y(q) = 0.
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THEOREM 5.2. For any p € X, and z,y € B, the following statements are
equivalent:
1° 2~y at p;
20 Z'* ~p y*’
3° B, = x* = y*, where x is a name of z, i.e. a new constant symbol, which is
interpreted in By, with the element x/F,.

Proof. In the following, if a €, then dual(a) denotes the set {p € X : a € p}.
Then we have the following equivalencies for x,y € Band p€ X. z ~ y at p & is
neighborhood u of p such that for all g € u,

z(q) =0 iff y(g) =0

(3 € p)(Va 3 ¢)(a/Fy = 0 4 y/F, = 0)

(e ep)(Vg3c)((Ts € gJzs =0+ (3t € )yt = 0)
©@cep)(Vgac)(Fseq)s<z' & Tteqtey)
“(Ecep) (Vg3 0)s <z’ & (3t eq) <y
“(@cep)(Vg3 )@’ eqey® eq)
+(Jcep)(Vg3c)(z" €g ey €q)

< (Jc € p)(Vq € dual(c))(q € dual(z*) < ¢ € dual(y*))
(3¢ € p)dual(c) Ndual(z*) = duala(c) N dual(y™)

< (3c € p)dual(cz*) = dual(cy™)
ot~y Yt
Therefore, we have at once the equivalence (1° > 2°). Since B, = B/F),
then the equivalence (2° +» 3°) is obvious.

COROLLARY 5.3. Let x,y € B, a € A. Then
az* = ay® + (Vp € dual(a))(z ~ y at p).

Proof. If az* = ay* and a € p € X, then by definition of the filter F}, we have
x* ~p, y*; thus, by the previous theorem, z ~ y at p.

Now, suppose Vp € dual(a)(z ~ y at p. Then for p € dual( ), T ~ y at p,
i.e. * ~, y*. Therefore, for some ¢ € p we have z*c = y*c; thus, z*y* +2*'y*' € p.
Therefore, z*y* + z*'y*' belongs to the filter of A generated by a; hence, z*y* +

x*'y* > aie axr* = ay .

6. Automorphisms of S5 algebras. In this section we shall study auto-
morphisms of S5 algebras. Let (B,*) be an S5 algebra and A the corresponding
r.c. subalgebra of B. Then we have several groups of automorphisms. These groups
are:

Aut B, the group of all automorphisms of B,

Aut (B,*) ={g9 € AutB:Vz € Bg(z*) = g(z)*},
Aut (B,A) = {g € AutB :Vz € Ag(z) € A},
Aut ((B/A) = {g € Aut B : Vz € Ag(z) = z}, the Galois group of B over A.
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Some simple relations between these groups are described in the following
proposition.

PROPOSITION 6.1. 1° Aut (B/A) < Aut (B, A) = Aut (B,*) C Aut B.
2° Aut (B/A) = Aut (B, a)4ca-
3° g€ Aut (B/A) iff g € Aut (B, A) and g o * = *.

Proof. 1° First we prove that Aut (B, A) is a normal subgroup of Aut (B, A).
Assume 0 € Aut(B/A), and let o € Aut(B/A). Then for a € A we have
(@ t0a)(a) = a1 (8(afa))) = a t(ala)) = a, thus a fa € Aut (B/A) .

Now we prove Aut (B, A) = Aut(B,*). Assume 6 € Aut(B,A), and let
a =z, z € B. Then (B,A) = "a is the least z in A such that z < 2”7 so,
(B, A) |="76a is the least z in A such that 6z < 2”, i.e. 6(a) = 6(z)*, and therefore
0(xz*) = 6(x)*. Hence, we have proved 6 € Aut (B,*), i.e. Aut (B, A) C Aut (B,*).

Now assume 6 € Aut (B,*). If a € A, then a* = a, so 8(a) = 0(a*) = 0(a)*.
ie. 8(a) € Aiff fa € A; s0, 6 € Aut (B, A4), i.e. Aut (B,*) C Aut (B, A).

2° Remember that (B, a),c4 is a simple expansion of the model B by the
individual constans a € A.

3° Assume 6 € Aut(B,*) and 6 o x = x. Then for a € A we have 6(a) =
f(a*) = a* =a,ie. § € Aut (B/A).

In the case of S5 algebras which are finitary extensions, there is a condition
which admits automorphisms with special properties:

THEOREM 6.2. Let A be a r.c. subalgebra of a BA B, and let B =
Aui,...,up) B = A(v1,...,v,) be two normal extensions of A. Assume that
for all i <n we have u} = v}. Then there is o g € Aut (B/A) such that g(u;) = v;
for all i <n.

Proof. Consider the map g : B — B defined by
g:Tiuy + o+ Tply &> TV F o+ Tplp, X1,...,Ln € Al
Then g € Aut (B/A) and g(u;) = v;. 1 <i < n. To see that, we first prove:

1 Foralli<n, uf! =vfiff foralla € A, a <u} ¢+ a <v.. This follows from the
K] K3 K] K2
following. Assume z € A; then

r<uor<ulul < o<y o<y <.
On the other hand if (Va € A)a < u;przir < a < v}, then, as above (Vz € A)uf <
z' & vr <z'5s0, uf = v}, ie. (1) holds.
Now we check, for example, that g is well defined. Assume zu; +- - -+2,u, =

y1u1 + - -+ Yntn. Then, as {u; : i < n} is a partition of 1, we have z;u; = y;u; for
all i < m; so, 2y} + by < ul; thus, z;y) + zly; < v, i.e. zv; = y;v;. Hence,

TiV1 + o+ Tplp = Y11 + -+ Ynln.
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It is easy to see now that g € Aut (B/A); so we omit the rest of the proof.

In the following examples we shall illustrate the last theorem. In all cases,
Sn denotes the set of all permutations of the set {1,2,...,n}, and {u1,...,u,} is
a partition of 1.

FEzample 6.3. Let m € S, and consider an S5 algebra (A", A), A" =
A(u1,...,up). Then for all 4 < n, u} = 1; hence, there is ¢ € Aut (A", A)
such that g(u;) = un()-

Ezample 6.4. Let (B, A), B = A(uy,...,u,) be an S5 algebra, and 7 € S,,.
Furthermore, assume that for some p € X = dual A4, for all i < n, u; ~ ur) at p.
Then there is a g € Aut (B/A)such that for i <n, g(u;) ~p Ur(i-

Proof. Assume u; ~ ur(;) at p. Then by Theorem 5.2 there is a ¢; € p such
that ufc; = u;“r(i) = ¢;. Therefore, for c = cicy ... ¢, we have ¢ € pand ujc = u;’;(i)c
for all 4 < n. The set {cju; + cur(; : 1 <9 < n} is a partition of 1, and also:

*

! * o,k S * __ 0%
(ciui + cur(p))* = c'uj + cugpy = cui +cuj = uj.

By Theorem 6.2 there is g € Aut (B/A) such that g(u)i) = cjuj + cuy ;). Thus,
9(wi)[Fp = (ciui + cun(i))/Fp = ¢ [Fp - wif/ Fp + ¢/ Fy - un(iy [ Fp = tn(iy/Fp, as
c €p, ¢ # p. Therefore, g(u;) ~p tr);-

This example is related to Lemma 2.3 in [4], and we shall return to it later.

Ezample 6.5. Let (B, A),B = A(uy,...,u,) be an S5 algebra, and assume
{ar : ™ € S,,} is a partition of 1 in A such that

Vr €S, apu,= a,,u;‘r(r).

Then there is a g € Aut (B/A) such that

(6.5.1) g(ur) = Zaﬂ'uﬂ'(’r‘)7 1<r<n.

Proof. It is easy to see that {Zw ArUn(ry 2 1 <17 < n} is a partition of 1.
Furthermore:

(Z a,,u,r(T)> = Zaﬂu;‘rm = Zaﬂu: =u.

Therefore, by Theorem 6.2 there is a g € Aut (B/A) with the required property.

This example is a new proof of Theorem 2.4 (a) in [4]. We note that 6.5.1
holds for an appropriate partition a,, m € Sp, of 1 in A.

In the following proposition we state some properties of the Galois group of
B over A.
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PROPOSITION 6.6. Let Xbe the dual space of A. Then:

1° for everip € X, every g € Aut (B/A) generates a g € AutB,;
2° Aut ((B/A) = N Aut (B, ~p);
peX

3° forallpe X, z,y € B and g € Aut (B/A) we have gz ~, y = = ~ y at p.

Proof. 1° Let g € Aut (B/A) and assume z ~, y for some z,y € B. Then
there is a t € p such that tx = ty; hence

tg(x) = g(tx) = g(ty) = tg(y), ie. g(x) ~p 9(y)

and Aut (B/A) C Aut (B, ~,). Thus, by Proposition 1.1 there is a homomorphism
® : Aut (B/A) — Aut B defined by gok, = k,0g, where ® : g — g, and k,B — B,
is the natural homomorphism. Observe that ~,=ker k,.
2° By 1° we have Aut (B/A) C Aut(B,~,) for all p € X. So, suppose for all
p€ X,g € Aut(B,~,). Let a € A, and assume g(a) # a. Then thereisap € X
such that a € p and g(a)’ € p, or @’ € p and g(a) € p. In the first case we have
a ~p 1 and g(a) ~, 0, and in the second, a ~, 0 and g(a) ~, 1, a contradiction.
Therefore for all a € A, g(a) = a, i.e. g € Aut (B/A).
3° Assume gz ~p y. Then g(z)t = yt for some t € p € X; so g(at)* = (ty)*. As
(ty)* € A, we have g((ty)*) = (ty)*, thus g((1)*) = g((ty)*), and so (tz)* = (ty)*
i.e. 2* ~, y*. By Theorem 6.2 it follows that  ~ y at p.

If g € Aut (B/A) and p € X dual A, then by the last proposition, g generates
a g€ AutB,. As x € B is of the form ), z;u;, such that for alli € I, z; € p
or z' € por x} € p, it follows that g(z/F,) = >, 9(u;)/Fp, Fp is the filter of B
generated by p. The algebra B, is finite, and u;/F, are atoms of Bp; so, they
are permuted by g, i.e. there is a 7 € S, such that g(u;/F,) = ug@/Fp, ie.
9(ui) [ Fp = un(iy/Fp for all i <n. As

ur/Fp = g(“:)/Fp = (g(ui)/Fp)* = (urr(i)/Fp)* = u:(i)/Fpa
it follows that

U7 ~p Up(y), 1€ Ui ~ g at p forall i <n.

This connection between points of X and elements of S, in considered in [4],
and there it is stated that = € S, is compatible with p € X iff for all 1 < i < n,
Ui ~ Uq(;) at p. Furthermore g € Aut (B/A) is said to be induced by = € S, at
p € X iff for all i < n, g(u;) ~p ur@y (cf. [4, p. 238]). Therefore, by the former
and Example 6.4 we have at once Lemma 2.3 in [4].

LEMMA 6.7. ® € S, is compatible with p € X iff there is a g € Aut (B/A)
which is induced by © at p.

As we have seen, S5 algebras (B, A) such that B is a finitary extension of A,
are generated by algebras (A", A). Now we shall see that Aut (B/A) has a similar
property with respect to Aut (A™/A). Namely, we have the following theorem.
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THEOREM 6.8. If B = A(u;,...,upn) is normal extension of A, then
Aut (B/A) is a homomorphic image of a subgroup of Aut (A™/A).

Proof. Let 0 : Aut (A™/A) —» (B, A), [ A: A= A, be the homomorphism
constructed as in Proposition 4.1. For Ry = ker  define

Gop = Aut (A", A, Ry 4)aca-

Therefore, g € Gy iff g € Aut (A/A), and for all z,y € A", Ry(z,y) < Ro(gz, gy).
As Gy < Aut (A/A), it suffices to show that Aut (B/A) is a homomorphic image
of Ga .

By Proposition 1.1, the map % : g — h defined by hof = 0 og, g € Gy,
is a homomorphism of Gy into Aut (B/A). Now we prove that ¢ is onto. Let
h € Aut (B/A). By the Representation Theorem 2.4 in [4] (see also the comment
in Example 6.5), there is a partition a,, m € Sp,, of 1 in A such that

h(u,) = Z Arly(r)-

For x € Alet ¢ = (z,...,2),...,vp = (0,...,0,1). Then for all = €
SnyanVi = AV (1 hence,by Example 6.5, there is a ¢ € Aut (A/A) such that

™

9(vr) = cs. @n(r)- Then we have

h(ur) = axtin(ry = Y axb(Vn(r) =0 (Z a7TV7r(7‘)> = 0g(vr);

so Y(g) = h, i.e. ¢ is onto.

According to [4], groups which are obtained as bounded Boolean powers of
a group H by a Boolean algebra A, play an important part in the representation
theory of Aut (B/A). We recall that such groups are of the form H(A) = {f: X —
Hy is continuos}, where H is given the discrete topology, and X is the Stone space
of A. By Example 2.3 in [4] and Proposition 4.4 we have at once

PROPOSITION 6.9. Aut (A™/A) = S,(A).
By Theorem 6.8 we then have the following:

COROLLARY 6.10. If (B, A) is an S5 algebra and B = A(uy,...,u,), then
Aut (B/A) is a homomorphic image of a subgroup of S, (A).
The following proposition improves a part of Proposition 2.7 in [4].

PROPOSITION 6.11. Let G be a finite group, A a Boolean algebra and
Ji,---59n € G(A). Then the subgroup < gi,...,9n > generated by gi,...,gn 1
finite, i.e. finitely generated subgroups of G(A) are finite.

Proof. If g € G = G(A), then 7 = {g7 (a) : @ € Im (g)} is a finite partition
of X which corresponds to g. Since g is continuous, the elements of the partition
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are clopen; so, there are ai,...,a, € A such that 7 = {dual(a;) : ¢ = 1,...,k}.
Therefore, for some o, ..., a3 € G we have g;(p) = 3_, k] (p)a], where k] are the
characteristic functions of dual (a{), and 0-a =0, 1-a=a. So, gj(p) = af for
p € dual (af).

If w(z1,...,2,) is a group-word, then
wG(gla"'ng): Z ki1"'im(p)'wa(a'}la"wagﬂ)
i1 ey

1
iy

1

where wg(a .,af*) is the value of wg(ej,,...,af" ) in G2, and k;,. ;,, is the

characteristic function of dual (a}, - a2 ...a}" ). But since G is finite, there are only
finitely many functions k;,. s,,, and values wg(a}, ,...,al" ). Therefore there are

only finitely many functions of the form wg(g1,...,9m). Thus < g1,...,gm > is
finite.

By the last theorem and Corollary 6.10 we have (cf. [4, Proposition 2.7]);

COROLLARY 6.12. Every finitely generated subgroup of Aut (B/A) is finite.

Tt is easy to see that for any Boolean algebra A, S>(A is generated by charac-
teristic functions f, of dual (a), a € A, and that all elements of Sy(A) are of order
2. Thus, if B = A(u1,us), then Aut (B/A) is a sum of cyclic groups of order 2.

We shall close this section with a group-representation of the form 2.1.1 of
an S5 operator * in (B,*) is a finitary extension of A = {z € B : z* = z}.

THEOREM 6.13. If (B, A) is an S5 algebra such that B = A(uq,...,u,) and
if * is the corresponding S5 operator, then there is a finite subgroup H < Aut (B/A)
such that for allz € B, z* =% 5 g(z).

Proof. By Proposition 2.7 i [4] there is a finite H < Aut (B/A) such that for
every b € B — A there is a g € H satisfying g(b) # b. If g € H and = € B, then
g(z) < x*, since z < z* and g(z*) = z*. Thus:

(1) Z g(z) < z*.

geEH

Let y = >, cyg(x). Then z <y < 2%, since id € G. If y < z”, then
y € B — A; so, by our assumption on H, there is an h € H, such that h(y) # y.
But

hy)=h| D g@) | => hglz)=>_ g(z) =1y,
gEH geH gEH
a contradiction. Therefore y = z* i.e. ¥ =} g(2).

In fact, y Proposition 2.7 in [4] we can take the H above to be cyclic.
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7. Some remarks. In this section we make some remarks and note some
problems concerning Boolean algebras with closure operators, whose solution might
be of an interest.

7.1 There are several possible representations of S5 algebras. To list them,
suppose B is a Boolean algebra. Then an S5 algebra over B can be given in the
following ways:

1° (B,*), where * is an S5 operator. Then the class of such algebras is a variety.
2° (B, A), where A is a r.c. subalgebra of B. The class of such algebras can be
axiomatized by first-order axioms.
3° There is a Stone-type representation, discussed by Hansoul in [3].
4° S5 algebras can be represented by Hausdorff sheafs, as shown by Koppelberg
(cf. [4, p. 236]).
5° If B is a finitary extension of A, then (B,*) can be represented by (B, H), where
H is a certain group of automorphism of B.

If categories with appropriate objects and morphisms are formed for each of

the listed representations, it is not difficult to see that between these categories
there exist natural equivalencies.

7.2. In the case of the representation 7.1.5 it is interesting to see whether
the assumption that B is a finitary extension of A, can be lifted (i.e., describe all
S5 algebras for which such a representation holds).

7.3. In [4] it was shown thaat the first-order theory of algebras (B, A), where
A is r.c. in B, B is complete, and the inclusion map from A into B is complete,
is decidable. For such an algebra (B, A), the corresponding operator * is complete
(and vice versa, i.e. for any subset S C B, (3 cs2) = 3 ,cg2*)- Therefore, the
first-order theory of S5 algebras (B,* ) with complete B and complete * is decidable.
(It would be interesting to see whether the theory of all S5 algebras is decidable.)
As a partial solution, in [5] it was shown that []} fragment is decidable.

7.4. It would be interesting to develop a similar analysis for other Boolean
algebras with modal operators; for example, T-algebras, S4-algebras, or G-algebras.

7.5. Develop the model theory of S5 algebras.
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