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CAUSALITY AND STOCHASTIC REALIZATION PROBLEM

Ljiljana Petrovié

Abstract. The basic idea is to relate some concepts of causality to the stohastic realization
problem. Especially, a new definition of causality ”F! is a cause of F2 within F3”, which is
a generalization of a corresponding definition from [3], is given. The problem of determining
possible states of the stohastic dynamic system S; with known outputs, having a certain causality
relationship with another stohastic dynamic system S is considered. More precisely, problems
formulated in [1] are investigated in the sense of a new definition of cuasality.

1. Preliminary Notions and Definitions. We forst give precise definitions
of all the terms used. These definitions are given in terms of Hilbert space.

Let F = (F}), t € R, be a family of Hilbert spaces. We think about F; as
about the information aviable at time ¢. Total information F«o carried by F wll
be defined by F.o = VicrF;, while past and future information of F at ¢ will
be defined as F<; = V,<iF; and F>; = V> F;, respectively. It should be clear
that Fey = VeciFs and F' > ¢t = V45 Fy need not coincide with F<; and F>¢
respectively; F<; and F; are sometimes called the real past and the real future of
F at t.

If Fy and F’ are arbitrary subspaces of a Hilbert space H, then P(F; | F3) will

denote the orthogonal projection of F; onto Fy and F; © F5 will denote a Hilbert
space generated by all elements © — P(z | F3), where z € Fj.

Definition 1.1. We say that F! is submitted to F? (and write F! C F?) if and
only if F, C FZ, for each t.

We say that families F! and F? are equivalent (and write F! = F2) if and
only if F! C F2 and F2 C F!.

Definition 1.2. We say that F! is strictly submitted to F? (and write F! < F?)
if and only if F}! C F? for each t.

Key words and phrases: random process, Hilbert space, causality, stohastic dynamic sys-
tem, realization.

AMS Subject Classification (1980 ): Primary 93 E 10; Secondary 93 B 15



204 Petrovié

It is easy to see that submission implies strict submission and that the con-
verse does not hold.

The notion of minimality of families of Hilbert spaces is specified in the fol-
lowing definition.

Definition 1.3. We say that F is a minimal (respectively, strictly minimal)
family having a certain property if and only if there is no family F* with the same
property submitted (respectively, strictly submitted) to F.

It should be clear that a minimal (respectively, strictly minimal) family having
a certain property is not necessarily unique.

Definition 1.4. (cf. [4] and [6] If Fy, F> and F are arbitrary Hilbert spaces,
then we say that F' is a splitting for F; and F» (and write F; L F5 | F) if and only
fFRoFlFRoF

Definition. 1.5. (cf. [6]). The family F is called markovian if and only if
P(th | Fft) = Ft for each t.

It is easy to see that the family F' is markovian if and only if F>; L F<, | Fy,
for each ¢

Definition 1.6. (cf. [4]) A stohastic dynamic system (s.d.s) is a set of two
families F! (outputs) and F? (states) which satisfy the condition

(L.1) FoVFS LFL VIS | FY

For a given family of outputs F!, any family F? satisfying (1.1) is called a realization
of an s.d.s. with those outputs.

The following results concerning splitting and s.d.s. will be used later (for the
proofs of these results see the given references).

LEMMA 1.1. (cf. 1] and [4]) Fi L F5 | F if and only if P(F; | F; VF) C F,
fori,j=1,2,i#].

Proof . Let, for example, F; 1| F» | F. Then, obviously, Fi © F L Fy (which
follows from F} © F L F; © F and F; & F | F), which, together with the obvious
equality F1 © F = (F; VF)S& F, implies P(F, | F; V F) C F. The other half of the
statement is obvious

COROLLARY 1.1.1. Fy L F> | F if and only if F{ L F} | F for oll F} C
F,VF, i=1,2.

THEOREM 1.2. [2] The space F is o minimal one such that Fy 1L Fy | F if
and only if F = P(Fy | S) for some space S such that Fy C S C (Fy V P(Fs |
Fl)) e (FLV B)*..

COROLLARY 1.2.1. [2] The space F C Fy V F» is a minimal one such that
Fy L F5 | F if and only if F = P(Fy | S) for some space S such that F» C S C
FyV P(Fy | FY).
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THEOREM 1.3. [2] A family F2 = (F?), t € R, is a strictly minimal realiza-
tion of a s.d.s. with outputs F1 = (F}), t € R, if only and if:

(1) F? is a minimal space such that FX, L FL, | F? for each t;

(2) there ezists a family F* = (F?), t € R, with the property F C (F V
F2,)* for each t such that the family S = (S), S¢ = (FVF}) @ F2, t € R, is
nondecreasing, i. e. Sy, C Sy, whenever t; < ts.

This theorem has a simpler version if F? C FL .

COROLLARY 1.3.1. [2] A family F? = (F?), t € R, of subspaces from F%_
is a strictly minimal realization of an s. d. s. with outputs F! = (Fl), t € R,
if and only if condition (1) of Theorem 1.3 holds and the family S = (S;), Sy =
FL,V F?, t€ R, is nondecreasing.

Now we shall give an intuitively plausible notion of causality. Let F', F2 and

F3 be arbitrary families of Hilbert spaces. We may say that “F? is a cause of F!
within F3” if

(1.2) FloL th | Fét

because the essense of (1.2) is that all information about FL_ given by F2, comes
via FZ, for arbitrary t; equivalently, for arbitrary ¢, the information about F .
proveded by F2, is not “bigger” than that provided byFZ2,, or,F2, contains all the
informations from F2, needed for predicting FL_ . According to Corollary 1/1/1,
(1.2) is equivalent to FL ., L F2,VF2, | F2. The last relation, means that condition
F2 C F? does not represent an essential restriction. Thus, it is natural to introduce
the following definition of causality between familes of Hilbert spaces:

Definition 1.7. We say that F? is a cause of F! within F? (and write F! |<
F?;F%) if and only if F* C F® and F2 L F2, | FZ, for each t.

A definition analogous to Definition 1.7, formulated in terms of o-algebras,
was first given in [3]; however, a strict Hilbert space version of the definition from [3]
contains also the condition F! C F? which does not have an intuitive justification.
Since Definition 1.7 is more general than the Hilbert space version of the definition
in [3], all results related to causality in the sence of Definition 1.7 will be also
true in the sense of the Hilbert space version of the definition in [3], when we add
condition F! C F? to them.

If F! and F? are such that F! |< F!;F? we say that F! is its own cause
within F2 (cf. [3]). It should be mentioned that the notion of subordination (as
indroduced in [5]) is equivalent to the notion of being one’s own cause as
defined here.

If F! and F? are such that F!' |< F};F!VF? (where F!' VF? is a family
determined by (F'V F?), = F! V F?), we say that F? does not cause F!. It
can be shown without difficulties that this is identical to “F? does not
anticipate F!” (as introduced in [6]).

‘We shall now prove some results which will be needed later.
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LEMMA 1.4. From Fi C F%_ and F? |< F%;F3 it follows that F' |<
F2%, F3. The proof is quite similar.

LEMMA 1.5. c.f [1]) F' |< F2F3 if and only if F2 C F3 and P(F.
F%t) =P(FL | Fét) for each t.

o |

Proof. According to Lemma 1.1, F! | F%; F? is equivalent to P(F.
F3,V FZ%) C F2, and F? C F?® which implies P(FL_ | F3,) = P(P(Fi |
F3,) | F2,) = P(FL, | F2,), so that one half of the statement is proved.
The other half is obvious.

o0 |

LEMMA 1.6. (cf. [1]) From F! |< F%F3 and F' C F3? it follows that
F' C F2.

Proof . If, for some t,z; is an arbitrary element from F,, then
2 3 2
zy — P(xy | F2y) L F2, © F2y,

which (because F' C F?) implies z; — P(x; | F2,) L ; — Pz, | F2,) that is,
xy = P(xy | F%t) The proof is completed.

2. Main Results. The results of this section will tell us under which
conditions, concerning the relationship between (known) information E
about an s.d.s. S? and (known) outputs H of an s.d.s. 51, it is possible
to find a realizations of an s.d.s. S; which are in a certain causality rela-
tionship with E and H. More precisely, we shall consider the following
two cases (see [1]): (1) the available information E about S, is a cause
of states of S; within outputs H of S»; (2) states of S; are a cause of the
available information E about S; within outputs H of S;. The problem
of minimality and strict minimality is disscused and partially solved.

The next two theorems deal with case (1), while the other results
deal with case (2):

THEOREM 2.1. [1] If G is its own cause within H, then G is a realization of
an s.d.s. with outputs H if and only if G is markovian and Hey Ls| Gy for each
t.

For the proof of this theorem see [1].

The previous theorem gives conditions under which G is a realiza-
tion of an s.d.s. with known outputs H, while Lemma 1.4 and Lemma
1.6 (for G = F1, E = F2, H = F?) complete the solution of the problem
(1); i.e. Lemma 1.4 gives conditions under which G |< R; H holds and
conversely, Lemma 1.6 explains connections between families G, H, E if
G |< E; H holds.

An example which illustrates the results above and an example
which shows that a given realization is not a minimal realization of S;
are given in [1]. The problem of determining the minimal realization G
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of an s.d.s. with outputs H, which will be caused by a given E within H,
is still open.

The next result gives conditions under which G is stricly minimal
realization of an s.d.s. with outputs H so that G |< E; H holds.

THEOREM 2.2. The family G is a unique strictly minimal realizatin (of an
s.d.s. with outputs H), such that G<; C Hcy, for each t, if and only if it is defined
by

(2.1) Gy=P(Hsy | Hey), t€R.

Every family E, such that E |< E; H and P(Hs¢ | Het) C Eco for each t, is a
cause of the realization G, defined by (2.1), within H.

Proof. From Theorem 1.3 and Corollary 1.3.1 it follows that G
is a strictly minimal realization (of an s.d.s. with outputs H) such that
G<: C H, for each t, if and only if G is defined by (2.1). To prove that G
is unique like this realization, let us suppose that G* is an other strictly
minimal realization (of an s.d.s. with outputs H such that G%, C H,.
According to Lemma 1.1, P(H>tV G%, | H¢;) C G} that is,

PHsy | Her) V P(GY, | Hat) CGY,

and, thus G; C G} as we wanted to prove. The assumption P(Hs; | H¢) C
E. implies G<o, C E<, so that, according to Lemma 1.4 (for G =
F! E =F? H = F?), it follows that G |< E;H. The proof is completed.

If families G,H and E are such that E |[< E; H and G C E, then
it can be shown (Corollary 1.1.1 and Lemma 1.1) that P(G>; | H<; =
P(G>; | E<;) for each t. Thus, in this case, the problem of predicting the
future behaviour of G has the same solution, no matter which one of the
families E or H is used.

In the remaining part of the paper we consider the problem of
determining possible realizations G (of an s.d.s. S; with outputs H) which
are a cause of the information E (about the s.d.s. S;) within the family
E! = HVE; especially, we consider the problem (2) above. More precisely,
solutions of the problem (2) are obtained as consequences of the following
more general result which gives conditions under which G is a minimal
realization such that E |< G; HV E holds.

THEOREM 2.3. Let H and E be such that P(H; | E<o) C H<y and
Hey L Hyy | P(HeV By | E<oo)
for each t. If E' = HV E is markovian, then the family G, defined by
(2.2) Gy =PH;VE;| FEceo), tE€R,

is minimal realization (of an s.d.s. with outputs H) which is a cause of E within
E'.
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Proof. From G<; = P(EL, | E<x) and Lemma 1.1 it follows that
Ecoo L EY, | G<. Also, the definition of G and the assumption
P(H; | Bco) C H< imply G<; C El, which, together with the previous
conclusion, means that E |< G;E!. The minimality of G follows from
Corollary 1.2.1.

From E |< G; E! and the obvious equality G.o, = E., it follows
that G |< G; E! (and, in particular, G |< G; H). From G<; C EL,, the
fact that

P(G>i | G<t) = P(E5t | G<y)

(which follows from G.o, = E.), and the assumption that E! is mar-
kovian, we obtain:

(2.3) P(G>; | G<i) = P(P(ES, | EL,) | G<t) = P(E} | G<y).

However, G |< G; E' means in particular that E} 1 G © G<;, so that
(2.3) becomes

P(G>t | G<t) = P(B} | G<w) = P(B} | E<o) = Gy

which means that G is markovian. Now, Theorem 2.1 completes the
proof.

The next example shows that the family G, defined by (2.2), is not
a strictly minimal realization (of an s.d.s. S;) such that E |< G; HV E.

Ezample 2.1. Let A and B be arbitrary Hilbert spaces and let H =
(H;) and E = (E;), t € {1,2,3} be defined by

Hi=A, H,=B, Hy=A, Ey=A, Ex=A, E;=B.

Family E! = HVE is then given by E{ = A, E} = AVB, E} = AVB. Tt
is easy to see that E' is markovian and P(H; | E ) C H<y, Hey L Hsy |
P(H,V E; | E<x) for each t. If family G is drfined by (2.2), then

G1:A, G2:AVB, G3 = AV B.

According to Theorem 2.3, G is a realization (of an s.d.s. with outputs
H) and E |< G; E'. However, the family G* = (G}), t € {1,2,3} defined
by G; = A, G5 = AV B, G5 = {0} is another realization of the same s.d.s.,
and E |< G*; El. Obviously, G* < G.

The problem of determining the realization G (of an s.d.s. with
outputs H) which is a cause of E' within H, in the case when family
E! = HV E is not markovian, is still open. One way to try to solve
this problem is to find families E* C E such that HV E* is markovian,
and then, analogously to what we had in Theorem 2.3, find a realization
G (of an s.d.s. with outputs H) such that E |< G; HV E*. Thus, with
a “sacrifice” of a part of an inforfation E it would be possible to find
a realization (of an s.d.s. with outputs H) which is in a certain causal
relationship with information thus “made smaller”
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The next corollary of Theorem 2.3 gives a partial solution (under
the condition that H is markovian) of problem (2).

COROLLARY 2.3.1. Let H and E be such that E<oo C Heoo, P(Ht | E<oo) C
Hey and Hey | Hoy | P(Hy | Ecoo) for each t. If H is markovian, then the family
G defined by Gy = P(Hy | E<x), t € R, is a minimal realization (of an s.d.s. with
outputs H) which is a cause of E within H.

‘We obtain a simpler version of the above result if E is its own cause
within H.

COROLLARY 2.3.2. Let E be its own cause within H and Hey | Hsy | P(Hy |
E<y) for each t. If H is markovian, then the family G, defined by Gy = P(H; |
E<4), t € R, is a minimal realization (of an s.d.s. with outputs H) which is a cause
of E within H.

The assumption (in Corollary 2.3.1 and Corollary 2.3.2) that H
itself is markovian is rather strong, because H represent the outputs
of an s.d.s., and thus the properties of H could hardly be controlled.
The following result does not require H to be markovian, but provides a
realization whose present information at ¢ is equal to its total information
accumulated up to t.

THEOREM 2.4. Let H and E be such that E<o C Heoo, P(H; | E<oo) C H<y
and Hey L Hoy | P(H<t | E<xo) for each t. The family G, defined by

(24) Gt = P(Hft | E<OO)> te RJ

is a minimal realization (of an s.d.s. with outputs H) which is a cause of E within
H.

Proof. Since G; = G«; for all t, it is immediately clear that G
is markovian. From Lemma 1.1 it follows E.,, L H<; | G; that is,
E<o L H<; | G<¢, which, together with G C H, means that E |< G; H.
From the last relation and G.,, = E<, it follows that G |< G; H. Now,
Theorem 2.1 implies that G is a realization (of an s.d.s. with outputs
H). The minimality of G follows from Corollary 1.2.1.

COROLLARY 2.4.1. Under the conditions of Theorem 2.4, the family G de-
fined by (2.4) is such that Gy = E<; if and only if E |< E; H.

It would certainly be intresting to find conditions for the existence
of a realization with certain properties less restrictive than those ob-
tained in this paper.
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