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ON CONJUGATE II-VARIATION
AND THE COEFFICIENTS OF POWER SERIES

J. L. Geluk

Abstract. We prove a result connecting the asymptotic behaviour of the maximum mod-
ulus of an entire function with its coefficients. Application of this result gives an asymptotic
relation between the moments and the tail of the distribution function of a random variable.

Introduction and results

In this note we prove the equivalence of an asymptotic relation for the coeffi-
cients of a power series and the behaviour of the maximum modulus for a class of
entire functions. For several orders of growth of the coefficients similar results are
known. See e.g. Boas [2], Geluk [5], [6]. Suppose f(z) = Y .~ ,cnz™ is entire. The
order of growth of the coefficients we consider includes cases like

len| 7Y™ = nlog®n + o(nlog® ' n) (n = o), a >0
In order to formulate our results we need two definitions

Definition 1. Suppose m : RT — R™ has the property that there exists a
function a : RT — R such that lim_, (7(tz) — 7 (t))/a(t) = logz for all z > 0.
Then we say m# € I or 7 € I (a). The class I~ is defined similary, exept for
7 € II~ we require lim;_, o (7(tz) — 7(t)) /a(t) = —logz. Finally IT = IIT UTI~.

For properties concerning the class II the reader is referred to Geluk, de Haan
[8] or Bingham, Goldie, Teugels [1]. Pairs of conjugate slowly varying functions
are introduced by de Bruijn [3]. In de Haan, Resnick [9], this notion is extended
to the class II as follows.

Definition 2. Suppose m € II(a). Any function 7* : RT™ — R* satisfying
Jim n(t){a(t)} " [x({#)7* (tr(t)) —1] =0
— 00
is a conjugate function for 7.
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Given 7 € II(a) one can construct a conjugate function as follows. Choose
mo such that 7(t) — mo(t) = o(a(t)) (¢t = o0) and such that m is continuous and
increasing. This is possible by [8, prop. 1.19.6].

Define v(t) = tmo(t) with inverse function v~'. Then 7*(t) = v=!(¢)/t is a
conjugate function. Also, if 7 € IT1*(a), then 7* € IIF(a*) where the function a*
satisfies a* (tm(t)) ~ a(t)/m%(t) (t = o0). See [9, theorem 1].

From the above construction it follows that if 71 (t) — m2(t) = o(a(t)), where
m; € I(a) for i = 1,2 then =} (t) — 3 (t) = o(a*(t)) (t - 00). Moreover it follows
that (7*)*(t) = m(t) + o(a(t)). For this reason the function 7 and 7* are said to
form a conjugate pair.

Our main result is the following

THEOREM 1. Suppose f is entire, f(z) =Y o, cpz™ with mazimum modulus
M(s, f) = max|,—s | f(2)|. Then there ezists = € II*(a) such that

hm* |cn|_1/n - nﬂ-(n)

n—oo na(n)

=0 1)

if and only if there exists m* € IIT(a*) such that

_1 M _ .1 *x(,—1
T ogM(s, f) —e tsm*(e 1s)

5500 sa*(s)

=0. 2)

In (1) lim* denotes the limit inferior over all n for which ¢, # 0. If one of the
above conditions holds, then we can choose the functions 7 and #* in such a way
that they from a conjugate pair.

Using the above results it is possible to prove a relation between the asymp-
totic behaviour of the moments of a random variable and the tail of its distribution
function. Related results are given in Kasahara [10], Dewess [4], Geluk [5], [6].

Before we formulate the result we need one more definition.

Definition 3. Suppose ¢ : RT — R is non-decreasing. We say ¢ € I if there
exists a positive function b such that

. — ST
tlgglo o(t+ab(t))/pt) =e" for z€R.
The function b is called an auziliary function for .

THEOREM 2. Suppose the random variable Y has an entire characteristic
function and P(|Y| > y) > 0 for y € R. Then the following statements are
equivalent.

(i) There exists a function ¢ € T' such that

—log P(|Y
lim 18 Y1>y)

=1.
y—r00 90(?/)
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(ii) There exists a function © € II~ (a) such that 7(n) = 0 as n — oo and

“1RIYI? —1/n _
i CHEY) T )
n—oo a(n)
If one of the above conditions holds, then we can choose the functions ¢ and
7 in such a way that ¢°(s) = e 1sn*(e~1s), where * is a conjugate function for 7
and ¢¢ is the function complementary to ¢, defined by ¢°(s) = sup,~o{sy — ¢(y)}
for s > 0.

2. Proofs

Proof of theorem 1. Suppose (1) holds true with 7 € I (a) and ¢ > 0 is
arbitrary. We omit the case 7 € IIT(a) which can be proved similarly. Since
7 € I (a), there exists n(g) such that |c,| /™ > nx(n) — ena(n)/2 > nw(ne®) for
all n > n(e) satisfying ¢, # 0. Hence for |z| = s we have

chz" < Z|cn|s" < Z len|s™ + Z {s/(nm(ne?)) }". (3)
n=1 n=1 n<ne n2ne

We denote the last sum by > .. Without loss of generality we may assume 7 to be
differentiable with derivative 7'(t) ~ —a(t)/t as t — oo. See [8, prop. 1.19.6]. We
estimate the index ng of the maximal term in Y for large values of s. Considering
n as a continuous variable, by differentiation ng satisfies

£ =ym(y) exp(y’(y)/7(y)), (4)
where £ = se” ¢ and y = nge®.
Since m € I~ (a) and —yn'(y) ~ a(y) = o(w(y)) this implies £ = ym(ey) +

o(ya(y)) as y — oo. Inversion then gives y = &m*(e€) + o(&a*(€)) as € — oo and
substitution of the expression for £ and y leads to

ng = se”'7*(e°s) + o(sa*(s)), s — oo. (5)

Now we write )~ = >, + ) ,, where the summations in ), and ), are taken
over ne < n < 2s7*(s) and n > 2s7*(s) respectively. Observe that if we choose
7*(t) = v~ (t)/t as in the introduction the summation in )", is over the values of
n such that nm(n/2) > 2s. Hence

oo n
m(n/2)
< 6
Zz‘é{%r(nes)} < (6)
by Cauchy’s root test, since the function 7 is slowly varying. The first sum can be

estimated by
s no
< 2sm* _ .
Zl < 2sm"(s) {now(nges) } Q
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With ng and s connected by (5) we have by (4)

- = ) _ oy o =1—a*(s)m(sn*(s 0
08 o) = T a) =L my (L) =1 a6 (s () (14 o(1)

as s — 00, the last equality being justified by y = nge® ~ e*~lsw*(s) hence

aly) _ alsr(s)
n(y)  w(sm*(s))

Substituting this with (5) in the right-hand side of (7) gives
21 < 2s7*(s)
X exp [{86_171'* (e®s) + o(sa* (s))} {1 —a* (s)7r(s7r* (s)) (1 + 0(1)) }] . (8)

Since 7*(efs) ~ 7*(s) and 7*(s)w(s7*(s)) — 1, s — oo, combination of (3),
(6) and (8) gives

~ a*(s)m(sm*(s)).

_ -1, *(,e
T log M (s, f) — se~tn*(e°s) < el
500 sa*(s)
Since 7* € IIT(a*) this implies
— log M(s, f) — se~'x*
i log M (s, f) —se™'m"(s)

s—00 sa* (s)

<(e=1)e L

Since £ > 0 is arbitrary, the left hand side is at most —e~1. By (1) for any ¢ > 0
there exists a sequence ny — oo (k — o00) such that for n = ny

|Cn|_1/" < nm(n) + %na(n) < nn(ne”°).

Application of Cauchy’s inequality gives

s n
M(saf)2|cn|3n2{m} for n = ny and s > 0. (9)
Substituing s = s, = enw(n) we find for n = ny > n(e)

n(n) — m(e~°n) a(e‘%)) }

a(e—<n) m(e~cn)

log M(sn, f) >n {1 +log (1 +

>n (1 - 25%) since m € II™ (a).
As a consequence,
lim log M (sn, f) — e 1s,7*(s5) > lim 1 —2ea(n)/w(n) — w(n)7*(enm(n))

oo $na*(8n) n—ooo er(n)a* (nm(n))

- 1 — w(n)m* (enm(n))
+ nlaoo e7r(n)a* (nﬂ'(n))

= —2e !

= (=1—2¢)e .
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Since € > 0 is arbitrary, by combination of the above results it follows that
lim (log M(s, f) — e 's7*(s))/(sa*(s)) = —e !,
§—00
which is equivalent to (2) since 7* € II*(a*). The proof of the converse part of

theorem 1 is similar to the proof of the corresponding part in [6] and is omitted.
For the proof of theorem 2 we need three lemmas.
Definition 4. Suppose ¢ : RT — R™ is measurable and ¢(t)/t — oo as

t — 0. Define the function ¢ by ¢(s) = logsfooo e®=¢(Wdy, s > 0. Define the
function ¢°¢ by

¢“(z) = sup{zy — o(y)} (10)
y>0
LEmMA 1. If ¢ : RT = R is locally bounded and o(t fo (t = o)

with s € T', then
©°(x) = / s (u) du + o(za(z)) = §(z) as z — oo
0
where the inverse function s of s satisfies s € 1T (a).
Hence ¢°(z)/z and @(z)/z are in II*(a).

LEMMA 2. Suppose F' is the distribution functzon of a non- negative mndom
variable with entire characteristic function and Fis defined by F fo e**dF(u
fors € R. Let o : RT — R be such that p(t) /t — oo (t — 00). Then F(s) < e“’(s)
for s > 0 implies 1 — F(z) < e 9" @ for x > 0, where ¢° is defined by (10).
Conversely, if there exists an xo such that 1 — F(z) < e~ %@ for x > zo and with
¢ €T, then F(s) < exp{¢°(s) +o(sa(s))} as s — oo, where p°(z)/z € II*(a) (see
Lemma 1).

LemMA 3. Suppose the assumptions of lemma 2 are satisfied and suppose
moreover that ¢ € T'. Then ¢°(s)/s € IIT and ¢°(s)/s = oo as s = 00. Moreover
lim

—log(l-F
_le if and only if hmw

=0.
a0 ¢(2) smoo  sa(s)

Lemma 1 above is a combination of theorems 1.5 and 1.9 in [7]. The proof of
the lemmas 2 and 3 is omitted since it is similar to the lemmas in [6].

Proof of theorem 2. With F the distribution function of |Y'| we have F(s) =
M(s, f). Application of lemma 3 and theorem 1 shows that (i) is equivalent to

o (BIY]/n) =/ — ()

n—oo na(n)

=0, withr eIl (a),

where the functions ¢ and 7 are related by ¢°(s) = e1s7*(e~1s). The last expres-
sion is equivalent to (ii) since (n!)*/" = ne=! + O(logn) (n — o).
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Ezample. 7*(t) = logt + o(1) (t — o0) if and only if

1 log logt ( 1
= 2 o 2
logt log=t log“t

m(t) ), t — oo.

Application of theorem 2 then shows that

(1]

lim —log P(IY| > y)

=1 if and only if
y—00 exp(ey - 1)
lim e~!(log? n)(E|Y|")/™ —logn — log logn = 0.

n—oo
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