A CHARACTERIZATION OF FORMALLY SYMMETRIC UNBOUNDED OPERATORS

Danko Jocić

Abstract. We give necessary and sufficient conditions for an operator in a Hilbert space to be formally symmetric, symmetric or self-adjoint. This generalizes the well-known fact that a bounded operator T is self-adjoint if and only if $T^*T \leq (\operatorname{Re} T)^2$. The proof is based on a well-behaved extension of the corresponding symmetric operator.

0. Introduction

Fong and Istratescu [1] and also Kittaneh [2] have proved the following:

Theorem A. A bounded operator T is self-adjoint if and only if $T^*T \leq (\operatorname{Re} T)^2$.

They used Theorem A to investigate some classes of bounded operators — θ , WN and hyponormal operators. A large number of well-known and important operators, for example $x+i\,d/dx$, belongs to similar classes of unbounded operators. The aim of this note is to extend Theorem A to unbounded operators and to make it suitable for dealing with such situations. Our main result is Theorem 1 in which we present characterizations for an operator to be formally symmetric, symmetric or self-adjoint (Theorems 2,3).

1. Preliminaries

Suppose that $(H, \langle \cdot | \cdot \rangle)$ is a separable, complex, infinite dimensional Hilbert space and let $(H \oplus H, \langle \cdot | \cdot \rangle)$ denote the usual product space. Thoughout this paper we assume that all operators are linear. Let D(A) denote the domain of an operator A. The operators $(A+A^*)/2$ and $(A+A^*)/2i$ (with $\Delta(A)=D(A)\cap D(A^*)$) as their domains) will be denoted by Re A and Im A respectively. If A is a restriction of B on D(A), we will write $A \subset B$. Whenever $\Delta(A)$ is dense in H, we will denote the domains of $(\operatorname{Re} A)^*$ and $(\operatorname{Im} A)^*$ by $D(\operatorname{Re} A)^*$ and $D(\operatorname{Im} A)^*$ respectively. We recall

142 Jocić

that a densely defined operator A is said to be symmetric iff $\langle Ax|y\rangle = \langle x|Ay\rangle$ for all $x,y\in D(A)$, i.e. if $A\subset A^*$. It is said to be formally symmetric iff $A^*x=Ax$ for all $x\in \Delta(A)$ i.e. iff $\mathrm{Im}\,A\subset 0$. Note that $\mathrm{Re}\,A$ and $\mathrm{Im}\,A$ are symmetric whenever $\Delta(A)$ is dense in H.

2. The construction

Lemma 1. For a closed, symmetric operator A in H we define the operator A^{\sim} by $A^{\sim}(x,y) = (A^{\sim}x,A^{\sim}y)$. If the domain of A^{\sim} is given by $D(A^{\sim}) = \{(x,y) \in D(A^{*}) \times D(A^{*}): x-y \in D(A)\}$ then A^{\sim} is one self-adjoint extension of $A \oplus (-A)$.

Proof. For all (x,y) and (f,g) in D(A) we have that

$$\langle A^{\tilde{}}(x,y)|(f,g)\rangle = \langle A^*x|f\rangle - \langle A^*y|g\rangle = \langle A^*(x-y)|f\rangle + \langle A^*y|(f-g)\rangle.$$

Since x - y and f - g are in D(A), it follows that

$$\langle A^*(x-y)|f\rangle + \langle A^*y|(f-g)\rangle = \langle A(x-y)|f\rangle + \langle y|A(f-g)\rangle$$
$$= \langle (x,y)|A^*(f,g)\rangle.$$

So A^{\sim} is symmetric.

Suppose that $\lim_{n\to\infty}(x_n,y_n)=(x,y)$ and $\lim_{n\to\infty}(A^*x_n,-A^*y_n)=(u,v)$ for some $(x_n,y_n)\in D(A)$ and some $x,y,u,v\in H$. This implies that $\lim_{n\to\infty}(x_n-y_n)=x-y$ and $\lim_{n\to\infty}A(x_n-y_n)=\lim_{n\to\infty}A^*(x_n-y_n)=u+v$. Since A^* and A are closed and $x_n-y_n\in D(A)$, it follows that $x-y\in D(A)$ and $x,y\in D(A^*)$. Moreover, $A^*x=u$ and $A^*y=-v$. Therefore $(x,y)\in D(A)$ and also $A^*(x,y)=(A^*x-A^*y)=(u,v)$ is closed.

Finally, suppose that $(x,y) \in R(A^* + iI)^{\perp}$. Then it follows that $\langle x | (A^* + iI)f \rangle = \langle y | (A^* - iI)g \rangle$ for all $(f,g) \in D(A^*)$ and, in particular $\langle x | (A^* + iI)f \rangle = 0$ for all $f \in D(A)$. Therefore $x \in (A^{**}) = D(A)$ and, moreover, $x \in \operatorname{Ker}(A - iI)$. It now follows that $2||x||^2 = \langle (A + iI)x | x \rangle = \langle x | (A - iI)x \rangle = 0$, and hence x = 0. Analogously, we can prove that y = 0 and thus $R(A^* + iI)^{\perp} = \{0\}$. The equality $R(A^* - iI)^{\perp} = \{0\}$ follows similarly, and hence A^* is self-adjoint.

Remark 1. An alternative proof of Lemma 1 can be obtained by using von Neumann's formulae for self-adjoint extensions of $A \oplus (-A)$. The corresponding partial isometry V is given by

$$V(x,y) = -(y,x), \text{ for all}(x,y) \in \operatorname{Cl}\left(R(A \oplus (-A) + iI)\right),$$

$$V(x,y) = 0, \text{ for all}(x,y) \in \operatorname{Ker}(A^* \oplus (-A^*) - iI).$$

Lemma 2. Let A and B be closed symmetric operators and assume that $D(A) \subset D(B)$ and $D(A^*) \subset D(B^*)$. Then there exist selfadjoint extensions A^{\sim} and B^{\sim} of $A \oplus (-A)$ and $B \oplus (-B)$ respectively, such that $D(A^{\sim}) \subset D(B^{\sim})$.

Proof. It is sufficient to take the extension constructed in Lemma 1. Then the required inclusion can be shown by a straightforward computation.

3. Main results

Theorem 1. Let A and B be symmetric operators and assume that $D(A) \subset D(B)$, $D(A^*) \subset D(B^*)$ and also

$$||(A^* - iB^*)x|| \le ||A^*x|| \tag{a}$$

for all $x \in D(A^*)$. Then $B \subset 0$.

Proof. Without loss of generality we may assume that A and B are closed. To see this, note that (a) implies $||Bx|| \le 2||Ax||$ for all $x \in D(A)$ and hence $D(A^-) \subset D(B^-)$. Because of $A^{-*} = A^*$ and $B^{-*} = B^*$ it follows that $D(A^{-*}) \subset D(B^{-*})$ and $||(A^{-*} - iB^{-*})x|| \le ||A^{-*}x||$ for all $x \in D(A^{-*})$. So, according to Lemma 2, let A^* and B^* be the corresponding self-adjoint extensions of $A \oplus (-A)$ and $B \oplus (-B)$, respectively. A simple calculation gives

$$\|(A^{\tilde{}} - iB^{\tilde{}})(x,y)\|_{\sim} \le \|A^{\tilde{}}(x,y)\|_{\sim}$$
 (a')

for all $(x,y) \in D(A)$. Let E be the spectral measure induced by A and let $\gamma \subset \delta \subset \mathbf{R}$, for some measurable bounded set γ and δ . We define $A(\delta) = E(\delta)AE(\delta)$ and $B(\delta) = E(\delta)BE(\delta)$. Since $E(\delta)h \in D(A)$, it follows by Lemma 2 that $E(\delta)h \in D(B)$, for an arbitrary $h \in H \oplus H$. Hence $D(B(\delta)) = H \oplus H$. Obviously $B(\delta)$ is symmetric and therefore self-adjoint. Then there exists a sequence $\{h_n\}_{n \in \mathbb{N}}$ of unit vectors in $H \oplus H$ such that $\lim_{n \to \infty} (B(\delta) - \lambda)h_n = 0$ for some $\lambda \in \mathbb{R}$ satisfying $|\lambda| = ||B(\delta)||$. It follows from (a') that

$$||B(\delta)h_n|| \le -2\operatorname{Re}i\langle A(\delta)h_n|(B(\delta) - \lambda)h_n\rangle$$
 (a")

Letting $n \to \infty$ we get $||B(\delta)||^2 \le 0$, and consequently $E(\delta)B^*E(\delta) = 0$. Since $\gamma \subset \delta$ we conclude that $E(\delta)B^*E(\gamma) = 0$. If $\bigcup \{\gamma_n : n \in \mathbf{N}\} = \bigcup \{\delta_n : n \in \mathbf{N}\} = \mathbf{R}$ for some increasing sequences $\{\gamma_n\}_{n \in \mathbf{N}}$ and $\{\delta_n\}_{n \in \mathbf{N}}$, it follows that $B^*E(\gamma) = s$ - $\lim_{n \to \infty} E(\delta_n)B^*E(\gamma) = 0$ because s- $\lim E(\delta_n) = I$. Moreover, s- $\lim_{n \to \infty} E(\gamma_n) = I$ implies $B^* = s$ - $\lim_{n \to \infty} B^*E(\gamma_n) = 0$, since B^* is closed. Consequently, $B \subset 0$ as required.

Remark 2. If, in addition, A is (essentially) self-adjoint, then the assumption $D(A^*) \subset D(B^*)$ can be omitted and the proof of Theorem 1 simplified. Also, the use of lemmas becomes unnecessary.

As a consequence of Theorem 1, we give the following characterization.

THEOREM 2. If $\Delta(T)$ is dense in H, then T is formally symmetric if and only if: (1) $D(\operatorname{Re} T)^* \subset D(\operatorname{Im} T)^*$, (2) $\|(\operatorname{Re} T)^*x - i(\operatorname{Im} T)^*x\| \leq \|(\operatorname{Re} T)^*x\|$ for all $x \in D(\operatorname{Re} T)^*$.

Proof. If (1) and (2) are true, then $\operatorname{Im} T \subset 0$ by Theorem 1, and hence T is formally self-adjoint. The necessity of (1) is obvious.

Lemma 3. If $D(T) \subset D(T)^*$ for an operator T, then the following are equivalent:

(1)
$$D(\operatorname{Re} T)^* \subset D(\operatorname{Im} T)^*;$$
 $(1')$ $D(\operatorname{Re} T)^* \subset D(T^*).$

144 Jocić

If the assumption (1) is satisfied, then $T^*x = (\operatorname{Re} T)^*x - i(\operatorname{Im} T)^*x$ for every $x \in D(\operatorname{Re} T)^*$.

Proof. Since $D(\operatorname{Re} T) = D(\operatorname{Im} T) = D(T)$ it follows that $D(\operatorname{Re} T)^* \cap D(\operatorname{Im} T)^* \subset D(T^*)$ and $D(\operatorname{Re} T)^* \cap D(T^*) \subset D(\operatorname{Im} T)^*$ and therefore the equivalence of (1) and (1') is obvious. Because of $T = \operatorname{Re} T + i \operatorname{Im} T$ it follows that $T^* \supset (\operatorname{Re} T)^* - i (\operatorname{Im} T)^*$ from which we derive the rest of the statement.

Theorem 3. An operator T is symmetric (resp. self-adjoint) iff

- (0') $D(T) \subset D(T^*)$, $(resp. D(T) = D(T^*))$
- (1') $D(\operatorname{Re} T)^* \subset D(T^*);$
- $(2') \quad ||T^*x|| < ||(\operatorname{Re} T)^*x||$

for all $x \in D(\operatorname{Re} T)^*$.

Proof. If (0'), (1') and (2') are true, then T is formally symmetric by Lemma 3 and Theorem 2. Because of (0'), T is symmetric (resp. self-adjoint). The necessity of (0'), (1') and (2') is obvious.

REFERENCES

- [1] C. K. Fong, V. I. Istratescu, Some characterizations of Hermitian operators and related classes of operators. I, Proc. Amer. Math. Soc. 76 (1979), 107-112.
- [2] F. Kittaneh, Some characterizations of self-adjoint operators, Acta Sci. Math. 47 (1984), 441–445
- [3] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1980.

Institut za primenjenu matematiku i elektroniku Kneza Miloša 37 11000 Beograd Yugoslavia (Received 23 12 1988)