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DISCRETE APPOXIMATION IN THE INNOVATION THEORY
OF SECOND-ORDER CONTINUOUS PROCESSES

Zoran Ivkovié

Abstract. A simple test for the multiplicity of a given process is proposed. The consistency
of a discrete approximation of this test is proved. A statistical approach is also proposed.

Introduction. Let {X(t),0 < t < 1} be a real second-order continuous
process, EX(t) = 0 and let £2(X;t) be the linear closure (in the mean square
convergence) of {X (u),u < t}. L2(X) = CI(J, £L2(X;t)) is the separable Hilbert
space with the inner product (X,Y) = EXY. Assume that {X(t)} is purely-
-nondeterministic process, i.e., (), £2(X;t) = 0.

The Cramer representation of {X (¢)}, [1], is

N t
X(t) = Z/ g (t,u) dVi(w), N < oo, (1)
k=170

where: 1. The so-called innovation processes {Yp(t),0 < t < 1}, &k =
1,...,N, are mutually orthogonal wide-sense martingales for which L£(X;t) =
@Efc\;l L2(Yy;t); 2. The measures dF(t) = d||Y;(t)||?, k =1,...,N, are ordered
by the absolute continuity dF; > dFy > --- > dFy. Let pg be the class of all
measures equivalent (by the absolute continuity) to dFy: The chain

prL=>p22- 2PN (2)

is called the spectral type of {X(¢)} and N is the multiplicity of {X(¢)}. The
multiplicity function N(t), 0 < ¢t < 1 is the number of Fi(s), 0 < s < 1 having
s =t as the increasing point, N = sup, N(t). The representation (1) is not unique,
but the spectral type (2) is uniquely determined by the correlation function (s, t) =
EX (s)X(t). It was shown in [1] that for any chain (2) there exists a continuous
process having (2) as its spectral type. We may suppose that {X (¢)} is a Gaussian
process, because we are in the frame of the correlation theory.
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Let P; be the projection operator onto L£o(X;t). Consider the process
{Z.(t), 0 < t < 1} defined by Zi(t) = BX(1) = Yry fo 9x(1,u)dVi(u). It
is evident that {Zi(t)} is the wide-sense martingale and that L2(Z;t) reduces
{Ps, 0 < s < 1}. Also the measure dG; generated by G1(t) = [|Z:(t)]|? =
PO 1f (1,u) dF)(u) belongs to the maximal class p; in (2). Using {Zi(t)}
as one 1nnovat10n process we rewrite the Cramer representation of {X(¢)} by
X(t) = Egzl fot hi(t,n) dZy(n). Let Q¢ be the projection operator onto La(Z1;1).
Consider

8(t) = X(t) — QX (2) 2/ hy(t,n)dZp(n) and

d*(t) = |l6()|* = Z/ hi(t,n)dGr(n), Gi(t) = ||Ze@®)]*-
k=270

Evidently: If d*(t) > 0 for some 0 < t < 1, than N > 2. If d*(t) = 0 for
some 0 < t < 1 then the spectral function N(s) =1 for 0 <s <t. If N0O)=N
then the condition d*(t) > 0 for all 0 < t < 1, is also necessary for N > 2.

Discrete approximation and its consistency. In this section we find one
discrete approximation d(¢,n) of 6(t) such that ||§(t;n) — 6(¢)||* — 0, n — oo for
each ¢t > 0. In [2, §8], we find the motivation for such approximation.

Consider for n = 1,2,..., the partition of [0,1] by the points k27", k =
1,...,2" Let L3(X;t;n) be the linear closure over {X(j27"),j27" < t}. We
conclude that L>(X;t) = Cl(U,, £2(X;t;n)) by the separability of £»(X) and
Lo(X;t;1) € Lo(X;¢;2) C .... Denote by Py, the projection operator onto
L2(X;t;n) and consider the process {Z,(t), 0<t<1} defined by Z;,(t) = P, X (1).
Evidently, || Z1,(t) — Z1(t)||* = 0, n — oo for fixed ¢.

Ezample. Let ¢(t),0 <t <1, ¢(1) = 1 be a non-constant continuous function
such that at t =g, 0 <o < 1, ¢(tg) # 1

[#(t0) = é(to — W)]*/h — 00, B L0. (3)
Let {X(t), 0 <t <1} be defined by
X(t) = Wi(t) + o(t)Wa (1), (4)

where {W;(t), 0 <t < 1},i=1,2, are independent standard Wiener processes.

The multiplicity of more general processes of this form was studied in [3].
Consider the projection Z1,(tg) of X (1) onto La(X;to;n), to = ko2~ ™. It is easy
to see that, (h =27")

(X(1) - [aX (to) + bX (to — h)], X (u)) = 0
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for all u < tg — h if

a=(1-¢(to—h))/Ado, b= (dte) —1)/A¢o, Ao = ¢(to) — ¢(to — h).
Rewrite

Zin(to) = aX (to) +bX (to — h) = X (to) + [1 — ¢(to)][X (to) — X (to — h)]/Ago.
There exists, under the assumption (3), the mean-square limit

[X (to) — X (to — h)]/Ado — X (to), h 10 and X's(to) = Wy (to). (5)

Indeed,

11X (to) — X (to — h)]/Ado — Wa(to)||?
/ )2 - [[Wi(to) — Wi (to — h) + ¢o(to — h)[Wa(to) — Wa(to — h)]|I?

1/(Ado
h/(Ago)? - [1 — ¢?(to — h)] - 0, hlO.

So the innovation process {Z;(t)} at t = tq is
Zi(to) = lim Zin(t) = X (to) + [1 — 6(t0)1X"5(t0) = Wi(to) + Wa(to).  (6)

We conclude, from (5) and (6), that Wi (t9) and Wa(tg) belong to Lo(X;t0). If
we state Zz(t()) =W (to) - Wy (to) we have Z2(t0) € Ez(X;to) and Z; (to)J_Zg(to).
From (4) we obtain

X(to) = [1 + ¢(t0)1/2 - Z1(to) + [1 — $(t0)]/2 - Z2(to)- (7)

Finally, we have from Q(t9)X (to) = [1 + ¢(t0)]/2 - Z2(to) that

@ (to) = [18(t0)II” = II[1 = ¢(20)]/2 - Z2(t)II* = [1 = $(t0)]*/2 - to > 0.

We conclude that the multiplicity N of {X (¢)} is greater than one. Actually (7) is
the Cramer representation of {X (¢)} at the point ¢ = ¢¢, but we may not conclude
that {Z1(¢)} and {Z2(t)}, Z2(t) = Wi (t) — Wa(t) are the innovation processes of
{X(t)}. We do not even know whether G1(t) is continuous.

We assume in the rest of the paper that G1(t) = ||Z1(¢)||?, 0 <t < 1, is a con-
tinuous function. Under this assumption the satement that pointwise convergence
[|Z1n(t) — Z1(¢)|| = 0, n = oo becomes uniform, is easily proved.

Let @y, be the projection operator onto L2(Z1,;t).
ProPOSITION. For fized t ||QunX(t) — Q: X (t)]| = 0, n — oo.

Proof. For arbitrary € > 0 there exists a finite partition {A; : i =
1,...,M(t)} of [0,t], such that ||Q:X(t) — QPX(t)]| < &, where Qf is the
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projection operator onto {Z1(4A;) : i = 1,... ,M@®)}, (A = [a, 0], Z(A) =
Z(a) — Z(B)). Denote a = min; [|Z(A:)[| > 0, s = Z1(A:)/[|Z:(Ad)l; min =
Zin (D) /|| Z1n(A)||. From Z1,(t) = Zi(t) follows that for each &' > 0 and all
n>n'(0): 1Z0(A0) = Zun(A)l| < &' or [[IZ4(A0) s = [ Zun( Al || < " So

1Z1n (D)l = [|Z2(A)|| + i, |03 <€, and

| 1122 (A (i — min) — Oimin|| < €'

Finally, ||m; — ninll < 2¢'/]|Z1(A})|| < 2¢'/a for all n > n(e'). Since, QR X (t) =
SO (), m5)m: and QunX (8) = XD (X (1), Min)im we have

QX () — QX (1)

M(t)
< 3 (X, ~ X, nl] + | X, min) e — )]
. M(t)
< 21X O Ims = minll < 40X (@)(M () /a) - €.
i=1

This way [|Q:X (t) — Qin X (?)|| < € +4||X(@)||(M(t)/a) - €'. For any g9 > 0 we
choose, say, € = €9/2 and we find {A;}, M(t),a. Then we have for sufficiently
small ' = £'(eo, M (t),a), that 4|| X (¢)||[(M(t)/a) - €' < €0/2 for all n > ny(e').
Finally ||Q:+X (t) — Qtn X (t)|| < €0 for all n > na(eo).

One statistical approach. Let ¢, 0 < t < 1, be fixed, say, t = 1/2.
Consider d® = d?(1/2) and d2 = [|X(t) — Q12,,X (1/2)|]>. Then €2 =d? — d* =
1Q1/2,, X (1/2) — Ql/gX(l/Z)H2 is the square error of the approximation.

We consider the following admissible family X' of the processes {X(¢)}: The
multiplicity function satisfies N(0) = N. If the multipliplicity N = 1 (i.e. d? = 0)
for {X(t)} € X then €2, <e?,n' >n >ng. If N > 2 (i.e. d> > 0) then the error
€2 is considerably smaller than d? i.e. d2/d? ~ 1 for n > no.

Starting from one sample X (277), X(¥(2.2-7) ... XO(s),... XO(1),
i=1,...,m, m>2" n > ng, we estimate Z1,(s) as the linear regression of X (1)
on X(27"),...,X(s) for s = 27",...,1. Let Z{,(s) be this estimation. Then,
considering Z}, (27 ™),...,Z%,(271), i =1,... ,m, as the sample of { Z1,,(t)} we es-
timate Q1 /2., X (1/2) as the linear regression of X (1/2) on Z1,(27"), ..., Z1n(271).
Let S2 be the estimation of the mean square error d2 of this regression. Then
mS2/d2 has x?-distribution with m — 2"~! — 1 degrees of freedom.

Let the null hypothesis be Ho(N > 2) and the alternative hypothesis be
H{(N =1). Consider two partitions n(2) and n(1), n(2) > n(1) > ng. In our case
of the admissible family X testing Ho(N > 2) against H; (N = 1) becomes testing
Ho(dp2) = dn(1)) against Hy(dy(2) < dp(1))- Using two independent samples of the
sizes m(2) > 22 and m(1) > 2™V we proceed with the standard Fisher F-test.
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