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ON HYPERCYLINDERS IN CONFORMALLY
SYMMETRIC MANIFOLDS

Ryszard Deszcz

Abstract. Hypercylinders in conformally symmetric manifolds are considered. The main
result is the following theorem: Let (M, g) be a hypercylinder in a parabolic essentially conformally
symmetric manifold (N,q), dim N > 5 and let U be the subset od N consisting of all points of

N at which the Ricci tensor S of (N,9) is not recurrent. If U N M is a dense subset of M , then
(M, g) is a conformally recurrent manifold.

1. Introduction. Totally umbilical submanifolds in locally symmetric,
recurrent, conformally flat, conformally symmetric and conformally recurrent man-
ifolds were investigated by many authors (e.g. [6], [10], [19], [21], [24]-27], [29],
[33]). An important part of these investigation treats problems concerneing totally
umbilical hypersurfaces in these classes of manifolds (e.g. [7], [8], [20], [28], [30]).
On the other hand, totally umbilical hypersurfaces, as well as hypercylinders,
are special examples of quasi-umbilical hypersurfaces. Certain results on quasi-
umbilical hypersurfaces in locally symmetric, recurrent and conformally flat man-
ifolds are presented in [3], [34] and [22] respectively. Moreover, hypercylinders
in locally symmetric and conformally flat manifolds were studied in [9] and [37]
(see also [2]) respectively. We shall continue study in this direction considering
hypercylinders in conformally symmetric manifolds.

Let (N,g) be an n-dimensional, n > 4, semi-Riemannian manifold with the
metric tensor ¢ and let V be the Levi-Civita connection of (N,g). Let (N,g) be

covered by a system of charts {17 ;2" }. We denote by gys, { Tt }, %s, ﬁrstu, 5’rstu,
s

S;s and K the local components of the metric tensor g, the Christoffel symbols, the
operator of covariant differentiation, the Riemann-Christoffel curvature tensor é,
the Weyl conformal curvature tensor C, the Ricci tensor S and the scalar curvature
K of (N,g) respectively, where r,s,t,u,v,w € {1,2,...,n}.
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We have

~ K o o
Crstu = Rrstu + m(grugst - grtgsu)

n—2 (grugts + ?]tsgru - .artgsu - gsus;?‘t)- (]-]-)

A (0, k)-tensor field T on N is said to be recurrent [36] if the condition
T(Xy,..., Xe)VT(V1,... ,Yi; 2) =T(Yi, ... ,Yo)VT(Xy, ..., Xy; Z)

holds on N, where X1,... , X, Y1,...,Ys, Z € X(IN), X(N) being the Lie algebra
of vector fields on N. In particular, if VT vanishes on N , then T is called
parallel. A manifold (N,g), n > 4, is said to be locally symmetric [31] (resp.
conformally symmetric [4]) if its tensor R (resp. tensor 5) is parallel with respect
to V. Further, a manifold (N,g), n > 4, is said to be recurrent [38] (resp.
conformally recurrent [1] or Ricci recurrent [32]) if its tensor R (resp. tensor C or
tensor S) is recurrent. A conformally symmetric manifold (V,§) which is neither
locally symmetric nor conformally flat is called essentially conformally symmetric
or shortly e.c.s. manifold. Various examples of e.c.s. manifolds are given in [35],
[11] and [18]. All e.c.s. metrics are indefinite ([16, Theorem 2]). Any e.c.s. manifold
(N, ) satisfies the following equation ([18], [17])

FC(X,Y,Z,W) = S(X,W)S(Y, Z) — S(X, Z)S(Y, W)

for some function F, where X,Y,Z,W € X(M). F is called the fundamental
function of (N,g). All e.c.s. manifolds can be divided into the following five non-
empty and mutually disjoint classes (according to the behaviour of the Ricci tensor
and the fundamental function F' [12]):

Class I. Ricci recurrent ones (they all satisfy F' = 0).

Class II. Parabolic e.c.s. manifold [15] (satisfying F' = 0 identically but not Ricci
reccurent).

Class II1. Elliptic ones [14] (F' = constant # 0, semidefinite everywhere).
Class IV . Hyperbolic ones [13] (F' = constant # 0, semidefinite nowhere)
Class V. Those with F' non-constant.

LEMMA 1 (Theorem 7, 8, 9 and formula (6) of [17] and Theorem 7 of [18]).
Let (N,3) be an e.c.s. manifold and let {U;x"} be a chart on N. Then the following
relations are satisfied on U:

VoCrstu = 0, (1.2)
FCrstu = SurSts — StrSus, (1.3)
ViSis = ViShs, (14)
K =0, (1.5)
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§U7'Cvstu = 07 §vr = gvts’vtra (16)
6w%v-érstu - 6v%w-ﬁrstu = 07 (17)
ngérstu + g’vréswtu + §vséwrtu =0. (18)

2. Hypercylinders. Let M be a hypersurface in an n-dimensional, n > 4,
semi-Riemannian manifold (IV, g) and let the tensor g, induced by the metric tensor
g, be the metric tensor of M. Moreover, let " = z"(y®) be the local expression of
M in N. Then we have g, = g,sB/;, where

_B7"1...1")c — Bgi . B’I‘k Bg = aaxr’ 80, = 3/(611‘1);

a1...0k Qg ?

a
and g,p are the local components of the tensor g. Further, we denote by {b },
c

Rapeds Sads Cabed and K the local components of the Christoffel symbols, the
curvature tensor R, the Ricci tensor S, the Weyl conformal curvature tensor C' and
the scalar curvature K of (M, g) respectively. Here and below, a,b,c¢,d, e, f, h,i,j €
{1,2,... ,n—1}. Let N be the local components of a local unit vector field normal
to M. Then we have the following relations

GsN'N* =g, G ,NTB:=0, g®Bri=3"—ecN'N*, e=+1. (21)

The hypersurface (M, g) is said to be a cylindrical hypersurface or shortly a
hypercylinder (cf. [5, pp. 147-148], [9]) in (IV,q) if the second fundamental tensor
H of (M, g) satisfies on M the condition H = fu ® u, where § is a function and u
a 1-form on M, respectively. Let p be a point of the hypercylinder (M, g). Then
the following equality

Hoa = Buguq (22)

holds on some neighbourhood U C M of p, where H,; and u, are the local
components of H and u on U, respectively. We denote by V the operator of
the van der Waerden-Bortolotti covariant derivative. Then, in virtue of (2.2), the
Gauss and Weingarten formulas for (M, g) in (N, g) take on U the following form

vaB:i =eH, yN" = EﬁuaudNr, (23)
VoN" = — aCQCng = _ﬂuaudB;a ut = gdaua’ (2.4)

respectively. Furthermore, by (2.2), the Gauss and Codazzi equations for (M, g) in
(N,g) can be expressed on U as follows:

Rabea = RrotuBiies + &(HaaHye — HacHpa) = Regru Brind, (2.5)
Vied = N™Rystu Bit% = VaHpe — VeHyq = up(Baue — Betia)
+ B(ucVaup — uaVeup + up(Vaue — Veua)), Be=VeB.  (2.6)
From this, by contraction with g®¢ and making use of (2.1), we obtain
va = 9"Viea = N" S5 B
= g%upuc By — uBrug + B(—u"Viug — (Vau)ug + 20" Vauy).  (2.7)
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LEMMA 2. Let (M,g) be a hypercylinder in a semi-Riemannian manifold
(N,9), n > 4. If p is a point of M such that the relations (2.2) and 8 # 0 are
satisfied at every point of some neighbourhood U C M of p then the equality

Vied = upts" Viea + ug(u Vaen, + upve) — ue(uVian + upvq) (2.8)
holds on U.
Proof.. From (2.5), by making use of (2.3) and (2.6), it follows that
VeRased = Biaped VoRrstu + €Bue(uaVica = upVaca + ucVaab = uaVeas). (2.9

This, by contraction with ¢g°¢ and an application of (2.1), (2.7) and the identity

7"V Rrstw = VauSis — ViSus, (2.10)
yields o o
VeSaa = BUii VuSts —eN°N'BUV y Ryspy + £BuUc Koa, (2.11)
where
Kaa = UqVq + uqvq + u"Vocn + u"Vepn, (2.12)
k= 9K 4 = du"up. (2.13)

On the other hand, contracting (2.9) with ¢%¢ and using (2.10) and (2.2), we find
VaSse = VeSoa = Byl (VuSis — ViSus) — eN"N"BitiVy Ry
+ &6(Vied — uptt Vieg — et Vapn + uqu” V). (2.14)
The following equality follows immediately from the second Bianchi identity
NYN"BV y Resty = N'N"BYEV y Riyrs — N'NT BV, Ryors,
which, in virtue of (2.11) and (2.12), turns into
eN"N"BHUN , Rrgtu = By (VoSru — VieSou) + VeSas — VaSe
+ eBua(uVepn +u"Vien + upve) — ue(u" Vapn + u"Voan + upva)-
The last equation, together with (2.14), completes the proof.

LEMMA 3. Let (M,g) be a hypercylinder in a semi-Riemannian manifold
(N,9), n > 4. If p is a point of M such that the relations (1.7) and (2.2) are
fulfilled ot every point of some neighbourhood U C M of p then the equalities

V"Vier =0, (2.15)
uPvpwape =0 (2.16)

hold on U, where
wacd = B(ua(Vaue — Veua) + ue(Vota — Vate) + ua(Veta — Vaue)).  (2.17)
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Proof. Transvecting (1.7) with ngzgg}” and using the Ricci identity, (2,1),
(2.5) and (2.6), we find

vaeRabcd - Vevf-Rabcd
+ 5(_‘/bchaef + Vacd‘/bef - Vdab‘/;ef + ‘/;adeef) =0. (218)

Next, contracting the above equation with g®? and g*¢ and applying (2.7) we get
(2.15). Finally, (2.16) is an immediate consequence of (2.15) and the following
identity

UaVied + UcVoda + UaViae = UpWacd - (219)

Our lemma is thus proved.

Remark. In the next sections we shall consider hypercylinders satisfying
certain additional conditions. Let (M, g) be a hypercylinder in a manifold (V,9)
and let p be a point of M such that the relation (2.2) is fulfilled at every point of
some neighbourhood U C M of p. We assume that at every point of U one of the
following relations is satisfied:

g ugug =1, (2.20)
9*"uqug = -1, (2.21)
9" %uqug = 0. (2.22)

Thus the scalar g*%uqug is a constant on U. This fact implies
uhVup = 0. (2.23)

Transvecting now (2.6) with u®, u¢ and u? respectively and applying (2.20)—(2.23)
we easily get

Uthcd = n(ﬁduc - ﬂcud + ﬁ(vduc - chd))a (224)

uhuthjd = 1’}2ﬂd - n(uhvhud + ﬂuhvhud), (2.25)

uWVier = (W Brue — nBe)up + (weu"Viuy — nVeup + upuViyue)  (2.26)

respectively, where n € {—1,0,1}.

3. Hypercylinders in conformally symmetric manifolds.

LEMMA 4. Let (M, g) be a hypercylinder in a conformally symmetric manifold
(N,9), n > 4 and let p be a point of M such that the conditions (2.2) and 8 # 0
are satisfied at every point of some neighbourhood U C M of p. Then we have:

(i) the equality

k
vec'abcd - E/Bue (m(gadgbc - gacgbd)

+ (ubuc - k)Kad + (uaud _ Yad )Kbc
n—3 n—3
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_ (uauc _ ngicg,)Kbd — (ubud _ ngid?))]{ac) (3.1)

holds on U.
(ii) If at every point of U (2.21) is fulfilled then VC = 0 holds on U.

Proof . (i): Transvecting (1.2) with e N* N*B?"% and using (1.1) and (2.1) we
get

_6NsNthru€UErstu — _Beda V’USUT + E(VUSUT)N N Begad Be (VUK)gad )
n—2 (n—1)(n-2)

ead

Substituting this in (2.11) we find

Bg(%(%vgm") _ VeSaa  efu.Kag
n—2 " n-3 n-3
ENTNUB: (6v§ur)gad B;’ (6v§)gad
n-Dn-2)  (-1)n-2)

(3.2)

Contracting (3.2) with g%¢ and using (2.1) and (2.13) we obtain

2eN"N¥B'V S, V.K eBfku, 2B'V,K
n—3 n—3 n—3 n—1

Now, by the above equation, (3.2) takes the form

B 9,80 VeSar  BuicKaa

eda —
n—2 n—3 n—3
BZ; (VUK)gad eBkUcGad (veK)gad

m—1)n-2) 20-2)(n-3) 2(n—-1)(n-2)"
But this, together with (2.9), (1.1) and (1.2) gives

VeCabed = Eﬁue (Ua%cd — upVacd + cVaap — uaVead

(3.3)

n—3 + (n —2)(n —3)

On the other hand, (2.8), (2.12) and (2.13) yield

_ gadec + gchad - gachd - gbdKac k(gadgbc - gacgbd))

ua%cd - ubVacd + uchab - uchab
= uaudec + UbucKad - uauchd - ubudKac . (34)

Now (3.3) turns into (3.1), completing the proof of (i).

(ii): Identity (2.8), in virtue of (2.24), (2.26), (2.7) and (2.21), reduces to
Vibea = 0. Now (3.3) completes the proof.

From Lemma 4(i) the following proposition follows easily.
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PROPOSITION 1. Let (M, g) be a hypercylinder in a conformally symmetric
manifold (N,g), n > 5 and let p be a point of M such that the conditions (2.2),
(2.20) and B # 0 are fulfilled at every point of some neighbourhood U C M of p.
Then the condition VC = 0 is satisfied on U if and only if the relation

k

Kog=——
¢ 2(n—-2)

((n = 3)uaud + gaa)

holds on U.

LEMMA 5. Let (M, g) be a hypercylinder in a conformally symmetric manifold
(N,9), n>5 and let p be a point of M such that the relation H,q = 0 holds at p.
Then the tensor VC wvanishes at p.

Proof. We note that the equality
ve (érstuBgzzg) = nggig%vérstu + érstuBgigveBg - CsrtuBgzgveB[f
+ 5turng;gveBz - éutrsBZ;iveBg

holds on some neighbourhood U of p. This, by (1.1), (2.5), (1.2) and (2.3) reduces
at p to

(Vel?) (9adgbc — GacFbd)
edlabe 3.5
Veltabed + 0" = 2) (3:5)
1 ~ ~ ~ ~ ~ ~ ~ ~
- n—2 (gchg;Zilvaru + gangl‘;sctvast - gdeg;‘gvart - gacnggvasu) -

Next, contracting (3.5) with g”¢ we obtain

Bvruﬁv:g;u _ VeSad (vef{v)gad (vvgst)Bglfctgbcgad

ead _

n-2  n-3 (n—-1)(n-23) (n—2)(n—23)

Substituting this into (3.5) we get our assertion.

LEMMA 6. Let (M, g) be a hypercylinder in a conformally symmetric manifold
(N,9), n > 5 and let p be a point of M such that the relations (2.2) and 8 # 0 are
satisfied at every point of some neighbourhood U C M of p. If the equality (2.22)
is fulfilled at p then the tensor VC' vanishes at p.

Proof.. Transvecting (2.6) with 4% and u? and using (2.22) we get
u"Voen = u" Brupue + BucuVaup + upu" Vi, — upuVeu) ,
WViea = BlucuV gup — uquV ouy)
respectively. Moreover, from (2.7), by (2.22), we obtain
vg = —u"Brug + ﬂ(2uhvduh - (thh)ud - uthud).

Now we can verify that the identity (2.8), by the above three relations, reduces to
Vbea = 0. Finally, (3.3) completes the proof.
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4. Hypercylinders in non-Ricci-recurrent parabolic e.c.s. manifold-

LEMMA 7 [15, Lemmas 1 and 4]. Let (N,g), n > 4, be a parabolic e.c.s.
manifold. If p is a point of N such that

(gurﬁvgts - §ts§v§ur)(p) # 0; (41)

then there exists a neighbourhood U of p with two vector fields A and B which are
unique (up to a sign of A) determined by the following two conditions

G.—eA A, e=+l, (4.2)
6u§7's = Bugrs + Brgsu + Bs§u7'> (43)

where A, and B, are the local components of A and B respectively. The vector
fields A and B satisfy on U the following relations:

G°A A, =0,  §PAB, =0, (4.4)
VoA, = (1/2)A,.B, + A, B,, (4.5)
VB, = B,B, + 3AB, A, + M, B, + 0 A, A,, (4.6)

where A and o are some functions on U. Moreover, we have
57‘87511/ = _(}(ATBS - AsBT)(AtBu - AuBt) (47)
for a certain (uniquely determined) function .

LEMMA 8. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold (N,g),
n >4 and let p be a point of M such that the conditions: (2.2), (2.20), (4.1) and

N"A, #0 (4.8)
are fulfilled at every point of some neighbourhood U C M of p. Then the equality
Wape = 0 (4.9)
holds on U.
Proof. The equality (2.16), in virtue of (2.7), (4.2) and (4.8), give

uhAhwabc = 0, (4.10)
where
A, =A,Bj}. (4.11)
Suppose that at a point ¢ of U we have
wabc(q) # 0. (412)

Then, by (4.10), the equality
ul A, =0 (4.13)
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holds on some open subset U’ C U. From this we obtain
ARVl +uhv A, = 0. (4.14)

Using (4.5) and (2.3), we can easily verify that the following equality is fulfilled
on U

Veda = AaBo/2+ ABy + BN Ayugu,, (4.15)
B. = B,B. (4.16)
Substituting (4.15) into (4.14) and applying (4.13) we get
ARV ou + u"BLA, + eBN" Ayu, = 0. (4.17)
The formula (2.17), because of (2.7), (4.2) and (4.8), yields
AMVyer =0, (4.18)
where A" = go* A,. Thus (4.18), by (2.6) and (4.13), gives
AR (uyV gup — ugVeup) = 0,
whence, by (4.17), it follows that
uP By (ucAg — ugA.) = 0.

If (ucAg —ugAc)(q) = 0 then also A4(q) = 0. The last equation, in virtue of the
relation
g% A, Ag +e(NTA,)? =0, (4.19)

which follows immediately from (4.4) and (2.1), gives (N"A,)(¢) = 0. But this
contradicts (4.8). If (u"By)(g) = 0 then from (4.7), by transvection with N” Bgtuy®
and the use of (1.1), (2.1), (4.2), (4.11), (4.16), (1.5) and (4.13), we obtain

("Vhea + (e/(n — 2))N" A (Acua — Aguc))(g) = 0. (4.20)
On the other hand, transvecting (2.19) with u® we get
U Vied + et Viaa + ugu" Vige = Wacd-
This, by (4.20), gives wqeq(q) = 0, a contradiction. Our lemma is thus proved.

LEMMA 9. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold (N,q)
and let p be a point of M such that the conditions (2.2), (2.20), (4.1) and

NTA4, =0 (4.21)
are fulfilled. Then the equality (4.9) holds at p.

Proof . First of all we note that at p the following relation

Aa#0 (4.22)
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is satisfied. In fact, if we had Aq = 0 the, by (4.21), we get A(p) = 0 and S(p) = 0,
which contradicts (4.1). Transvecting now (1.8) with N*BY$% and making use of
(4.2), (4.22), (4.21), (2.1) and (2.6), we find

AoVieda = ApVacad- (4.23)

Multiplying (4.23) by uy and summing the resulting equality cyclically in f,c,d
and applying (2.19) we obtain (Ajup — Aptg)wseq = 0. Assume that A up — Apu,
vanishes at p. Then we have

A, = uApu,. (4.24)

So, (4.23) turns into u® Aj (e Viea — upVyeq) = 0. Summing this cyclically in a, ¢, d
and using again (2.19), we get u"Apw,cqa = 0. From (4.24), in virtue of (4.22), it
follows that u" Ay, is non-zero at p. Thus the last equality completes the proof.

PROPOSITION 2. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold
(N,9), n > 5, and let p be a point of M such that the conditions: (2.2), 8 # 0,
(2.20) and (4.1) are fulfilled at every point of some neighbourhood U C M of p.
Then C' is a recurrent tensor on U.

Proof . The identity (2.19), in view of Lemmas 8 and 9 reduces to
o Vied + UcVida + dVac = 0. (4.25)
This, by transvection with u?, yields
Voed = wa" Voch — et Voan. (4.26)

On the other hand, transvecting (4.7) with N"Bj!% and using (1.1), (2.6), (4.2),
(2.1), (1.5) and (4.7), we find
eNTA,
n—2
where Dy = N"B,A, — N"A,.B,. Substituting (4.27) into (4.26) and (4.25)
respectively, we obtain

Voca = (I)Db(udcc - Uccd)

+ ((eN’"Ar)/(n — 2))(uhAh (udgbc - ucgbd) — ub(Acud - Aduc)), (4.28)

@Dy (uq(AcBy — AgB;) +uc(AaBa — AuBa) + ui(AoB:. — AcB,))

eNT A,
n—2 (ugAdq — uaAa)goe

+ (UcAa - UaAc)gbd + (udAc - ucAd)gab) =0 (4'29)

‘/bcd =

(Aagbe — Acgva) + 9Dy (AcBg — AgB.), (4.27)

resepectively, where C, = u"ByA. — u" Ay B.. From (4.29), by transvection with
uu’, we get
®u"Dp(A.Bg — AgB.) = uaC. — u.Cy. (4.30)

Further, asumming (4.28) cyclically in b, ¢, d, we obtain

Db(udCC — uch) + Dc(ude — udCb) + Dd(uCCb — chc) =0,
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which, by multiplication with u; and antisymmetrization in b, f, gives
(ugDy — upDys)(ugCe — ucCq) = (Cpuy — Cyup)(ugDe — ucDy).
But this implies
Ce(usDy — upDy) = (D, — uhDhuc)(qub —upCy). (4.31)
If C.(p) = 0 then (4.28) turns into

eNT A,

Vied = o (u" Ap (wagee — wegpa) — up(Acua — Aque)).

Using this we can rewrite (3.3) in the following form

k
VeCabed = €PU, =2 =3 (9adgbe — GacGbd)
2eN"A,ul Ay,
?(uaudgbc + UpUcGad — UaUcGbd — ubudgac)
1
- n—_?)(gadec + gbeKad — 9acKpa — gpaKac), (4.32)

which reduces to VC = 0. If C.(p) # 0 then (4.31) and (4.30) yield
Ube — ubDf = T(Abe — AfBb), T € R. (4.33)
Moreover, using (4.28) and (4.33) we obtain

e Vocd — UbVaca + UcVaap — uaVeay = ((eN"A)/(n — 2))(uaAg + uaAa)goe
+ (ucAp +upAc)gad — (UaAc + ucAs)goa — (UbAd + ugAp)gac)
- 2‘I>T(AaBb - AbBa)(Ach — AdBc)-

This, by an application of Cpety BT51 = —®(A,By — ApB,)(A.Bg — A4B,), (1.1),
(2.5), (1.5) and (4.2), turns into

UaVoed — UpVacd + UeViab — uaVeah = 27 Rapea

eNTA,
+ n—2
— (uaAc +ucAa)gbd — (upAd + uiAp)gac)

2e
T (ApAcgad + AaAdghe — AgAcgss — ApAagac). (4.34)

((ueAq +uaAa)ge + (ucAp + upAc)gad

+

n—2
We have now two possibilities: (a) 7(p) = 0 and (b) 7(p) # 0. (a) In this case (3.3),
by (4.34), becomes
veC’abcd = Eﬂue (gadLbc + gbcLad - gacLbd - gdeac
+ (k(gadgbc - gacgbd))/((n - 2) (n - 3)))7 (435)
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where Ly, = (eN"A,)(upAc + ucAp)/(n — 2) — Ky /(n — 3). From (4.35) it folows
that VC' = 0 at p. (b) Using (4.34), we can present (3.3) in the form

k
eCabed — e\ 7 av/_ o\ \Ya ¢ — Yac 2 abc
VeCapea = eBu ((n_Q)(n_?))(gdgb 9acgbd) + 27 Raped
eNTA,
+ (9ad(ucAp +upAc) + gpe(uaAda + vaAs) — gac(upAq + uaAs)

n—2
1
- gbd(uaAc + ucAa) - n—_3(gadec + gchad - gachd - gbdKac)

2eT
n—2

+ (gadAbAc + gbcAaAd - gacAbAd - gbdAaAc)> )

which can be rewritten in the following form

k—27K
VeCa cd = e\ 7 v/ o\ \Ya c — Yac
bed = EPU ((n —2)(n—3) (9adgvc — GacGva)
+ 2TCabcd + gadLbc + gbcLad - gacLbd - gdeac) (436)
where
2T 1 eNTA 2er
Ly. = She — Ky, " (u.A A, —— A A..
b n_3° T 3 be + _2(U b+ Up )+n—2 b

But from (4.36) we obtain V.Cypeq = 278ueCaped, Which states that C' is recurrent.
The last remark completes the proof.

Finally, combining Lemmas 5,6,4(ii) with Proposition 2 we immediately get
the following theorem.

THEOREM 1. Let (M,g) be a hypercylinderjn a parabolic essentially confor-
mally symmetric manifold (N,g), n > 5 and let U be the subset of N consisting of

all points of N at which the Ricci tensor S of (N,g) is not recurrent. If U N M is
a dense subset of M then (M, g) is a conformally recurrent manifold.
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