ON THE ESTIMATES OF THE CONVERGENCE RATE OF THE FINITE DIFFERENCE SCHEMES FOR THE APPROXIMATION OF SOLUTIONS OF HYPERBOLIC PROBLEMS

Boško Jovanović

Abstract. Some new estimates of the convergence rate for hyperbolic initial-boundary value problems are obtained. For a special case a convergence rate estimate compatible with the smoothness of data is obtained.

1. Introduction

For a broad class of finite difference schemes for elliptic boundary value problems, of major interest are the estimates of the convergence rates compatible with the smoothness of data [3, 7, 9], i.e.

$$||u-v||_{W_{2,h}^k} \le C h^{s-k} ||u||_{W_2^s}, \qquad s > k.$$

Here u denotes the solution of the original boundary value problem, v denotes the solution of the corresponding finite difference scheme, h is the discretization parameter, W_2^s denotes the Sobolev space, $W_{2,h}^k$ denotes the discrete Sobolev space, and C is a positive generic constant, independent of h and u.

Analogous estimates hold in the parabolic case [4]:

$$||u-v||_{W_{2,h}^{k,k/2}} \le C h^{s-k} ||u||_{W_2^{s,s/2}}, \quad s > k.$$

To the contrary, in a hyperbolic case, we only have weak estimates, not compatible with the smoothness of data $[\mathbf{5},\ \mathbf{6}]$:

$$||u-v||_{C_{\tau}(W_{2,h}^k)} \le C h^{s-k-1} ||u||_{W_2^s}, \quad s > k+1.$$

Recently, for the hyperbolic projection difference scheme, Zlotnik [12] has obtained a convergence rate estimate of the order of 2(s-k)/3. In this paper we show that, in the same cases, it is possible to obtain better estimates.

2. State of the problem, preliminaries and denotations

As an example let us consider the initial boundary value problem (IBVP) for the equation of the vibrating string in the domain $Q = (0, 1) \times (0, T]$:

(1)
$$\begin{aligned} \partial^2 u/\partial t^2 &= \partial^2 u/\partial x^2, & (x,t) \in Q, \\ u(0,t) &= u(1,t) = 0, & t \in [0,t], \\ u(x,0) &= u_0(x), & \partial u(x,0)/\partial t = 0, & x \in (0,1). \end{aligned}$$

Let L_q , $q \ge 1$, be Lebesgue spaces of integrable functions, and $W_2^s = W_2^s(0,1)$ be standard Sobolev spaces [11]. Let us also introduce spaces $C(W_2^s)$ and $L_q(W_2^s)$ of functions defined on [0,T] with values in W_2^s , and norms

$$\|u\|_{C(W_2^s)} = \max_{t \in [0,T]} \|u(t)\|_{W_2^s} \qquad \text{and} \qquad \|u\|_{L_q(W_2^s)} = \|\, \|u(t)\|_{W_2^s}\|_{L_q} \,.$$

In the following, we shall assume that $u_0(x) \in W_2^s(0,1)$, $s \ge 1$, and can be oddly extended preserving the class, for x < 0 and x > 1. In other words, u_0 satisfies the following conditions

$$u_0^{(2j)}(0) = u_0^{(2j)}(1) = 0, j = 0, 1, \dots, \lceil (s-1)/2 \rceil$$

The solution of the IBVP (1) satisfies an a priori estimate [8]

$$(2) \quad \max_{t \in [0,1]} \left(\left\| \frac{\partial u}{\partial t} \right\|_{L_{2}}^{2} + \left\| \frac{\partial u}{\partial x} \right\|_{L_{2}}^{2} \right) = \left\| \frac{\partial u(x,0)}{\partial t} \right\|_{L_{2}}^{2} + \left\| \frac{\partial u(x,0)}{\partial x} \right\|_{L_{2}}^{2} = \|u'_{0}\|_{L_{2}}^{2}.$$

From (2), we obtain

$$||u||_{C(W_2^1)} \le C ||u_0||_{W_2^1}, \qquad C = \text{const} = \sqrt{1 + \pi^{-2}}.$$

Differentiating equation (1), using estimate (2), we obtain the following estimate

$$(3) \qquad \max_{t\in[0,T]}\left\|\frac{\partial^{k}u}{\partial x^{j}\partial t^{k-j}}\right\|_{L_{2}}\leq\left\|u_{0}^{(k)}\right\|_{L_{2}}, \qquad 1\leq k\leq[s]\,, \quad 0\leq j\leq k\,.$$

Hence, all partial derivatives of the solution u(x,t) of order $\leq [s]$ belong to the space $C(L_2)$. The solution can be oddly extended in x, for x < 0 and x > 1, and evenly extended in t, for t < 0, thus preserving its class.

Let $\overline{\omega}_h$ be a uniform mesh with the stepsize h=1/n on $[0,1],\ \omega_h=\overline{\omega}_h\cap(0,1)$ and $\omega_h^-=\omega_h\cup\{0\}$. Let v_x and $v_{\overline{x}}$ denote the upward and backward finite differences:

$$v_x = (v(x+h) - v(x))/h$$
, $v_{\bar{x}} = (v(x) - v(x-h))/h$.

We define the following discrete norms

$$||v||_h = ||v||_{L_{2,h}} = \left\{ h \sum_{x \in \omega_h} v^2(x) \right\}^{1/2}, \qquad ||v||_h = ||v||_{L_{2,h}} = \left\{ h \sum_{x \in \omega_h^-} v^2(x) \right\}^{1/2},$$
and
$$||v||_{W_{2,h}^1} = \left(||v||_h^2 + ||v||_h^2 \right)^{1/2}.$$

Let $\overline{\omega}_{\tau}$ be a uniform mesh with the stepsize $\tau = T/(m-1/2)$ on $[-\tau/2, T]$, $\omega_{\tau} = \overline{\omega}_{\tau} \cap (0, T)$ and $\omega_{\tau}^- = \omega_{\tau} \cup \{-\tau/2\}$. We shall introduce the following notations

$$v = v(t), \quad \hat{v} = v(t+\tau), \quad \check{v} = v(t-\tau), \quad v^j = v((j-1/2)\tau),$$

$$\overline{v} = (v+\hat{v})/2, \quad v_t = (\hat{v}-v)/\tau, \quad v_{\bar{t}} = (v-\check{v})/\tau.$$

For functions defined on the mesh $\overline{\omega}_h \times \overline{\omega}_\tau$ we define the following norms

$$\|v\|_{C_{\tau}(W^1_{2,h})} = \max_{t \in \omega^-_{\tau}} \|v(\cdot,t)\|_{W^1_{2,h}}$$

and

$$||v||_{L_{q,\tau}(L_{2,h})} = \left\{\tau \sum_{t \in \omega_{\tau}} ||v(\cdot,t)||_{L_{2,h}}^{q}\right\}^{1/q}.$$

Let S_x a S_t denote the Steklov smoothing operators in x and t

$$S_x f(x,t) = rac{1}{h} \int_{x-h/2}^{x+h/2} f(\xi,t) d\xi, \qquad S_t f(x,t) = rac{1}{ au} \int_{t- au/2}^{t+ au/2} f(x,\eta) d\eta.$$

Finally, let C denote the positive generic constant, independent of h and τ .

3. Second order finite difference schemes

We approximate the IBVP (1) by the following weighted finite difference scheme (FDS) [10]

(4)
$$v_{t\bar{t}} = [\sigma \,\hat{v} + (1 - 2\sigma) \,v + \sigma \,\check{v}]_{x\bar{x}}, \qquad x \in \omega_h, \quad t \in \omega_\tau,$$

(5)
$$v(0,t) = v(1,t) = 0, \qquad t \in \overline{\omega}_{\tau},$$

(6)
$$v^0 = v^1 = u_0(x), \qquad x \in \omega_h.$$

The solution of the FDS (4-6) satisfies the relation

$$N^2(v) \equiv \|v_t\|_h^2 + \tau^2 \left(\sigma - 0.25\right) \llbracket v_{tx} \rVert_h^2 + \llbracket \overline{v}_x \rVert_h^2 = \llbracket v_x^0 \rVert_h^2$$

From here, for $\sigma \geq 1/4$, we obtain

(7)
$$\max_{t \in \omega_{\tau}^{-}} [\overline{v}_{x}||_{h} \leq [v_{x}^{0}||_{h}.$$

The inequality (7) holds also for $\sigma < 1/4$, if

$$\tau \le h \sqrt{\frac{1-c_0}{1-4\sigma}}, \qquad c_0 = \text{const} \in (0,1) \qquad \text{(conditional stability)}.$$

From the initial conditions (6) it follows that

$$||v_x^0||_h = ||u_{0,x}||_h = \left\{ h \sum_{x \in \omega_h^-} \left[\frac{u_0(x+h) - u_0(x)}{h} \right]^2 \right\}^{1/2}$$

$$= \left\{ h \sum_{x \in \omega_h^-} \left(\frac{1}{h} \int_x^{x+h} u_0'(\xi) d\xi \right)^2 \right\}^{1/2}$$

$$\leq \left\{ \sum_{x \in \omega_h^-} \int_x^{x+h} [u_0'(\xi)]^2 d\xi \right\}^{1/2} = ||u_0'||_{L_2} \leq ||u_0||_{W_2^1}.$$

Using the inequality [10]

$$||v||_h \leq [|v_x||_h/(2\sqrt{2})],$$

from (7) and (8) we obtain

(9)
$$\|\overline{v}\|_{C_{\tau}(W_{2h}^1)} \le C \|u_0\|_{W_2^1}.$$

Let u be the solution of IBVP (1) and v the solution of FDS (4–6). The error z = u - v satisfies the conditions

(10)
$$z_{t\bar{t}} = [\sigma \,\hat{z} + (1 - 2\sigma) \,z + \sigma \,\check{z}]_{x\bar{x}} + \psi, \qquad x \in \omega_h, \quad t \in \omega_\tau,$$

(11)
$$z(0,t) = z(1,t) = 0, \qquad t \in \overline{\omega}_{\tau},$$

(12)
$$z^0 = z^1 = u(x, \tau/2) - u_0(x), \qquad x \in \omega_h$$

where $\psi = u_{t\bar{t}} - [\sigma \hat{u} + (1 - 2\sigma) u + \sigma \check{u}]_{x\bar{x}}$.

The a priori estimate

(13)
$$\max_{t \in \omega_{\tau}^{-}} \|\overline{z}_{x}\|_{h} \leq \max_{t \in \omega_{\tau}^{-}} N(z) \leq \|z_{x}^{0}\|_{h} + \frac{1}{\sqrt{c}} \|\psi\|_{L_{1,\tau}(L_{2,h})}$$

where c = 1 for $\sigma \ge 1/4$, and $c = c_0$ for $\sigma < 1/4$, holds.

Estimating z_x^0 and ψ , using the Bramble-Hilbert lemma [1, 2], for $c_1 h \leq \tau \leq c_2 h$, we obtain the estimate [5]

$$\max_{t \in \omega_{\tau}^{-}} \|\overline{z}_x\|_h \le C h^{s-2} \|u\|_{W_2^s(Q)}, \qquad 2 \le s \le 4$$

i.e.

(14)
$$\|\overline{z}\|_{C_{\tau}(W_{2,h}^1)} \le C h^{s-2} \|u\|_{W_2^s(Q)}, \qquad 2 \le s \le 4.$$

On the other hand, using

$$z_x^0 = \left[u(x, \tau/2) - u(x, 0) \right]_x = \frac{1}{h} \int_x^{x+h} \int_0^{\tau/2} \int_0^t \frac{\partial^3 u(\xi, \eta)}{\partial t^2 \partial x} \, d\eta \, dt \, d\xi$$

we easily obtain

(15)
$$\|z_x^0\|_h \le \left\{ h \sum_{x \in \omega_h^-} h^{-2} h (\tau/2)^3 \int_x^{x+h} \int_0^{\tau/2} \left(\frac{\partial^3 u(\xi, t)}{\partial t^2 \partial x} \right)^2 dt d\xi \right\}^{1/2}$$

$$\le \frac{\tau^2}{4} \max_{t \in [0, T]} \left\| \frac{\partial^3 u}{\partial t^2 \partial x} \right\|_{L_2} .$$

Using relations $S_x^2(\partial^2 u/\partial x^2) = u_{x\bar{x}}$ and $S_t^2(\partial^2 u/\partial t^2) = u_{t\bar{t}}$, and equation (1), we can represent the function ψ in the following manner

$$\begin{split} \psi(x,t) &= \left(S_t^2 \frac{\partial^2 u}{\partial t^2} - S_x^2 S_t^2 \frac{\partial^2 u}{\partial t^2}\right) - \left(S_x^2 \frac{\partial^2 u}{\partial x^2} - S_x^2 S_t^2 \frac{\partial^2 u}{\partial x^2}\right) - \left(\sigma \tau^2 S_x^2 S_t^2 \frac{\partial^2 u}{\partial x^2 \partial t^2}\right) \\ &= -\frac{1}{h\tau} \int_{x-h}^{x+h} \int_{x}^{\xi} \int_{t-\tau}^{t+\tau} (\xi - \eta) \left(1 - \frac{|\xi - x|}{h}\right) \left(1 - \frac{|\zeta - t|}{\tau}\right) \frac{\partial^4 u(\eta, \zeta)}{\partial x^2 \partial t^2} \, d\zeta \, d\eta \, d\xi \end{split}$$

$$\begin{split} & + \frac{1}{h\tau} \int_{x-h}^{x+h} \int_{t-\tau}^{t+\tau} \int_{t}^{\eta} (\eta - \zeta) \left(1 - \frac{|\xi - x|}{h} \right) \left(1 - \frac{|\eta - t|}{\tau} \right) \frac{\partial^4 u(\xi, \zeta)}{\partial x^2 \partial t^2} \, d\zeta \, d\eta \, d\xi \\ & - \frac{\sigma \tau^2}{h\tau} \int_{x-h}^{x+h} \int_{t-\tau}^{t+\tau} \left(1 - \frac{|\xi - x|}{h} \right) \left(1 - \frac{|\eta - t|}{\tau} \right) \frac{\partial^4 u(\xi, \eta)}{\partial x^2 \partial t^2} \, d\eta \, d\xi \, . \end{split}$$

From this we obtain

$$|\psi(x,t)| \le \frac{C(h^2 + \tau^2)}{\sqrt{h\tau}} \left\| \frac{\partial^4 u}{\partial x^2 \partial t^2} \right\|_{L_2(\epsilon)},$$

where $e = (x - h, x + h) \times (t - \tau, t + \tau)$, and

(16)
$$\|\psi\|_{L_{1,\tau}(L_{2,h})} \le C (h+\tau)^2 \max_{t \in [0,T]} \left\| \frac{\partial^4 u}{\partial x^2 \partial t^2} \right\|_{L_2(0,1)}.$$

From (13), (15), (16) and (3) we obtain the following convergence rate estimates for FDS (4-6)

$$\max_{t \in \omega_{\tau}^{-}} \|\overline{z}_{x}\|_{h} \leq C (h+\tau)^{2} \|u_{0}\|_{W_{2}^{4}}, \quad \text{i.e.}$$

$$\|\overline{z}\|_{C_{\tau}(W_{2}^{1}_{h})} \leq C (h+\tau)^{2} \|u_{0}\|_{W_{2}^{4}}.$$

On the other hand, from the self-evident inequalities

$$\max_{t \in \omega_{\tau}^{-}} \left\| \overline{z}_{x} \right\|_{h} \leq \max_{t \in \omega_{\tau}^{-}} \left\| \overline{u}_{x} \right\|_{h} + \max_{t \in \omega_{\tau}^{-}} \left\| \overline{v}_{x} \right\|_{h} \leq \max_{t \in [0,T]} \left\| \frac{\partial u}{\partial x} \right\|_{L_{2}} + \left\| u_{0}' \right\|_{L_{2}} \leq 2 \left\| u_{0}' \right\|_{L_{2}}$$

we obtain

(18)
$$\|\overline{z}\|_{C_{\tau}(W_{2,h}^{1})} \leq C \|u_{0}\|_{W_{2}^{1}}.$$

By the K-method for the real interpolation [11] we introduce the function spaces $(W_2^k, W_2^{k+1})_{\theta,2}$ ($0 < \theta < 1, k = 0, 1, 2, \ldots$). Let R denote the linear operator defined by $Ru_0 = \overline{z}$. From (17) and (18) it follows that R is a bounded operator from W_2^4 into $D \equiv C_\tau(W_{2,h}^1)$ and also from W_2^1 into D. Therefore, R is a bounded operator from $(W_2^1, W_2^4)_{\theta,2}$ into D, and the interpolation inequality

(19)
$$||R||_{(W_2^1, W_2^4)_{\theta, 2} \to D} \le ||R||_{W_2^1 \to D}^{1-\theta} ||R||_{W_2^4 \to D}^{\theta}$$

holds. Here

$$||R||_{A \to B} = \sup_{u \neq 0} \frac{||R u||_B}{||u||_A}$$

is the standard operator norm of $R: A \to B$.

From (17-19) we get

$$\|\overline{z}\|_{C_{\tau}(W_{0,h}^1)} \le C (h+\tau)^{2\theta} \|u_0\|_{(W_{0,W_{0,h}^4}^1)_{\theta,2}}.$$

Further from [11], we have

$$(W_2^1,W_2^4)_{\theta,2}=W_2^{1-\theta+4\theta}=W_2^{3\theta+1}\,,\qquad 0<\theta<1\,.$$

Setting $3\theta + 1 = s$, we finally obtain the required convergence rate estimate

(20)
$$\|\overline{z}\|_{C_{\tau}(W_{2,h}^{1})} \le C (h+\tau)^{\frac{2}{3}(s-1)} \|u_{0}\|_{W_{2}^{s}}, \qquad 1 \le s \le 4.$$

The estimate of the form (20) is obtained in [12].

4. Fourth-order scheme

Let us approximate equation (1) by

(21)
$$v_{t\bar{t}} = v_{x\bar{x}} + \frac{\tau^2 - h^2}{12} v_{t\bar{t}x\bar{x}}.$$

Here observe that (21) reduces to (4) for $\sigma=1/2-h^2/(12\tau^2)$. The scheme is stable for

$$\tau \le h \sqrt{1 - 3 c_0/2}, \qquad c_0 = \text{const} \in (0, 2/3).$$

The initial conditions can be approximated by

(22)
$$v^0 = v^1 = u_0 + \frac{\tau^2}{8} u_{0,x\bar{x}}, \qquad x \in \omega_h.$$

Then,

$$[v_x^0]_h \le [u_{0,x}]_h + C \tau^2 h^{-2} [u_{0,x}]_h \le |u_0'|_{L_{\infty}}$$

and the a priori estimates (7) and (9) hold.

The error z = u - v satisfies the conditions (10), (11) and

(23)
$$z^0 = z^1 = u(x, \tau/2) - u_0(x) - 0.125 \tau^2 u_{0,x\bar{x}},$$

as well as the a priori estimate (13).

The following representations hold:

$$z_x^0 = -\frac{\tau^2}{8h^2} \int_{x-h}^{x+h} \int_x^{\xi} \int_{\eta}^{\eta+h} (\xi - \eta) \left(1 - \frac{|\xi - x|}{h} \right) u_0^{(5)}(\zeta) \, d\zeta \, d\eta \, d\xi$$
$$+ \frac{1}{6h} \int_0^{\tau/2} \int_x^{x+h} \left(\frac{\tau}{2} - s \right)^3 \frac{\partial^5 u(\xi, \eta)}{\partial t^4 \partial x} \, d\xi \, d\eta$$

and

$$\begin{split} \psi(x,t) &= \frac{1}{6h\tau} \int_{x-h}^{x+h} \int_{x}^{\xi} \int_{t-\tau}^{t+\tau} \left[\frac{h^2}{2} (\xi - \eta) - (\xi - \eta)^3 \right] \times \\ &\quad \times \left(1 - \frac{|\xi - x|}{h} \right) \left(1 - \frac{|\zeta - t|}{\tau} \right) \frac{\partial^6 u(\eta,\zeta)}{\partial x^4 \partial t^2} \, d\zeta \, d\eta \, d\xi \end{split}$$

$$\begin{split} &-\frac{1}{6h\tau}\int_{x-h}^{x+h}\int_{t-\tau}^{t+\tau}\int_{t}^{\zeta}\left[\frac{\tau^{2}}{2}(\zeta-\eta)-(\zeta-\eta)^{3}\right]\times\\ &\qquad \times\left(1-\frac{|\xi-x|}{h}\right)\left(1-\frac{|\zeta-t|}{\tau}\right)\frac{\partial^{6}u(\xi,\eta)}{\partial x^{4}\partial t^{2}}\,d\eta\,d\zeta\,d\xi. \end{split}$$

Herefrom we obtain

$$\begin{split} \left\| z_{x}^{0} \right\|_{h} &\leq C \left(\tau^{2} \, h^{2} + h^{4} \right) \left\| u_{0}^{(5)} \right\|_{L_{2}} \leq C \, h^{4} \left\| u_{0} \right\|_{W_{2}^{5}}, \\ \left\| \psi \right\|_{L_{1,\tau}(L_{2,h})} &\leq C \left(h^{4} + \tau^{4} \right) \left\| \frac{\partial^{6} u}{\partial x^{4} \partial t^{2}} \right\|_{C(L_{2})} \leq C \, h^{4} \left\| u_{0} \right\|_{W_{2}^{6}}, \end{split}$$

and

(25)
$$\|\overline{z}\|_{C_{\tau}(W_{2,h}^1)} \le C h^4 \|u_0\|_{W_2^6} .$$

Further,

$$\begin{split} \max_{\tau \in \omega_{\overline{\tau}}} & \left\| \overline{z}_x \right\|_h \leq \max_{\tau \in \omega_{\overline{\tau}}} & \left\| \overline{u}_x \right\|_h + \max_{\tau \in \omega_{\overline{\tau}}} & \left\| \overline{v}_x \right\|_h \\ & \leq \max_{t \in [0,T]} & \left\| \frac{\partial u}{\partial x} \right\|_{L_2} + \left\| v_x^0 \right\|_h \leq C \left\| u_0' \right\|_{L_2} \leq C \left\| u_0 \right\|_{W_2^1}. \end{split}$$

From here follows the inequality (18).

From (25) and (18), by interpolation we obtain the following convergence rate estimate of FDS (21), (5), (22)

(26)
$$\|\overline{z}\|_{C_{\tau}(W^{1}_{2,h})} \leq C h^{\frac{4}{5}(s-1)} \|u_{0}\|_{W^{s}_{2}}, \qquad 1 \leq s \leq 6.$$

5. The exact scheme

Set $\tau=h$ (m=[T/h+1/2]), and approximate equation (1) by the explicit FDS

$$(27) v_{t\bar{t}} = v_{x\bar{x}} .$$

The solution of the IBVP (1) can be represented by the series

$$u(x,t) = \sum_{k=1}^{\infty} a_k \cos k\pi t \sin k\pi x.$$

It could easily be verified that u(x,t) satisfies equation (27). The error z = u - v also satisfies (27), and the a priori estimate

$$\max_{t \in \omega_{\tau}^{-}} \left\| \overline{z}_{x} \right\|_{h} \leq \left\| z_{x}^{0} \right\|_{h},$$

holds. Hence, the convergence rate depends only on the approximation of the initial conditions.

If the initial conditions are approximated by (6), then the relations (15) and (18) hold; so we have

$$\|\overline{z}\|_{C_{\tau}(W_{2h}^1)} \le C h^2 \|u_0\|_{W_2^3}$$
,

and

(28)
$$\|\overline{z}\|_{C_{\tau}(W_{2h}^{1})} \leq C \|u_{0}\|_{W_{2}^{1}}.$$

By interpolation we obtain

(29)
$$\|\overline{z}\|_{C_{\tau}(W_{2_h}^1)} \le C h^{s-1} \|u_0\|_{W_2^s}, \qquad 1 \le s \le 3.$$

If initial conditions are approximated by (22), then (24) holds and

(30)
$$\|\overline{z}\|_{C_{\tau}(W_{2h}^1)} \le C h^4 \|u_0\|_{W_2^5}.$$

By interpolation, from (28) and (30) we obtain the estimate in the form (29), for $1 \le s \le 5$. The estimate (29) is compatible with the smoothness of data.

The obtained results can be transferred, without difficulties, to the IBVP with nonhomogeneous second initial condition

$$\partial u(x,0)/\partial t = u_1(x)$$
.

Let the conditions

$$u_1 \in W_2^{s-1}(0,1) \,, \qquad s \ge 1 \,,$$

$$u_1^{(2j)}(0) = u_1^{(2j)}(1) = 0 \,, \qquad j = 0, 1, \dots, \left\lceil \frac{s-2}{2} \right\rceil \,, \qquad \text{for} \quad s \ge 2$$

hold. Then, we substitute the initial conditions (6) and (22) by

$$v^0 = u_0 - \frac{\tau}{2} S_x^2 u_1, \qquad v^1 = u_0 + \frac{\tau}{2} S_x^2 u_1, \qquad x \in \omega_h,$$

and

$$\begin{split} v^0 &= u_0 - \frac{\tau}{2} \, S_x^2 u_1 + \frac{\tau^2}{8} \, u_{0,x\bar{x}} - \frac{\tau^3 - 2h^2\tau}{48} \, S_x^4 u_1^{\prime\prime} \,, \\ v^1 &= u_0 + \frac{\tau}{2} \, S_x^2 u_1 + \frac{\tau^2}{8} \, u_{0,x\bar{x}} + \frac{\tau^3 - 2h^2\tau}{48} \, S_x^4 u_1^{\prime\prime} \,. \end{split}$$

Hence, the estimates of the forms (20), (26) and (29) hold, where on the right-hand-side $||u_0||_{W_2^s}$ is replaced by $||u_0||_{W_2^s} + ||u_1||_{W_2^{s-1}}$.

The following diagram graphically represents the relation between the smoothness of initial data (s) and the order of convergence (o.c.) in estimates (14), (20), (26) and (29).

REFERENCES

- J. H. Bramble, S. R. Hilbert, Bounds for a class of linear functionals with application to Hermite interpolation, Numer. Math. 16 (1971), 362-369.
- [2] T. Dupont, R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comput. 34 (1980), 441-463.
- [3] L. D. Ivanovich, B. S. Iovanovich & E. E. Shili, The convergence of difference schemes for a biharmonic equation, Zh. vychisl. mat. mat. fiz. 26 (1986), 776-780, (in Russian).
- [4] B. S. Jovanović, On the convergence of finite difference schemes for parabolic equations with variable coefficients, Numer. Math. 54 (1989), 395-404.
- [5] B. S. Jovanović, L. D. Ivanović, On the convergence of the difference schemes for the equation of vibrating string, In: G. V. Milovanović (ed.), Numerical Methods and Approximation Theory, Proc. Conf. Niš 1984, University of Niš, Niš, 1984, 155-159.
- [6] B. S. Jovanović, L. D. Ivanović & E. E. Süli, Convergence of a finite difference scheme for second-order hyperbolic equations with variable coefficients, IMA J. Numer. Anal. 7 (1987), 39-45
- [7] B. S. Jovanović, L. D. Ivanović & E. E. Süli, Convergence of finite difference schemes for elliptic equations with variable coefficients, IMA J. Numer. Anal. 7 (1987), 301-305.
- [8] O. A. Ladizhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973, (in Russian).
- [9] R. D. Lazarov, V. L. Makarov & A. A. Samarski, Application of exact difference schemes for construction and investigation of difference schemes for generalised solutions, Mat. Sbornik 117 (1982), 469-480, (in Russian).
- [10] A. A. Samarski, Theory of difference schemes, Nauka, Moscow, 1983, (in Russian).
- [11] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag der Wissenschaften, Berlin, 1978.
- [12] A. A. Zlotnik, Convergence rate estimates of projection difference methods for second-order hyperbolic equations, Vychisl. protsessy sist. 8 (1991), 116-167, (in Russian).

Matematički fakultet 11 001 Beograd, p.p. 550 Jugoslavija (Received 26 09 1991)