LOGICS WITH TWO TYPES OF INTEGRAL OPERATORS

Radosav S. Dorđević

Abstract. We prove completeness theorems for absolutely continuous and singular biprobability models of a logic with integrals. Also in both cases, we prove the finite compactness theorem for a set of sentences of the form $\tau \in [r, s]$.

We assume throughout the paper that A is a countable admissible set with $\omega \in \mathcal{A}$. In [2], Keisler introduced a logic $L_{\mathcal{A}}$ which has an integral operator which builds terms with bound variables. In our case two types of integral operators $\int_1 \dots dx$ and $\int_2 \dots dx$ are allowed.

A biprobability model for $L_{\mathcal{A} f_1 f_2}$ logic is a model $\mathfrak{A} = \langle A, R_i, c_j, \mu_1, \mu_2 \rangle_{i \in I, j \in J}$, where $\langle A, R_i, c_j \rangle$ is a first-order model without operations and μ_1, μ_2 are probability measures on A. We shall see a difference in semantics for $L^a_{\mathcal{A}\,f_1\,f_2}$ and $L^s_{\mathcal{A}\,f_1\,f_2}$ by means of the following definition.

Definition 1. (a) An absolutely continuous biprobability model for $L^a_{\mathcal{A}f_1f_2}$ is a biprobability model \mathfrak{A} such that μ_1 is absolutely continuous with respect to μ_2 , i. e. $\mu_1 \ll \mu_2$.

(b) A singular biprobability model for $L^s_{\mathcal{A}\,f_1\,f_2}$ is a biprobability model $\mathfrak A$ such that μ_1 is singular with respect to μ_2 , i.e. $\mu_1 \perp \mu_2$. \square

In both cases, quantifiers are interpreted by

$$(\int_k \tau(x, \vec{a}) dx)^{\mathfrak{A}} = \int \tau(b, \vec{a})^{\mathfrak{A}} d\mu_k(b) \qquad \text{for } k = 1, 2 ,$$

where $\tau(x, \vec{y})$ is a term and $\vec{a} \in A^n$.

Diagonal products $\mu_k^{(n)}$, which are the coresponding restrictions of completions of μ_k^n 's (k=1,2) to σ -algebras generated by the measurable rectangles and the diagonal sets $\{\vec{x} \in A^n : x_i = x_j\}$, can be replaced by sequences of probability measures on A^n 's which satisfy the Fubini theorem. That generalization of a probability structure is relevant for us.

Mathematics Subject Classification (1991): Primary 03 C 70

This research was supported by Government of Serbia grant number 0401A, through Matematički institut.

 $Definition \ 2. \ \ {\rm A \ graded \ biprobability \ model \ for} \ L_{\mathcal{A} \ f_1 \ f_2} \ {\rm is \ a \ model}$ $\mathfrak{A} = \langle A, R_i, c_j, \mu_n^1, \mu_n^2 \rangle_{i \in I, j \in J, n \geq 1}$ such that:

- (1) Each μ_n^k is a countably additive probability measure on A^n .
- (2) Each n-ary relation R_i is μ_n^k -measurable and the identity relation is μ_2^k -

- (3) μ_n^k × μ_m^k ⊆ μ_{n+m}^k.
 (4) Each μ_n^k is preserved under permutation of {1, 2, ..., n}.
 (5) ⟨μ_n^k : n ∈ N⟩ has the Fubini property: If B is μ_{m+n}^k-measurable, then
 - (a) For each $\vec{x} \in A^m$, the section $B_{\vec{x}} = \{ \vec{y} : B(\vec{x}, \vec{y}) \}$ is μ_n^k -measurable. (b) The function $f(\vec{x}) = \mu_n^k(B_{\vec{x}})$ is μ_m^k -measurable. (c) $\int f(\vec{x}) d\mu_m^k = \mu_{m+n}^k(B)$. \square

Definition 3. (a) A graded biprobability model for $L^a_{\mathcal{A} f_1 f_2}$ is a graded biprobability model \mathfrak{A} such that $\mu_n^1 \ll \mu_n^2$ for each $n \in \mathbb{N}$.

- (b) A graded biprobability model for $L^s_{\mathcal{A}_{f_1,f_2}}$ is a graded biprobability model \mathfrak{A} such that $\mu_n^1 \perp \mu_n^2$ for each $n \in \mathbb{N}$. \square
- 1. The logic $L^a_{\mathcal{A} f_1 f_2}$. Axioms and rules of inference for $L^a_{\mathcal{A} f_1 f_2}$ are those for $L_{\mathcal{A}f}$, as listed in [3] with both \int_1 and \int_2 playing the role of \int , together with
- (A_1) Axioms of continuity of integral operators: (i, j = 1, 2)

(a)
$$\bigwedge_n \bigvee_m \bigvee_k \int_i \mathbb{F}_k \left(\int_j \tau(\vec{x}, \vec{y}) \, d\vec{x} \right) \, d\vec{y} < \frac{1}{n},$$
where $F_k(s) = \begin{cases} 1, & \text{if } r - 1/m + 1/k \le s \le r - 2/k \\ 0, & \text{if } s \le r - 1/m \text{ or } s \ge r - 1/k \\ \text{linear, for other cases} \end{cases}$

is a continuous real function such that $F_k \upharpoonright \mathbb{Q} \in \mathcal{A}$

(b)
$$\bigwedge_n \bigvee_m \bigvee_k \int_i \mathbb{G}_k \left(\int_j \tau(\vec{x}, \vec{y}) d\vec{x} \right) d\vec{y} < \frac{1}{n},$$

where $G_k(s) = \begin{cases} 1, & \text{if } r + 2/k \le s \le r + 1/m - 1/k \\ 0, & \text{if } s \le r + 1/k \text{ or } s \ge r + 1/m \\ \text{linear, for other cases.} \end{cases}$

 (A_2) Axiom of absolute continuity

 $(A_3) \int_1 \left(\int_2 \tau \, dy \right) \, dx = \int_2 \left(\int_1 \tau \, dx \right) \, dy.$

Now we introduce two sorts of auxiliary models.

Definition 4. (a) A weak model for $L^a_{f_1,f_2}$ is a model (\mathfrak{A},I_1,I_2) where \mathfrak{A} is a first-order model and I_k is what may be called an \mathcal{A} -Daniell integral on A, that is, I_k is a positive linear real function on the set of terms with at most one free

variable x and parameters from A, i.e.

$$\begin{split} I_k(r) &= r, \qquad k = 1, 2 \\ I_k(r \cdot \sigma + s \cdot \tau) &= r \cdot I_k(\sigma) + s \cdot I_k(\tau), \\ \text{if } \tau(b, \vec{a})^{\mathfrak{A}} &\geq 0 \quad \text{for all } b \in A, \text{ then } I_k(\tau(x, \vec{a})) \geq 0. \end{split}$$

(b) A middle model for $L^a_{\mathcal{A}f_1f_2}$ is a weak model \mathfrak{A} such that for each $\varepsilon>0$ there is $\delta > 0$ such that for each term $\tau(x, \vec{y})$ and $\vec{a} \in A^n$, if $|I_2(\tau(x, \vec{a}))| < \delta$ then $|I_1(\tau(x,\vec{a}))| < \varepsilon$. \square

In both cases, for τ a term, define $\tau^{\mathfrak{A}}$ inductively as for biprobability models, except that at the integral step, we define

$$\left(\int_k \tau(x,\vec{a}) \, dx\right)^{\mathfrak{A}} = I_k(\tau(x,\vec{a})) .$$

Lemma 1. (Middle Completeness Theorem for $L^a_{\mathcal{A}f_1f_2}$) Let T be a set of sentences of $L^a_{\mathcal{A}f_1f_2}$ such that T is Σ_1 -definable over \mathcal{A} . Then T is consistent with the axioms of this logic iff it has a middle model in which each theorem of $L^a_{\mathcal{A}_{f_1,f_2}}$ is true.

The soundness is easy to prove because all the axioms represent known properties of integrals (the Generalized Radon-Nikodym Theorem and the Fubini Theorem prove that each function $\tau(x,y)^{\mathfrak{A}}: A \times A \to \mathbb{R}$ is compatible with absolutely continuous measures μ_1 and μ_2 , i.e.

$$\iint \tau(x,y)^{\mathfrak{A}} d\mu_1(x) d\mu_2(y) = \iint \tau(x,y)^{\mathfrak{A}} d\mu_2(y) d\mu_1(x) .$$

A Henkin argument is used to construct a weak model (\mathfrak{A}, I_1, I_2) of T in which each theorem of $L^a_{\mathcal{A}f_1,f_2}$ is true. Let $K=L\cup C$ be the language introduced in this construction, where C is a set of new constant symbols and $C \in A$. We wish the axiom A_2 to hold for all the terms and that is done by the following construction (see [9]).

Let K' be a language with four kinds of variables: X, Y, Z, \ldots are variables for sets, x, y, z, \ldots are variables for urelements, r, s, t, \ldots are variables for reals from $[0,1] \cap \mathcal{A}$, and U, V, W, \ldots are variables for functions $A^n \mapsto \mathbb{R}, n \geq 0$. Predicates are: $E_n^s(\vec{x},X)$ for sets, $n\geq 1;\; E_{n+1}^t(\vec{x},r,U)$ for terms, $n\geq 0;\; I_k(U,r)$ for $U\colon A^0\to\mathbb{R}$ or $U\colon A^1\to\mathbb{R},\;\;k=1,2;\; \mathrm{and}\;\;\leq\; \mathrm{for\;reals}.$ Function symbols are f,g,h,\ldots for each continuous real functions $F:\mathbb{R}^n\to\mathbb{R}$ such that $F\upharpoonright\mathbb{Q}^n\in\mathcal{A}$. Constant symbols are: X_{φ} for each formula φ ; U_{τ} for each term τ ; and \overline{r} for each real number $r \in [0,1] \cap \mathcal{A}$.

Let S be the following theory of K'_{A} :

1. Axioms of validity:

$$\begin{array}{ll} 1.1 & (\forall X) \bigwedge_{\substack{n < m \\ n < m}} \neg (\exists \vec{x}, \vec{y}) (E_m^s(\vec{x}, \vec{y}, X) \wedge E_n^s(\vec{x}, X)), \quad \text{where } \{ \, \vec{x} \, \} \cap \{ \, \vec{y} \, \} = \emptyset; \\ 1.2 & (\forall U) \bigwedge_{\substack{n < m \\ n < m}} \neg (\exists \vec{x}, \vec{y}, r, s) (E_{m+1}^t(\vec{x}, \vec{y}, r, U) \wedge E_{n+1}^t(\vec{x}, s, U)); \end{array}$$

1.2
$$(\forall U) \bigwedge^{n \setminus m} \neg (\exists \vec{x}, \vec{y}, r, s) (E_{m+1}^t(\vec{x}, \vec{y}, r, U) \land E_{n+1}^t(\vec{x}, s, U));$$

$$1.3 \quad (\forall U)(\forall \vec{x}, r, s)((E^t_{n+1}(\vec{x}, r, U) \land E^t_{n+1}(\vec{x}, s, U)) \implies r = s);$$

2. Axioms of extensionality:

2.1
$$(\forall \vec{x})(E_n^s(\vec{x}, X) \iff E_n^s(\vec{x}, Y)) \iff X = Y;$$

$$2.2 \quad (\forall \vec{x}, r)(E_{n+1}^t(\vec{x}, r, U) \iff E_{n+1}^t(\vec{x}, r, V)) \iff U = V;$$

3. Axioms of terms:

$$3.1 \quad (\forall \vec{x}) (E_{n+1}^t(\vec{x},0,U_\tau) \vee E_{n+1}^t(\vec{x},1,U_\tau)) \quad \text{if τ is $\mathbf{1}(R(\vec{x}))$};$$

3.2
$$(\forall x, y)(E_{2+1}^t(x, y, 0, U_{\tau}) \lor E_{2+1}^t(x, y, 1, U_{\tau}))$$
 if τ is $\mathbf{1}(x = y)$;
3.3 $E_{0+1}^t(\overline{\tau}, U_{\tau})$ if τ is τ ;

3.3
$$E_{0\perp 1}^t(\overline{r}, U_{\tau})$$
 if τ is r ;

3.5
$$(\forall \vec{x}, r)(E_{n+1}^t(\vec{x}, r, U_{\tau}) \iff (\exists V)((\forall y, s)(E_{1+1}^t(y, s, V) \iff E_{n+1+1}^t(\vec{x}, y, s, U_{\sigma})) \land I_k(V, r)))$$
 if τ is $\int_k \sigma(\vec{v}, v_0) dv_0$, $k = 1, 2$;

4. Axioms of satisfaction:

$$4.1 \quad (\forall \vec{x})(E_n^s(\vec{x},X_\varphi) \iff (\exists r \geq 0)E_{n+1}^t(\vec{x},r,U_\tau)) \quad \text{if } \varphi \text{ is } \tau \geq 0;$$

4.2
$$(\forall \vec{x})(E_n^s(\vec{x}, X_{\neg \varphi}) \iff \neg E_n^s(\vec{x}, X_{\varphi}));$$

$$\begin{array}{cccc} 4.2 & (\forall \vec{x})(E_n^s(\vec{x}, X_{\neg \varphi}) & \iff \neg E_n^s(\vec{x}, X_{\varphi})); \\ 4.3 & (\forall \vec{x})(E_n^s(\vec{x}, X_{\land \Phi}) & \iff \bigwedge_{\varphi \in \Phi} E_n^s(\vec{x}, X_{\varphi})); \end{array}$$

5. Axioms of integral operators:

5.1
$$(\forall U)((\bigwedge_{n\geq 2} \neg(\exists \vec{x},r)E^t_{n+1}(\vec{x},r,U)) \iff (\exists_1 s)I_k(U,s)), \quad k=1,2;$$

5.2
$$(\forall r)I_k(\overline{U}_r,r);$$

5.3
$$(\forall U, V, r, s)I_k(r \cdot U + s \cdot V) = r \cdot I_k(U) + s \cdot I_k(V)$$
, where $I_k(U) = r$ iff $I_k(U, r)$;

5.4
$$(\forall U)((\forall x)(\exists r \geq 0)E_{1+1}^t(x,r,U) \implies (\exists s \geq 0)I_k(U,s));$$

6. Axiom of absolute continuity:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall U)(|I_2(U)| < \delta \implies |I_1(U)| < \varepsilon);$$

- 7. Axioms for an Archimedean field;
- 8. Transformations of axioms of $K_{A_{f_1,f_2}}^a$:

 $(\forall \vec{x})E_n^s(\vec{x}, X_{\varphi}), \text{ where } \varphi \text{ is an axiom of this logic;}$

9. Axioms of realizability of all sentences φ of T:

$$(\forall x_0)E_1^s(x_0,X_{\varphi}).$$

A weak model $\langle \mathfrak{A}, I_1, I_2 \rangle$ for $K^a_{\mathcal{A} f_1 f_2}$ can be transformed to a standard model \mathfrak{B} for $K'_{\mathcal{A}}$ by taking: $B_{\varphi}^{\mathfrak{B}} = \{ \vec{a} \in A^n : \mathfrak{A} \models \varphi[\vec{a}] \}, \ U_{\tau}^{\mathfrak{B}}(\vec{a}) = \tau^{\mathfrak{A}}(\vec{a}) \text{ for } \vec{a} \in A^n \text{ and } \vec{a} \in A^n \text{ a$ $I_k^{\mathfrak{B}}(U_{\tau}^{\mathfrak{B}}) = I_k(\tau)$ for each term τ with at most one free variable. By the Barwise Compactness Theorem (see [1]), it can be shown that S has a standard model \mathfrak{D} , because S is Σ -definable over $\mathfrak A$ and A_2 holds in $\mathfrak A$. $\mathfrak D$ can be transformed to a middle model \mathfrak{C} of T by taking:

$$R^{\mathfrak{C}} = \{ \, \vec{x} \in D^n : E_n^s(\vec{x}, X_{\mathbf{1}(R(\vec{x}))=1}) \, \} \quad \text{and} \quad I_k^{\mathfrak{C}}(\tau(x, \vec{a})) = I_k^{\mathfrak{D}}(U_{\tau(x, \vec{a})}) \quad \text{for } \vec{a} \in D^n \text{ and } k = 1, 2.$$

This completes the proof of the Middle Completeness Theorem. \Box

In order to construct an absolutely continuous biprobability model, we need the following lemma.

Lemma 2. (Loeb [4]) In an ω_1 -saturated nonstandard universe, let M be an internal vector lattice of functions from an internal set A into ${}^*\mathbb{R}$ (the set of hyperreal numbers), and let I be an internal positive linear functional on M, such that $1 \in M$ and I(1) = 1. Then there is a complete probability measure μ on A such that for each finitely bounded $\varphi \in M$, the standard part of φ is integrable with respect to μ and its integral is equal to the standard part of $I(\varphi)$.

Theorem 1. (Completeness Theorem for $L^a_{\mathcal{A} f_1 f_2}$) Let T be a set of sentences of $L^a_{\mathcal{A} f_1 f_2}$ such that T is Σ_1 on \mathcal{A} and consistent. Then there is an absolutely continuous biprobability model of T.

Proof. Let $\langle \mathfrak{A}, I_1, I_2 \rangle$ be a middle model of T in which each theorem of $L^a_{\mathcal{A} \int_1 \int_2}$ is true. The Daniell integral construction from Lemma 2 produces probability measures μ_1, μ_2 on *A such that for each *-term $\tau(x)$, the standard part of ${}^*I_k(\tau)$ is the integral $\int \operatorname{st}(\tau(b)^{\mathfrak{A}}) \, d\mu_k(b)$ (we define measures μ_n^k on ${}^*A^n$ by using iterated integrals). The absolute continuity in the middle model \mathfrak{A} implies the absolute continuity for all measurable sets. Also, using axiom A_3 , it can be shown that $\mu_n^1 \ll \mu_n^2$ for each $n \in \mathbb{N}$. This graded biprobability model $\hat{\mathfrak{A}} = \langle {}^*\mathfrak{A}, \mu_n^1, \mu_n^2 \rangle$ can be used to produce an absolutely continuous biprobability model of T (see [3]). \square

We can look only for a part of $L^a_{\mathcal{A} f_1 f_2}$ which satisfies the finite compactness property, because this logic cannot satisfy the full compactness (for example, each finite subset of $T = \{ \int_1 \mathbf{1}(R(x)) dx > 0 \} \cup \{ \int_1 \mathbf{1}(R(x)) dx \leq \frac{1}{n} : n \in \mathbb{N} \}$, where R is a unary predicate, has a probability model, but not T itself).

Theorem 2. Let T be a set of sentences of $L^a_{\mathcal{A} f_1 f_2}$ of the form $\tau \in [r,s]$. If every finite subset of T has a graded biprobability model, then T has a graded biprobability model.

Proof. Let us suppose that each finite subset $\Psi \subseteq T$ has a model \mathfrak{A}_{Ψ} . By Lemma 1 we can suppose that \mathfrak{A}_{Ψ} is a middle model. Take an ultraproduct * \mathfrak{A} such that, for each $\varphi \in T$, almost every \mathfrak{A}_{Ψ} satisfies φ . Then form a graded biprobability model $\hat{\mathfrak{A}}$ from * \mathfrak{A} by the Daniell integral construction (Lemma 2). It can be shown by induction that every sentence of $L^a_{\mathcal{A}f_1f_2}$ of the form $\tau \in [r,s]$ which is true in almost all \mathfrak{A}_{Ψ} holds in $\hat{\mathfrak{A}}$, too. The absolute continuity condition can be expressed in the middle model by the first-order sentence

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall U)(|I_2(U)| < \delta \implies |I_1(U)| < \varepsilon)$$
.

By Los's Theorem and Loeb construction the sentence

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall X)(\mu_2(X) < \delta \implies \mu_1(X) < \varepsilon)$$

holds in $\hat{\mathfrak{A}}$. \square

- **2.** The logic $L^s_{\mathcal{A}f_1f_2}$. Axioms and rules of inference for the logic $L^s_{\mathcal{A}f_1f_2}$ are those of $L_{\mathcal{A}f}$ (with both \int_1 and \int_2 in place of \int , see [3]) together with the axioms of continuity A_1 and
 - $(A_4) \ \, Axiom \ \, of \ \, singularity: \\ \bigvee_k \int_i \mathbb{H}_k \left(\int_1 \mathbf{1}(x=y) \, dy, \int_2 \mathbf{1}(x=y) \, dy \right) dx = 0, \quad i=1,2, \\ \text{where} \ \, H_k(s,t) = \left\{ \begin{array}{ll} 1, & \text{if} \ \, s \geq \frac{2}{k} \ \, \text{and} \ \, t \geq \frac{2}{k} \\ 0, & \text{if} \ \, s \leq \frac{1}{k} \ \, \text{or} \ \, t \leq \frac{1}{k} \\ \text{linear}, & \text{for other cases} \end{array} \right. .$

Theorem 3. (Completeness Theorem for $L^s_{\mathcal{A} f_1 f_2}$) A theory T of $L^s_{\mathcal{A} f_1 f_2}$ is consistent iff T has a singular biprobability model.

Proof. The proof of soundness is easy. Let $\langle \mathfrak{A}, I_1, I_2 \rangle$ be a weak model of T in which each theorem of $L^s_{\mathcal{A} f_1 f_2}$ is true. Let $\mathcal{F} = \{B \subseteq A : \chi_B \in \mathrm{dom}(I_1) = \mathrm{dom}(I_2)\}$ be an algebra of subsets of A, where $\chi_B(x) = \begin{cases} 1, & \text{if } x \in B \\ 0, & \text{if } x \notin B \end{cases}$. Define finitely additive probability measures ν_1 , ν_2 on \mathcal{F} by $\nu_k(B) = I_k(\chi_B)$, $B \in \mathcal{F}$ and k = 1, 2.

Then, for $a \in A$, the singleton $\{a\}$ belongs to $\mathcal F$ because $\chi_{\{a\}} = (x=a)^{\mathfrak A}$, the set $B = \{a \in A : \nu_1\{a\} > 0 \& \nu_2\{a\} > 0\}$ belongs to $\mathcal F$ and $\nu_k(B) = 0 k = 1, 2$ by A_4 .

By construction from [7], the measures ν_1, ν_2 can be extended so that $\nu_1 \subseteq \overline{\nu}_1$, $\nu_2 \subseteq \overline{\nu}_2$ and the measures $\overline{\nu}_1, \overline{\nu}_2$ are singular. Then construct a middle biprobability model $\langle \mathfrak{A}, \overline{I}_1, \overline{I}_2 \rangle$ of T by

$$\operatorname{dom}(\overline{I}_k) = \operatorname{dom}(I_k) \cup \{ \chi_C : C \in \overline{\mathcal{F}} \setminus \mathcal{F} \} \quad \text{and} \quad \overline{I}_k(\chi_C) = \overline{\nu}_k(C),$$

for each C from the extension $\overline{\mathcal{F}}$ of \mathcal{F} .

By Loeb's construction (Lemma 2) and the construction of the biprobability model from a graded biprobability model (see [3]), the singularity of finitely additive measures in the middle model will be preserved in the biprobability model. \Box

Finally, we prove Finite Compactness Theorem for the singular case.

Theorem 4. Let T be a set of sentences of $L^s_{\mathcal{A}f_1f_2}$ of the form $\tau \in [r,s]$. If every finite subset of T has a graded biprobability model, then T has a graded biprobability model.

Proof. As in Theorem 2, our proof is based on the ultraproduct and Daniell integral construction. Now, we can suppose that \mathfrak{A}_{Ψ} is a weak model for each finite subset $\Psi \subseteq T$. Let $\overline{\mathfrak{A}}_{\Psi}$ be a middle model as in Theorem 3. Take an ultraproducts ${}^*\mathfrak{A} = \prod \overline{\mathfrak{A}}_{\Psi}$ such that, for each $\varphi \in T$, almost every $\overline{\mathfrak{A}}_{\Psi}$ satisfies φ . The condition of singularity can be express in the middle model by the first-order sentence $(\exists f)(\overline{I}_1(f) = 1 \land \overline{I}_2 = 0)$. By Los's Theorem and Loeb's construction the sentence $(\exists X)(\mu_1(X) = 1 \land \mu_2(X) = 0)$ holds in $\hat{\mathfrak{A}}$. \square

REFERENCES

- $[1]\,$ J. Barwise, $Admissible\ Sets\ and\ Structures,$ Springer-Verlag, Berlin, 1975.
- [2] H.J. Keisler, *Hyperfinite model theory*; in Logic Colloquium '76, North-Holland, Amsterdam, 1977, pp.5-110.
- [3] H.J. Keisler, *Probability quantifiers*; in Model Theoretic Languages (J. Barwise and S. Feferman, eds.), Springer-Verlag, Berlin, 1985, pp. 509-556.
- [4] P.A. Loeb, A functional approach to nonstandard measure theory, Contemporary Math. 26 (1984), 251-261.
- [5] J. Los, E. Marczewski, Extension of measures, Fund. Math. 36 (1949), 267-276.
- [6] M.D. Rašković, Completeness theorem for biprobability models, J. Symbolic Logic 51, (1986), 586-590.
- [7] M.D. Rašković, Completeness theorem for singular biprobability models, Proc. Amer. Math. Soc. 102 (1988), 389-391.
- [8] M.D. Rašković, R.S. Dorđević, Finite compactness theorem for biprobability logics, Math. Balkanica 5 (1991), 12-14.
- [9] R.S. Dordević, Analytic completeness theorem for absolutely continuous biprobability models, Zeitschr. Math. Logik Grundlagen Math. 38 (1992), 241-246.

Prirodno-matematički fakultet Radoja Domanovića 12 34001 Kragujevac, p.p. 60 Jugoslavija (Received 16 11 1992)