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A NOTE ON SKEW POLYNOMIAL RINGS

Michael G. Voskoglou

Abstract. Let R be a ring of prime characteristic and let D be a finite set of derivations of
R. We obtain results connecting the D-simplicity of R with the simplicity of the skew polynomial
ring over R defined with respect to D. A similar result was quoted, without proof, by the author
in an earlier paper.

1. Skew polynomial rings in finitely many variables. All the rings
considered in this paper are with identities. Let R be a ring, let H = {f1,..., fa}
be a finite set of monomorphisms of R and let D = {ds, ... ,d,} be a set of mappings
from R to R, such that d; is a f;-derivation of R (cf.[8, section 1]), for each i =
1,...,n. Assume further that d;od; = d;od;, fio f; = fjo fi and fiod; =djo f;
for all 4,57 = 1,...,n and consider the set S, of all polynomials in n variables,
say Zi,ZT2,...,T,, over R. Define in 5, addition in the usual way and define
multiplication by the relations z;r = fi(r)z; + di(r), zix; = zjz;, for all r € R
and all 4,5 = 1,... ,n. Then S, becomes a ring denoted by R[z,H, D] and called
a skew polynomial ring over R, while S; is a skew polynomial ring over S;_1, for
each i = 1,2,...,n, with S = R (cf.[8, Theorem 2.4]). When n = 1, we write
S = R[thl:dl]'

Notice that under these conditions f; extends to a monomorphism of S,
by fi(z;) = x; and d; extends to an f;-derivation of S, by d;(z;) = 0, for all
i,5 =1,...,n (cf.[8, Theorems 2.2 and 2.3]).

We can also define the skew polynomial rings S} = R[z, D], when f; is the
identity map of R and S, = Rz, H] if d; is the zero derivation of R for each

i =1,...,n. Moreover, if H is a set of automorphisms of R, then the quotient
ring of S), with respect to the Ore subset A = {z$'z3? ... 2%, with a4, ... ,a, non-

negative integers} of S!, is denoted by T,, = R[x,z~", H] and called a skew Laurent
polynomial ring over R (cf.[9, section 2]).

In earlier papers we have obtained necessary and sufficient conditions under
which the rings S,, and T, are simple (cf.[7] and [9] respectively) and we have
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examined relations among the prime (simiprime) ideals of R and those of S,, (or
T,,) in a more general context (cf.[10], [11] and [12]; see also [1], [2], [3] and their
references).

2. Simple skew polynomial rings of prime characteristic. In order
to simplify our notation in this section we denote by S,, the skew polynomial ring
R[z, D], where D is a set of n commuting derivations of R. Then an ideal I of R
is called D-ideal, if d;(I) C I for all d; in D and R is called a D-simple ring, if it
has no nonzero proper D-ideals (when n = 1 we write d;-ideal and d;-simple ring
respectively).

Every D-simple ring contains the field Fo = C'(R) N[);cp ker d;, where C(R)
denotes the center of R, and therefore R is either of characteristic zero, or of a
prime number, say p.

In [7], assuming that ch (R) = 0, we have connected the D-simplicity of R
with the simplicity of S,, (Theorems 3.3 and 3.4) and we have also quoted, without
proof, a corresponding result when ch (R) = p (Theorem 3.5). Here we are going
to prove a similar result, but first we need the following two lemmas.

LEMMA 2.1 Let I be a nonzero ideal of S,. Write the elements of I as
polynomials in x,, with coefficients in S,_1 and denote by A(I) the set of leading
coefficients of the elements of I of minimal degree together with zero. Set I; =
A(I;y1) for eachi =0,1,... ,n—1, where I, = I. Then I; is a {dy,dp_1,... ,diy1}
-ideal of S; for each i =0,1,... ,n—1, I; #0.

Proof. Notice first that A(I) = I,,_; is a nonzero d,-ideal of S,,_; and that
A(I, 1) = I, 2 is a nonzero d,,_1-ideal of S, 5 (cf.[5, Lemma 1.3])

Next, given 0 # f in I,,_o, there exists 0 # g in I,,_1 of minimal degree, say
k, with respect to z, 1 and the leading coefficient f. Then d,(g) = d.(f)X}_,
+ terms of lower degree with respect to z,_1 (since d,(z,—1) = 0) and therefore
dn(f) belongs to I,_». Thus I,_s is a {d,,d,—1}-ideal of S,_2. The result follows
by successive applications of the same argument.

LEMMA 2.2 Let R be aring of nonzero characteristic, say p, and let s =
vpk, fore some integers v > 1 and k > 0. Consider the ring S,. Then zir =

Z;ZQ (;)d{pk (r)argvfj)pk, for allr in R and each i = 1,... ,n (where dY denotes

the identity map of R).

Proof. Given r in R we have that z;r = rz; + d;(r), for each i = 1,... ,n.
Furthermore an easy induction shows that #¥r = 3=7_ (5)d} (r)a; 7, for all integers
v > 1. But the subring of S, generated by R and =¥ " s isomorphic to the skew
polynomial ring S = R[z,d? k] (with z corresponding to z¥ k) and therefore the result
follows by writting down the previous equation for the ring S.
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At this point we recall that a derivation d of R is called an inner derivation
of R induced by r in R, if d(s) = rs — sr, for all s in R. We are ready now to prove

THEOREM 2.3 Let R be a D-simple ring of prime characteristic, say p.
k

Assume that no derivation of the form d = >°\",cxd? , with m a non-negative
integer and cg in ﬂ;t:k kerd;, is an inner derivation of S;_1 induced by an element
of ﬂ;l:k kerd;, for alli=1,... ,n. Then S, is a simple ring.

Proof. Assume that S, is not a simple ring and let I be a nonzero proper
ideal of S;,. Then, following the notation of Lemma 2.1, we have that Iy is a D-ideal
of R and therefore Iy = R. Thus there exists a monic polynomial, say fi1 = fi(z1),
of minimal degree in I;. If deg fi = 0, then I; = S; and therefore there exists
a monic polynomial, say fo = fa(x2), of minimal degree in I,. If the f;’s keep
having degree zero, then we proceed in the same way. We will finally find a monic
polynomial, say f,—1 = fn_1(zn_1) in I,,_1, with deg f,,—1 = 0, since otherwise we
would have I = R, a contradiction to our hypothesis.

Therefore, without loss of generality we may assume that fi(z1) = z§ +
S a;xt, with s # 0 and a; in R for each i = 0,1,... ,5— 1. Then, for all 7 in R,

fir = raf + [sdi(r) + as_17]zi! + terms of lower degree
and the polynomial fir — rf;, wich is also in I, has degree less than s. Thus
fir=rfi. (1)

Now, if p does not divide s, our proof is similar to that of Theorem 3.4 of
[7]. In fact, on comparing the coefficients of 25! in the equation (1) we get that
sdi(r) +as_1r =ras_1, for all r in R. But 0 # slg is in Fy and therefore s—! is in
C(R). Thus the previous relation gives that dy(r) = (—=s tas_1)r — r(—stas 1)
for all r in R and therefore d; is an inner derivation of R induced by —s 'a,_;.
But, by Lemma 2.1, I; is a {da,ds, ... ,d,}-ideal of Sy, while, since d;(z1) = 0,
d;(f1) has degree less than s and therefore d;(f1) = 0, for each j = 2,3,... ,n.
Thus,

dj (ai) =0 (2)
for each 4 = 0,1,...,s — 1 and therefore —s'a,_1 is in (j_, ker d;, a fact which
contradicts our hypothesis (set m = 0 and ap = 1).

Thus we may assume that

s=s'p 3)
for some positive integer I, where p does not divide s’. In this case let ¢ = i(k)
be the greatest integer less than s, such that p* divides i, while p**! does not, for
each k = 0,1,...,l. Therefore we can write i = v(k)p*, for some positive integer
v(k), such that p does not divide v(k). Then, because of Lemma 2.2, given r in R,
i1(k) = i(k) — p*F = [v(k) — 1]p* is the greatest integer less than 4, such that a;zi17
can have a nonzero coefficient for 2.
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Set ¢t = maxy i1 (k); then we are going to compare the coefficients of ! in
equation (1). For this, observe first that a;ztr = a;ral + terms of lower degree.
From the other hand it is clear that, if i(k) = ¢, then 4 is the unique integer of
the form v(k)p*, where p does not divide v(k), such that a;zir can have a nonzero
coefficient for x%, while, if i(k) < ¢, then there is no integer with this property.
Thus, in order to calculate the coefficient of z{ in fir, we only need to look at the
terms of the form a,z$z, with s > ¢ > t. Because of the relation (3) we can write
¢ = qp* for some integers ¢ > 1 and k, 0 < k < [, such that p does not divide gq.

Then, by Lemma 2.2, zfr = 327, (%) dir * (r)zi?=P * and therefore a.x$r can have
a nonzero coefficient for x} if, and only if, ¢ = bp* for some non-negative integer
b. Then, since i(k) = v(k)pF > ¢ >t = bp* > i1(k) = [v(k) — 1]p*, we get that
b=v — 1 and therefore ¢ = i(k), 0 < k < r and t = i1 (k).

Thus, by Lemma 2.2 again,

v(k)
acwir = ayp sy r = aik) Y (”(jk))d{"’“ (r)ayy =" )
7=0

But ¢ = i(k) > t, the fact which clearly implies that i; (k) = [v(k) — 1]p* =t,
and therefore, in order to reach the coefficient of z{ in (4), we must take j = 1.

Let m be the maximal k such that i1 (k) = ¢; then, if &k > m, is i1(k) < ¢
and therefore we must take ¢ = i(k), 0 < k < m. Thus, using the relation (4) and
comparing the coefficients of z{ in the equation (1), we get that

m
rag = a;r + Z ckd’f’c (r) (5)
k=0
with ¢ = v(k)a;) if i(k) >t and ¢ = 0, if (k) <t (¢ # 0, since t = i3(m) <
i(m)).
Furthermore z1 f1 — fiz1 = Z;:(} di(a;)zt is in I; and has degree less than
s; therefore d; (a;) = 0, for each i =0,1,... ,s — 1. But we have already seen that
dj(a;) = 0 for each j = 2,3,... ,n (see the relation (2)) and therefore a;() and a;
are in ﬂ?:l kerd;. Therefore the equation (5) contradicts our hypothesis and this
completes the proof.

The previous theorem has the following converse.

THEOREM 2.4 If S,, is a simple ring of prime characteristic, say p, then R is
a D-simple ring and there is no inner derivation of R of the form d = Z;-n:o ajde :
withm > 0 and a; in Fy for each j, induced by a nonzero element r of ﬂdieD kerd;,
foralli=1,... n.

Proof. Since S, is a simple ring, R is a D-simple ring and no element of
D can be an inner derivation of R induced by some 0 # r in (. .p kerd; (cf.[7,
Theorem 3.3 ]).
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Assume now that there exists an inner derivation of R the form d =
Yo ajde with m > 0 and a; in Fp for each j, induced by a nonzero element
7 of (,ep kerd;. Consider the polynomial f(z;) = E;"ZO a;z;p’ —r and let s be in
R. Then, since a; is in the center of R for each j, applying Lemma 2.2 for v =1,
we get

flz))s = i [ajsmfj + ajdfj (s)] —rs=s Zajarfj +d(s) —rs = sf(x;)-

zif(zi) = Zwkajmfj —ar =Y _ajz, + di(a)|z? — [rzy + di(r)]
7=0 7=0

= Z(ajmipj)mk —rxp = f(x;)zg forall k=1,...,n

(since r is in [, cp kerd; and a; is in Fp). Thus f(z;) is in the center of S,. But
am, being in the field Fy, is a regular element of R and therefore f(z;) is not a unit
of S, because otherwise, by Lemma 3.2 of [7], we would have that m = 0. Thus
f(z;)S, is a nonzero proper ideal of S,,, a contradiction to our hypothesis.

Remarks (i) The following example illustrates the construction of ¢ and of
the derivation d in the proof of Theorem 2.3. Assume that ch (R) = 3 and let
s = 54 = 2. 3%, Then i(0) = 53, i(1) = 51, i(2) = 45 and i(3) = 27; therefore
i1(0) = 52, i1 (1) = 48, 41(2) = 36 and 1 (3) = 0. Thus ¢t = 52, m = 0 and therefore
d= Codl = 'U(O)ai(g)dl = a53d1.

(ii) In the statement of Theorem 3.5 in [7] we have assumed that the ¢;’s of
the derivation d = Y, cxd? ’ (cf.Theorem 2.3 above) are in

Feoy = C(Sk—1) N () ker d;).
j=k

For the derivation d constructed in the proof of Theorem 2.3 we have shown that
the ¢;’s are in ﬂ?:k kerd;, but it remains to show that ¢ is in C(R). To show
this, since ¢ = v(k)a;) when i(k) > t, it suffices to show that a;() is in C(R)
(Fr—1 is a subring of Si_1. At the first glance we thought that this turns out on
comparing the coefficients of mi(k) in the equation (1), but this does not look quite
obvious to us now. For instance, reconsider example (i) and compare the coefficients
of 231 in fir = rfi. Since x$r = rz§ + terms of lower degree, you must look to
z$r for ¢ = 52,53,54. Thus ras; = asir + 52as2d(r) + (5)assd?(r)((%)d*(r) = 0,
since 3 divides (534)) fact which shows that as; is not in the center of R (this is not
a counter example since 51 < t).

(iii) Theorems 2.3 and 2.4 above for n = 1 give a result due to Jordan (cf.[5]
or [7, Corollary 3.6 (ii)]).



28

Michael G. Voskoglou

(iv) After quoting Theorem 3.5 in [7], Malm gave a proof different from ours

above, considering the case n = 1 and applying induction on n (cf.[6, Theorem 4]).
He also proved in a different way Theorems 3.3 and 3.4 of [7] (cf.[6, Theorem 2]),
i.e. the case where R is of characteristic zero.

(1]
2]
(3]
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