| 
           
                
               
PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.)Vol. 58(72), pp. 153--161 (1995)  | 
| 
       
	
	
	
	
	
       | 
    
Kvaziasimptoticheskoe razlozhenie mery na poluosi v shkale pravil'no menyayushchihsya funkcijYu.N. Drozhzhinov, B.I. Zav'yalovSteklov Math. Inst., Moskva 117966, RussiaAbstract: V stat'e rassmotrena tauberova teorema tipa Hardi--Littlvuda--Karamata dlya kvaziasimptotiqeskih razlozhenii mer, sosredotoqennyh na polozhitel'noi poluosi. Pri etom predpolagaetsya, chto chleny kvaziasimptoticheskogo razloxheniya --- obobshchennye funkcii, sosredotochennye v nachale koordinat, a asimptoticheskoe povedenie ostatka ocenivaetsya otnositel'no shkaly pravil'no menyayushchihsya (avtomodel'nyh) funkcii. Rezul'taty primenyayusya v teorii veroyatnostei dlya opredeleniya povedeniya ``hvostov'' funkcii raspredeleniya po asimptoticheskomu povedeniyu harakteristicheskoi funkcii. Classification (MSC2000): 46F12; 44A10, 40E05 Full text of the article: 
 Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 16 Nov 2001. 
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
  |