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Abstract. A classical separation theorem was generalized in R", for m-
families of open convex sets by Klee [5] and for m-families of compact convex sets
by Gallivan and Zaks [2]. In our paper we extend these results to topological vector
spaces. Finally, two applications are pointed out.

1. Introduction. A collection A of m + 1 subsets of a vector space E will
be called an m-family if () .4 = 0, but each m members of A have a common point.

From Helly’s theorem [4], it immediately follows that, if F is finite-dimensio-
nal then, for m > dim E, there is no m-family of convex sets in E.

It is well known that if {A;, A»} is a 1-family of convex sets in a finite-
demensional Euclidean space, then A; and As can be separated by a hyperplane.
This result was generalized to R™, for m-families of open convex sets by Klee [5]
and for m-families of compact convex sets by Gallivan and Zaks [2]. We present,
in the mentioned order, the following two generalizations.

THEOREM 1. If {41, As,... ,Apmt1} is an m-family of open convex sets in
R™, then there is a flat L of deficiency m such that:

(i) £n(Urt 4) =0;

(ii) if F is any flat of deficiency m — 1 which contains L, and S is either of the
half-spaces into which L separates F', then S intersects some set A;.

THEOREM 2. If {41, As,... ,Apni1} is an m-family of compact conver sets
in R™, then there is a flat L of deficiency m such that:

m+1 m—+1
(i) LN ( U Az> = @; (ii) LN conv < U Az> #* 0.
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In Theorem 3 we shall show that the conclusion of Theorem 2 holds if
{A41,As,... A1} is an m-family of open convex subsets of a topological vec-
tor space or an m-family of closed convex subsets of a locally convex space, at least
one being compact.

A well-known consequence of Helly’s theorem asserts that for a finite family
A of convex sets and for a convex set L in R"™, the existence of some translate of L
which intersects all members of A is guaranteed by the existence of such a translate
for each n + 1 members of A. When L is a flat we shall prove (Theorem 4) that
the integer n 4+ 1 can be reduced.

Finally, we give two applications of Theorem 3, closely related to Theorem 4.

Throughout this paper we assume that the vector spaces (and implicitly the
topological vector spaces) are real.

2. Results. The main result is the following

THEOREM 3. Let {A1,As,... ,Apt1} be an m-family of (a) open convex
subsets of a topological vector space E, or (b) closed convex subsets of a locally
convez space E, at least one being compact.

Then there is a closed flat L in E, of deficiency m, such that:
m+1 m+1

(i) LN ( U Az> = {; (ii) L N conv ( U Az> # 0.
i=1 i=1

Proof. The proof is by induction on m. In the case m = 1 the required flat
is a hyperplane. For two disjoint convex sets A;, As both open in a topological
vector space or both closed and at least one compact in a locally convex space, by
two standard separation theorems [1, pp. 32 and 64] there is a closed hyperplane
that strictly separates A; from As.

Assume inductively that the statement is true for m — 1 (m > 2) and let
1,A2,... , Am+1} be an m-family as described in the theorem.
A, A Amt1} b famil described in the th

In the case (b) we suppose, without loss of generality, that at least one of the
sets Ay, Ay, ..., A,, is compact.

Since ﬂ;’:{l A;i =0, Apgr and )2, A; are two nonempty disjoint convex sets,
both open in a topological vector space in the case (a), respectively both closed, at
least one compact (-, A;), in a locally convex space, in the case (b). Therefore
there exists a closed hyperplane H that strictly separates them, i.e. A1 C H™
and ﬂf;l A; € HT, where H- and Ht are the two open half-spaces determined
by H.

Obviously, when E is a locally convex space, H is a locally convex space too,
with respect to the induced topology.
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Define A? = A; N H, for 1 < i < m. Obviously the sets A} are open in the
case (a), respectively closed and at least one compact in the case (b). We shall
prove that {A}, A3, ... A%} is an (m — 1)-family in H.

Let T* be an arbitrary intersection of m — 1 sets A} (1 <4 < m) and let
T be the intersection of the corresponding sets A;. Clearly T* = T N H. Then
T N A4 is the intersection of m members of the m-family {A;, As,... , Apt1},
hence TNA;,41 # 0. This relation and the inclusion A,,41 C H~ imply TNH~ # 0.

From N, A; C H* and N?*,; A; C T we obtain TN H* # (. Since T is a
convex set, from TNHT # (@ and TNH~ # 0, it follows that TN H # P. Therefore
T*=TnNH#0.

The inductive assumption is now applicable to the (m—1)-family { A}, 45, ...,
Ax }in H. Thus there is a closed flat L of deficiency m —1 in H, hence of deficiency
m in E, such that:

Lﬂ(GA}‘>=@, LN conv (OA;‘)#@.

i=1 i=1

Since A1 C H-, L C H and AF = A;NH it follows that LN(J™+" 4;) = 0.
Also

m+1 m m
L N conv (U Ai> D LN conv (U&) D LnNconv (UA:> # 0
=1 i=1

i=1
and the proof is complete.

THEOREM 4. Let A be a finite family of at least m + 1 convex subsets of a
vector space E and L o vector subspace of deficiency m. Suppose that, given any
m + 1 members of A, there exists a translate of L intersecting all of them. Then
there exists a translate of L which intersects all members of A.

Moreover, if E is a Hausdor[f topological vector space, the subspace L is closed
and the members of the family A are compact sets, then the conclusion holds for
infinite families A.

Proof. Let K be a complementary subspace of L in E. Then K is m-
dimensional.

Each point z € E has unique representation of the form z = u+v, with u € L,
v € K. Let p: E — K be the projection of E on K parallel to L, i.e. p(z) = v.
Denote by B the family {p(A): A € A}. Since p is a linear mapping, each B € B is
a convex set.

Also, since each m + 1 members of A are intersected by a translate of L it
follows that each m + 1 members of B have a common point. By Helly’s theorem,
there exists a point € (|B. Then z + L is a translate of L which intersects all
members of A.
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For the topological variant we remark that in the given conditions, the map-
ping p is continuous (see [7, p. 17]. Therefore the members of B are compact sets
in K, with respect to the induced topology. Since K is finite dimensional and the
induced topology is separated, this coincides with the Euclidean topology (see [8,
p. 52]).

Thus, the second part of the theorem has an analogous proof using the variant
of Helly’s theorem concerning families of compact convex sets of arbitrary cardinal.

Simple examples show that the existence of some translate of L which inter-
sects all members of A is not assured by the assumption of the same property for
all subfamilies with m members of 4. Some information in this case we shall get
in the next theorems.

THEOREM 5. Let E be a Hilbert space and L a closed subspace of E having
the deficiency at least m. Let {A1, Aa, ..., Amt1} be a family of convex subsets of
E, all open or all compact. Suppose that for each i € {1,2,... ,m + 1} there is a
translate of L, denoted by L;, such that:

(a) LinA; =0; (b) LinA; #0, for each j € {1,2,...,m + 1}\{i}.

Then there is a closed flat F' of deficiency m, parallel to L, satisfying:

m+1 m+1
(i) Fn (U Az> = 0; (ii) F Nconv (U A,’) # 0.

Proof. Let L' be the orthogonal complement of L and p: E — L= the
orthogonal projection on L*. Using the closed graph theorem it immediately follows
that p is continuous (see [9, p. 180]). In these conditions p is an open mapping
(see [3, p. 127]). The same conclusion can be obtained by using the open mapping
theorem (see [10, p. 75]).

Denote by B; = p(A4;), 1 <4 <m+1. Since p is a linear mapping, each B; is
convex. From (a) and (b) it follows that {By, Ba, ..., Byq1} is a m-family in Lt.
Moreover, the sets B; are all open or all compact.

Thus, by Theorem 3, there exists a closed flat G of deficiency m in L+, such

that
m—+1 m—+1
Gﬂ(U B,->=(Z) and G Nconv (U B,-);é@.
i=1 i=1

Let F be the flat L + G. It is easy to check that if K is a complement of G
in L', then K is also a complement of F' in E, hence F is a flat of deficiency m.
Since L is closed and G is closed in L™, it is also easy to see that F' = L + G is
closed.

From p(4; N F) C p(4;) Np(F) = B;NG = ) we obtain 4; N F = {), for each
i€{1,2,...,m+1}, hence Fn (U 4;) = 0.

Let y € G Nconv (™ B;). Then y = Y74 \jyi, where y; € By, Ai > 0,
E:’Sl Ai = 1. For each i € {1,2,...,m + 1} we choose an element z; € A; such
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that y; = p(z;) and denote by z the convex combination Zf:{l Aiz;. Obviously
x € conv (U:”:Jlr1 A;) and since p(z) = y € G, it follows that z = (z —p(z)) + p(x) €
L+G=F.

THEOREM 6. Let E be a Hausdorff locally convexr space and L a vector
subspace of E of deficiency at least m. Suppose that L is either finite-dimensional
or closed and of finite deficiency. Let {A1,As,... ,Ami1} be a family of convex
subsets of E, all open or all compact. If for each i € {1,2,... ,m + 1} there is a
translate of L, denoted by L;, such that

(a‘) Lz N Az = @7
(b) LiNA; #0, for each j € {1,2,... ,m+1}\{i}, then there is a closed flat
F of deficiency m, parallel to L, satisfying:

m+1 m+1
(i) Fn (U Ai> =0; (i) F N conv (U Ai> # 0.

Proof. In the conditions of the theorem, L is topologically complementable,
i.e., there exists a closed complement K of L(see [6, p. 191]). Then the projection
of E on K parallel to L, denoted by p, is continuous and an open mapping (see [3,
p. 127]). Denoting B; = p(A;), 1 < i < m + 1, further the same reasoning, as in
the previous proof, works.

Note that if G is the flat of K guaranteed by Theorem 3, under the assump-
tions of Theorem 6, at least one of the closed flats L and G is finite-dimensional,
hence F = L + G is closed (see [7, p. 13]).

Remark. The assertion of the previous theorem holds if E is a Hausdorff
topological vector space, L is a closed subspace of finite deficiency and the sets A;,
1 <i<m+1, are open. The proof in this case is analogous.
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