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Abstract. We prove several Littlewood-Paley type inequalities for M-
harmonic and analytic functions on the unit ball B of C™. Further, we give some
characterizations of M-harmonic and analytic Hardy spaces on B.

1. Introduction

Let B denote the open unit ball in C™, n > 1, with boundary S. We denote by
v the normalized Lebesgue measure on B and by ¢ the rotation invariant probability
measure on S.

The main purpose of this paper is to prove the following theorem.

THEOREM 1.1. If f is a function in LP(S), 1 < p < 0o, and u is a function
on B defined via the invariant Poisson integral of f, then

W) ([ Fu@Pa -1 + wor) = [ 1f©Pi©, ri<p<z,

and
(1.2) (/ |Vu JP(L = |2|*)"d7(2) + |u(0) ) /|f &)|Pdo(§), for 2 <p < o0,

where V and T denote the invariant gradient and invariant measure on B.

We also show that |Vu(z)| in (1.1) and (1.2) may be replaced by (1—1z2*)
x |Vu(z)|, where V denotes the real gradient of u and by (1—|2|?)(|Ru(z)|+|Ru(2))),
where, as usual, R = "7, zjaiz,- is the radial derivative.
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THEOREM 1.2. If f € L?(S), 1 < p < o0, and u is the invariant Poisson
integral of f, then for 1 < p < 2 we have

13 ([ wuepa - By ae +op) = [ i@

(1.4) ( [ (R + a0 - P () + |u<0)|f’) SSGIRC!

and for 2 < p < co we have

(15) ( /B (1Ru(2)] + |Ru(2) )P (1 — |2P)Ptdw(z) + |u<0)|P) < / F(©)Pdo(e),
(16) (/B IVu()P(1 = |22 Ldu(z) + [u(0) ) / F©Pdo(©)

For n =1 (1.3) and (1.6) are well known inequalities of Littlewood and Paley
[11]. Various generalizations of their result are referred to as a Littlawood-Paley
type inequalities.

The method of proof of Theorem 1.1 we will present is based on local estimates
for M-harmonic functions (which will be defined in Section 2) and the following
theorems that allow us to express the L? norm of f in terms of some area integrals,
and which are of interest on their own right.

THEOREM 1.3. Let u be M-harmonic function on B. If 1 < p < o0, then

%L|U(T§)|Pd0(§) _ & - "(21n—T - LB |u(z)|p_2|6u(z)|2d7_(z)’

where ¢, =p(p —1).

For 1 < p < o0, let H? = HP(B) denote the set of M-harmonic functions u
on B, u € M, for which |u|P has an M-harmonic majorant on B. It is well known
that u E HP(B) if and only if ||ullyr = supgc,«1 Mp(r,u) < oo, where, as usual,
M2(r,u) = [q|u(ré)[Pdo ().

THEOREM 1.4. A function u M-harmonic on B belongs to HP, 1 < p < 00,
if and only if

/B ()P 2 Fu()P (L — |2]?)tdu(z) < oo

Furthermore, if u € HP, 1 < p < 00, then

18) ully = [ upare) + 52D [P ARu@Ra - ) ),



38 Jevti¢ and Pavlovié¢

Let

1 T
(1.9) Glor) = 5 / (- )" tdt, 0<p<r<l,
P

As a corollary of Theorem 1.3 we have another characterization of the Hardy
space HP.

THEOREM 1.5. Let 1 < p < 00. A function u € M belongs to HP if and only

if
[ 1@ Fua) P62, Dirz) < o
B
Moreover, if u € HP, 1 < p < oo, then
(1.10) lullfe = [w(0) + p(p — 1)/B |u(2) P2 |Vu(2) PG(|2], 1)dr (2).

The method of proof of Theorems concerning M-harmonic functions we will
present can also be applied to Hardy spaces H? of holomorphic functions. Recall
that a holomorphic function f on B, f € H(B), belongs to the Hardy space H?,
0 < p < o0, if and only if ||f||ar = supgc,«1 Mp(r, f) < co. An analogue of the
identity (1.7) of the Hardy-Stein-Spencer type for analytic functions is as follows.

THEOREM 1.6. Let f € H(B). If 0 < p < oo, then

2 pl=2n(]

w4 [ieorae =50 [ @@ tare),

An application of the identity (1.11) gives the following characterization of
the Hardy spaces HP.

THEOREM 1.7. A function f holomorphic on B belongs to HP?, 0 < p < o0,
if and only if

/B FEP TR = |2?) " do(z) < oo.

Furthermore, if f € HP, 0 < p < 00, then

(1) i = [ £GP + 5 [ PRI = ) ).

THEOREM 1.8. Let 0 < p < 0co. A function f € H(B) belongs to H? if and
only if

/B F@P 2T FRG(12, 1) dr(z) < o0
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Furthermore, if f € HP, 0 < p < 00, then
2
p o=
(1.13) 115 = 1O + X/BIf(Z)I” 2IVF(2)PG(l2l,1) dr(2).

The characterizations of Hardy spaces H?, 1 < p < 00, and HP, 0 < p < o0,
given in Theorems 1.4 and 1.7 are known (see [14]). The proofs we will presente are
based on the new identities (1.8) and (1.12) and they are simpler than the proofs
given in [14].

For another proof of (1.13) see [4]. See also [14].

The following identity due to Beatrous and Burbea [2] was first proved by
Hardy, Stein and Spenser (see [6, p. 42]) for n = 1.

THEOREM 1.9, Let f € H(B), 0 <p < oo and 0 <r < 1. Then
d p?

(114) P M) =5 [ PR ) P ).

An application of the identity (1.14) gives the criteria for f holomorphic in
B to belong to the Hardy space HP.

THEOREM 1.10. [2] Let 0 < p < o0 and f € H(B). Then the following
statements are equivalent:

(i) f € HP,
(i1) [lFR)P?Rf(2)P(1 = |2]?) dv(2) < 0.

Since [Vf(z)| > (1 — |2)2Vf(2)| > (1 — |2|?)|Rf(2)|, (see Section 2) the
following theorem is an immediate consequence of Theorems 1.7 and 1.10.

THEOREM 1.11. A function f holomorphic on B belongs to HP, 0 < p < 00,
if and only if

/B IV FPIF)P2(1 = |22 dn () < oo

Remark 1. It is authors belief that the results of Theorems 1.10 and 1.11
should hold for the Hardy spaces HP, 1 < p < 0o of M-harmonic functions

As a final result we have the inequalities of Littlewood-Paley type for analytic
functions.

THEOREM 1.12. Let f € H(B). If 0 < p <2, then
(1.15) 1£115 = (/B IV (2)P(1 = [2) dv(z) + If(O)I”),
(1.16) I£1I5 < (/B V()P = |2[*)P~ du(2) + If(O)I’”),
(1.17) IF15 = (/B IRf(2)IP(1 = |2[*)P dv(2) + |f(0)|p>,
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and if 2 < p < o0, then

(1.18) (If(O)I” + /B S AP0 - |z|2)1du<z)) <A1,
(1.19) (If(O)I” + [ wrepra- |z|2)f’—1du<z>) <71,
(1.20) (If(O)I” + [ IRrepa - |z|2)p—1du<z)) <171

The usual method of proof of the inequality (1.20) ((1.19), resp. ) is to
apply the Riesz Convexity Theorem to the operator f — |Rf(2)|(1 — |2|*) (f —
[Vf(2)|(1 — |2]?)) acting on functions f on the measure space (S,0) and taking
them to functions on (B, (1 — |z|?)~!dv(z)). It is relatively easy to show that this
operator is of type (2.2) as well as (oo, 00) and the Riesz theorem produces (1.20)
((1.19), resp.). By duality we have (1.17) and (1.16) for 1 < p < 2. Additional
considerations show that (1.17) holds also for 0 < p < 1. See [3]. Obviously (1.15)
and (1.16) are consequences of (1.17). For the inequality (1.18) see [5].

Our argument is different. We show that
/Blﬁf(Z)l”(l —[2)"ldv(2) j/BIf(Z)I”_Z’ﬁf(Z)P(l— |2*) " dv(2),

for 2 < p < oo, and that the reverse inequality holds for 0 < p < 2, and then we
apply the identity (1.12) established in Theorem 1.7.

2. Notations and preliminary results

Let A be the invariant Laplacian on B. That is, Au(z) = A(uo¢,)(0), where
A is the ordinary Laplacian and ¢, the standard authomorphism of B taking 0 to
z [13]. (It can be shown that A is equal (n + 1) times the Laplacian with respect
to the Bergman metric). As in [13],

~ = 62
A =41 - 2) (005 — 2i25) 55—
e

i,5

The real valued functions annihilated by A are called invariantly harmonic
or M-harmonic.

The operator A is M-invariant in the sense that A(f o @) = (Af) o ¢, for
¢ € Aut(B) [13, Theorem 4.1.2]. This implies that the class M of M- harmonic
functions on B is M-invariant.

For a function u € C*(B) let Du(a) = D(u o ¢,)(0) and Vu(a) = V(u o
©a)(0) be the invariant complex and invariant real gradient respectively, where
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Du = (§~,...,2%) denotes the complex gradiant and Vu = (£%,..., z2%),
2k = XTog—1 + X2k, K =1,...,n, is the real gradient of u.

For u € C'(B) and ¢ € Aut(B) we have | D(uog)| = |(Du)o¢| and |V (uod)| =
|(Vu) o ¢|. In other words, |D| and |V| are M-invariant. See [12].

The length of the invariant gradient of a function v € C'(B) is given in
coordinates by

(2.1) IVu(2)? = 2(1 - |21*)(|Du(2)[* — |Ru(2)* + |Da(z)|* — |Ra(2)]?).
It is easy to check that
|2*|Du(2)|* = |Ru(2)]” + Y |Tiju(z)]?, ue C*(B),
i<j
du

where T; ju = Zig—z“j — Zj g, are tangential derivatives of u. Using this and (2.1)
we find that

22V u(z)2 = 21 = [2)2[(1 = |22 (|Bu()? + |Ru(2)[?)
(2:2) + ST u@) P + 31T a(z) 2],

i<j i<j

For z € B and r between 0 and 1, E.(2) = {w € B : |p,(w)| < r}.

In this note we follow the custom of using the letter C to stand for a positive
constant which changes its value from one appearence to another while remaining
independent of the important variables.

We write A < B, or equivalently B > A, when there is a constant C such
that A < CB, and A~ B when A < B and B < A.

LEMMA 2.1. [12], [1] Let 0 < p < 00 and 0 < r < 1. There exist constants
C1 > 0 and C2 > 0 so that if u € M, then

(@) Fu()l? < oSy Ji oy (Fulw)Pdv(w), = € B, and

1) V()P < 7Sy [, (o) [Vu(w)Pdv(w), = € B.

LEMMA 2.2. (9], [8] Let 0 < r < 1. There is a constant C sach that if u € M
then

(@) |TiyRu(z)| < C(L— |2)712 [, | [Ru(w)ldr(w), =€ B,

(b) IToyRu(=)] < C(1 = [22) 72 [y, () [Ru(w)ldr(w), =€ B,

(©) [Toju(x)| < OO = 22)7Y2 [, u(w)|dr(w), = € B.

Here, d7(z) = (1 — |2|?) " 'dv(z) is the Mobius invariant measure on B.

The following lemma gives some basic properties of G which will be needed
later.
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LEMMA 2.3. Let 0 < § < 1 be fized. Then G(|z|,1) satisfies the following:
(a) G(|z],1) > cn(1 = |2])?)™, for all 2 € B.
(b) G(|z],1) < ¢es(1 = |2|*)™ for all z € B, |z| > &, where c5 is a positive
constant depending only on 6.
Furthermore, for all z, |2| <68, G(|z],1) = |2|>7", n > 1.

The proof is a routine estimation of the integral in (1.9), and thus is omitted.

LEMMA 2.4. Let 0 < § < 1. There exists a constant K = K () > 0 such that
lpa(2)| > K|z —al, for all a, |a| < 6, and z € B.

Proof. By [13, p. 26]

1 —la> (1= |2?) |2 —al®+|za)* — |z|*|a|?
oo 1= (=IO = ) _ [ = aP + ool s

|1 — zal? |1 — zal?
Thus
|90 (z)|2 |Z - CL|2 + |Z(_l|2 - |z|2|a|2
* - (1+4)?
_ lz—al’ +[(z —a)al* — |af*|z — a/?
(1+6)2
(1-0%)]z —af?
- (144)2

3. Characterizations of the Hardy space HP

Proof of Theorem 1.3. Let u. = (u? + €2)?/?, € > 0. Then u. € C*(B) and
Aue = p(p — 2)(u® + )P 27202 Vul? + p(u® + )P 1(|Vul? + uAu).

By the Green formula we have

CRV /S ud(r) do(e) = LT /Bﬁue(z)dﬂz), 0<r<l,

(see [12])
Since u is M-harmonic, we have

(3.2) Au, = p(p — 2)(u?® + P22 Vul? + p(u® + )P/~ Vu)?,

and

(53 i 2= [ w9 do©) = - [ utro)Paso)

e—0 dr
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The latter holds because the function
(6,2) = (uQ(z) + 62)”/2 = |u(z) +iel?

is of class C!, (€, 2) € (—00,0) x B.
If 1 < p <2, then it follows from (3.2) that
Aue > plp = 2)(u® + )P (0 + )|Vl
—|—p(u2 + 62);0/271|§u|2
(3.4) =p(p— 1) (@ + )P/ > Vul

Hence, by (3.1),

,r.1—2n(1 _

Cp %rw1;MW+3W2WW@WW@§%A¥MQW©

where ¢, = p(p — 1).
Using Fatou’s lemma we find that

@) P Doyt [ uap2Ru@Pan) < 4 [ ueopae).
If 2 < p < oo, we find that
60 -t [ P uePde) < 5 [ lueordso.

Hence by (3.5) and (3.6) we conclude that the function |u(z)[P~2|Vu(z)|? is
locally integrable.

By (3.4) and (3.2) Au, > 0, for every z € B. (Note that p > 1).
It is easy to see that

Au,(2) < epp(u?(z) + PP HVu(2)’, z € B,

wherecp =1ifl<p<2andc,=p—-1lifp>2.
Hence by (3.1), (3.2), (3.3) and the Lebesgue theorem, we obtain

d » L ~
& [ucepine =tm [ Eu)dr(e)

e—0 J.B

_pp—1)

2n

(=i [ )P ue)Pan(e)

rB

To prove Theorem 1.4 we need the following proposition
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PROPOSITION 3.1. Let u be M-harmonic and p > 1. Then u € H? if and
only if
Tim [M2(r,u) — 7*72"/ lu(2)|Pdv(z)]< oo
rB

r—1

Proof. “Only if” is trivial. To prove the “if” let

o) = [ uIPdve) =20 [ 0o, dp.

Hence,

ME(r,u) — 72 / fu(2)|dv(2) =

rB 2n

From this the result follows easily.

Proof of Theorem 1.4. By (1.7) we have

on d o op _plp-1) 2\n—1 P—2|S 2
M) = Bty [ ) 2 Su) ()

Integrating this from 0 to € we get, by integration by parts and Fubini’s theorem,

MM (e, u) - / @)

-% [r(1 —r2)nt / i [u(2)[P~2|Vu(2)[*dr(2)] dr

2n J,
= ;_2 . |u(2)[P~2|Vu(z)[*dr (2) /;(1 —p2ynlpgy
(37) = 2C—:L /EB |u(z)|1’*2|€u(z)|2 (1 — |z| )”ZT_L (1 —€ )n dT(z),

where ¢, = p(p — 1).
If u € HP, by taking limit in (3.7), € — 1, we obtain (1.8).

Conversely, if

/B lu(2)P2Vu(2) (L~ |2]) "du(z) < 00

then
T [M2(e,u) — 2" / ()< oo

e—1 p

and u € H?, by Proposition 3.1.
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Proof of Theorem 1.5. We have, by (1.7) and Fubini’s theorem,

(3-8) Mp(r,u) = |u(0)[” + p(p - 1)/ lu(2) P2 Vu(2) PG|z, 7) dr(2).

rB

If M2(r,u) < C < 0o, then we apply Fatou's lemma to get that
[u(0)]” + p(p — 1)/ lu(2)P~*|Vu(2)PG(|2], 1)dr(z) < C
B

In the opposite direction we use the Lebesgue theorem and the inequality

G(lz],r) < G(lz],1).

Remark 2. An upper-semicontinuous function u : B — [—00,00) is M-sub-
harmonic or invariant subharmonic if for each a € B

u(a) < /S u(ia(r)) do(€), 0<r <1,

provided that none of the integrals is —oo.

Recall that the Riesz measure of M-subharmonic function v on B is the
non-negative regular Borel measure p, satisfying [, ¢dp, = [5ulA¢dr, for all
¢ € C?(B), the class of twice continuosly differentiable functions on B with compact
support.

If w is M-harmonic on B and 1 < p < 00, then the Riesz measure of |u(2)|P
is given by uxdr, where u}(z) = p(p — 1)|u(2)|P~2|Vu(2)[?, (see [14]).

If u € HP(B), 1 < p < oo, then the least M-harmonic majorant of |ul? is
given by

Plu*)(z) = /S P(z, u*(€) do (©),

where P(z,€) = |1 — 2|7 2"(1 — |2|?>)" is the invariant Poisson kernel on B, and
u*(€) = limy_1 u(r€) a.e. on S, [13]. Thus by the Riesz Decomposition Theorem
[14], [15] with z = 0, we again have the equality (1.10):

llullfe = [u(0)I” + p(p - 1)/B lu(2) P2 Vu(2)[PG(|2,1) dr(2)

For a similar argument see [4], [14]. Our argument in proving (1.10) is much
simpler. We only use Green‘s theorem, as well as in the proof of Theorem 1.4.We
note that the characterization of the Hardy space H? given in Theorem 1.4 is a part
of Proposition 5, [14]. The proof given in [14] is also based on the computation of
the Riesz measure of the function |u|? and the Riesz decomposition theorem.
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4. A Littlewood-Paley type inequalities

Proof of Theorem 1.1. Without loss of generality we may suppose that f is
real. It is well known that a M-harmonic function v belongs to H?, 1 < p < oo,
if and only if v = PJg], for some g € LP(S), 1 < p < oo. Furthemore, ||[v||yr =
llgl|z»(s)- Thus to prove (1.1), by (1.8), it is sufficient to show that

h= [P < (uo)r + [ [FuEpa 1) )
and

b= [ [FuEPuEP - ) ) 2 [ [FuP - 1) (o).

Let I denote the last integral. Using Lemma 2.1, (b), we find that

u(2)[" =

/1 %u(tz) dt + u(0)
0

<o [ wutzypa + o)

<e([(/ TP ) de+ o))
Since 1 — [w]2 = 1 — #2|2[2 = |1 — t2w| for w € Ey(t2), we obtain
wor <[ ([, B ) )

(/ (/ [Fule ||ji;li,u|la)a " (W)) dt+|u(0)|p>

<c(/ V()P = [wP) 2 () + ()" )

|1 — zwp|o—t

We may suppose that a > n + 2.
By (2.1) |Vu(w)| < Y2l Thys

1—|w]?

I §C<|u(0)|”+ /B dv(z) /B '6“(1”)"’(1"“"2)“lpdy(w)>

|1 — zw|o—1

_ C(|u(0)|p+ /Blww)ml = [wf)* " Py (w) df“)

B |1 —zw|e—1

By standard estimates (see [13, p. 17])

/ dv(z) < C
T D R
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Hence,

I < c(|u(0)|” + [ Futwypa - |w|2)1—f’dv(w))
B
Since 1 < p < 2, we have (1—|w|?)! P < (1—|w|?)~1. Therefore, I; < (|u(0)[?+1).

Let r € (0,1/2) be fixed. Set € = r/4 and § = r/2. By Fubini’s theorem we
have

@) <0 [-lPra@ [ (FuPue)P ).
B Be(a)
It is easy to see that if |z| < r/4 then G(|z|,r/2) > C > 0 and therefore

/ Fu@PluEP () < € /,5 PP PGl /2 dr(2).

Applying this to u o ¢, and using the M-invariance of |6|, we see that
(4.2)

/ |Vu(z)P|u(z)P~?dr(2) < C/ [Vu(z) P[u(2) PG (|¢a(2)], )dr(2).
E.(a) Es(a)
Let ¢, = p(p — 1). Using (3.8) and Jensen'‘s inequality we get

¢ /wﬁu(zmu( PG (2], r/2) dr (2 / [u(56)[Pdor(€) — [u(0) P
= [ (oo = (o))

p/2

(43) < ([ meoPan©) - (o))",

If0<a<1land0<b<athen a*—b* < (a— b)*. Thus

woean©)” - (uoP)” < ([ wtoPare - or)
(fssoras) ([ )

- <2 /53 |§u(z)|2G(|z|,T/Q)dT(z))p/z

< C sup [Vulz)P ( /6 ) G(|z|,r/2)d¢(z))p/2

2€6B

(4.4) < C sup [Vu(z)P.

z€0B
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Using M-harmonic behaviour of [Vu(z)[?, (Lemma 2.1), we find that

45)  sup [Vu()|? < C sup / u(w)|Pdr(w) < C / ¥ (w)|Pdr(w).
2€0B 2€6B J B5(2) rB

Combining (4.3), (4.4) and (4.5) we obtain
| IFu@PREP 62 dr) < € [ [Fu)par)
6B rB

Applying this again to u o ¢, we get

@o) [ Fu@PREP 6@/ <0 [ [Fu@Pre)
Es(a) E.(a)
Finally, from (4.1), (4.2) and (4.6) we see that

L<C )dr( Vu(z)Pdr
-ty [ [Sueree)
= [ [Fu()P(1 = o) dvz) = CT,

by Fubini’s theorem.
This finishes the proof of the inequality (1.1).
Since the function |u|P is M-subharmonic we have

o) < /B Ju(z)Pdv(2)

Hence by (1.8) to prove (1.2) it sufficies to show that I» > CI.
By Fubini’s theorem

(4.7) I, > /B (1 - |af*)"dr(a) / OO0

id

Using (3.8) and Jensen’s inequality we find that

¢ /wﬁu(zmu( PG|z, 6) dr(z / [u(56)[Pdor(€) — [u(0) P
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For 1 < a < oo and 0 <b<a, we have (a — b)* < a® — b*.
Hence, by using (3.8) and Lemma 2.1,

(/S Iu(6§)l2da(§)>” /2 — (Ju(0)2)P/2 > (/ u(56) Pdo(€) — [u(O) )p/2

_ p/2
=@/'wwwwmm®mu0
5B
- »/2 -
>0 [ Furae) = cfuop
5B
Therefore,
IVu(0)[P < C/ [Vu(2)[u(2)[P~>G(|2],6) dr(2)
5B
Since G(|z|,8) < C|z|?27, for |z| < J, (note that n > 1), we get
\V, » < 2 p—2(,|2—2n
FuO)r <C [ [Fu@PluP sl 2ndr(e).
Applying this to u o ¢,, where |a| < §, we find that
Vu(a)? < C/ IVu(z)*[u(2) P> |pa(2) P> dr (2)

Es(a)

By Lemma 2.4 |p,(2)| > C|z — a|. Thus
Fu@P < [ [Fu@PlaEP ) - o *dr(e)
Eg(a)
Integrating the last inequality over |a| < § with respect to v we obtain
/ Vu(a)Pdv(a) < C / Su(2) 2 u(z)[P2dr (2) / 17 — a2 du(a).
B rB 5B

Since, for z € rB,

/ |z — a* *"dv(a) < / |z —al*?"dv < C
§B {a:|z—al<2r}

where C' is independent of z, we have

Fuol <C [ [Fu@Pir@ <0 [ [Fu)PuEr )
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Applying this again to u o ¢, we get
(4.8) Fu@P < [ [Fu@PuEP )
E.(a)

From (4.7) and (4.8) it follows that Iy > CI. This finishes the proof of Theorem
1.1

Now, using Theorem 1.1 we get another version of Littlewood-Paley theorem.

THEOREM 4.1. Let f € LP(S) and u = P[f]. Then

(4.9) [L£15 = (|u(0)|” + /B [Vu(2)|PG(|2],1) dT(Z)>, l<p<2
and
(4.10) I f1lp = (|U(0)|” + /B [Vu(2)[PG(2l, 1)dT(Z)), 2 <p<oo.

Proof. By Lemma 2.3 G(|z|,1) > ¢p(1 — |2|)™ for all z € B. Hence, (4.9) is a
consequence of (1.1).

Let 0 < § < 1/2 be fixed. Then using again Lemma 2.3 we find that

[ 1966 1) dr(z)
B

2

< C(/ [Vu(2) [Pl ~*"dr(2) +/ Vu(2)P(1 - |Z|2)"dT(Z)>-
16B (36B)e
Thus, (4.10) follows from (1.2) since

| 1Ru@Ppnan) <0 [ [Su@Pa - ) ).
50B éB

2

Theorem 1.2 is a corollary of Theorem 1.1 and the following theorem

THEOREM 4.2. Let 1 < p < oo and u € M. Then the following statements
are equivalent:

@) [5 Vu(2)P(1 - |22)7 du(2) < oo.
) fB |Vu(2)[P(1 — |2]2)P~Ldy(z) < <.
(#55) [5|Ru(2)[P(1 - |2*)P~dv(z) < co.

Proof. Since |Vu(2)| > (1 — |2]2)|Vu(2)| > (1 — |2|?)|Ru(z)|, we have (i) =
(i1) = (447). So it remains to show that (i3i) = (i).
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By (2.2) to prove that (ii¢) = (¢) it is sufficient to prove that
/(1 = |2)P2 7T julz) Pdv(z) < C/(l = 2P [Ru(z)Pdv(2), 1 <i<j<n.
B B
An integration by parts show that
1 —
u(z) = / [Ru(tz) + Ru(tz) + u(tz)]dt
0
From this we conclude that it is sufficient to prove that
1 P
1= [a=ppye ([ ) a <€ [ @y iraePane)
B 0 B
where v is either Ru or Ru or u. We prove this for v = Ru. The remaining cases

may be treated analogously.

Let J = fol |T;,;Ru(tz)|dt. Using Lemma 2.2 and Fubini’s theorem we find
that for any s > 0

! 2\s
Rt~ i)
<
= C/ (/Er(tz) |1 - tzu‘)|"+8+3/2 dt
|Ru(w)|(1 — |w|2)*dv(w)
= C/ (/ |1 - tzw|n+s+3/2 dt

- [ irutwla - wpy ([ 1 T ) W)

<C/ | Ru(w 1—|w|2)sdl/(w)‘

|]_ _ zw|n+s+1/2

Now we apply Lemma 4.1 [3] to conclude that

reof o=y ([ OG0 ) o))

<c /B (1 — |w[2)P~1 | Ru(w)|Pdv(w)
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