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A SOLUTION OF
AN OLD PROBLEM OF KARAMATA

Slavko Simié
Communicated by Dragoljub Arandelovié

ABSTRACT. We give a complete solution of an approximation problem
originally posed in 1949 by Jovan Karamata.

1. Introduction

In [2] Karamata proposed the following problems (by interpretation of Mitri-
novié in [5]):

PROBLEM A. Determine those algebraic functions A,(z), n = 2,3,... which
have the following properties:

log x

1.
r—1

<Ap(z) (@>0); 2. Ap(z) ~2~Y" (z—01);

3. zAn(z) ~ 2" (= 400); 4. An(z) (x — 1),

where a,, is independent of x.

ProBLEM B. Find algebraic functions By (z), n = 2,3,... such that for x > 0,

log x
z—1

< Bp(z) and By (z) > B,(z) for 2<m<mn.

The forms of A, (x), B, (x) were important for Karamata’s efforts to solve some
approximation problems of Ramanujan [3]. In [2] he indicated that

1 _1+m1/3

AQ(m):ﬁ; A3(w)—m.
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In [1] Blanusa has given a rather complicated expression for A4(z). In 1968 Mitri-
novié restated this as Problem 5626 in the American Mathematical Monthly, the
leading journal for mathematical problems [4]. He also put it in his well-known
book [5] with a comment that “so far no solution has been published to the above
problems”. Our recent inquiry to the editors of Monthly, R. Horn and B. Palka
shows that, after 34 years, this notice is still valid. In this article we shall give an
explicit form of A, (z) and two different expressions for B, (x). It is obvious that
those solutions of 5626 are not unique.

2. Results

At the begining let us quote some simple lemmas we shall need in the sequel.

LEMMA 1. tanh™y ~ y™ (y — 0); 1—tanh™y ~ 2mexp(—2y) (y = +00).

2k—1 2n41

14
LEMMA 2. %logﬁ Y T~ S = 0).

LemMa 3. gt < 2050 (2 1)y 4 2020 g <y <15 ne N
Lemmas 1 and 2 are obvious and Lemma, 3 can be proved by standard method.

PropoOSITION 1. The algebraic functions A, (z), x > 0, n = 2,3,... which
represents a solution of Problem A, are defined by the following expression

Yohe1 3o (X2F 1 (2) = V2R (2)) + 3(n® — 1) X2+ (2)

Ap(z) :==12n -
" (z — 1)(1 — ML X202 () 4 (2 — 1) X20(z) — 2EL Y202 (p))
$1/3n_1 :L.I/Gn_]_
Where Xn(.'L') = W_}_l’ Yn(w) = W_}_l

Proof. We shall prove that A, (z) satisfy the conditions 1, 2, 3 and 4 of Problem
A. To prove the validity of the assertion 1 put z = e!, ¢ € R and re-write the
inequality from 1 in the form

(A1)
b en Yo g (X2 YR 4+ 5 (0 - )X
2sinh(t/2) = sinh(¢/2)(1 — M X202 4 (p2 — 1) X2 — R 202y

where, for the sake of simplicity, we put
X, = X,(e!) :=tanh(t/6n), Y, = Y,(e') := tanh(t/12n).
Now, for 1 > X,, > w >Y,, > 0, integrating the identity

1 ,w2n+2 n ok
@ 1—w2:1—w2+kz_0w
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with respect to w, we get

¢ L <1+Xn1—Yn):/X" dw

12n ~ 2 1-X,1+4Y, y, 1—w?
Xn 2n+2 n+l
w 1 _ _
(A.2) =/Y Tmdw+ > T (X -y
n k=1

We shall estimate the integral on the right-hand of (A.2) by using Lemma 3 with
y:= (w/X,)% Hence

Xn w2nt2  onse Xn (w/Xn)2"+2
dw = X2 L dw
Yo 1-— w Y, 1-— w

<X2n+2/x"(n(n—1) 1 _n2—1 w? +n(n+1) w? )dw
- " Y, 2 1-w? X2 1—w? 2X4 1 —w?

n

Xn
=5, d T,
S/Yn 1= w? w +

where

S = Su(t) = M=V g2 2 _qyxen L”; D)

5 XTZln—2’

3
I
N
[

X
" . 1) _.
/Y ((n® = 1)X2" - 7”(”; ) X221 4 w?))dw.
Since fé" ﬁdw =t/12n and 1-S, >0 for 0 < X, < 1, putting this in
(A.2) and dividing by 2sinh(¢/2) which is positive for ¢ > 0, we obtain

t 6n woq

< X2k71 _ Y2k71 Tn
2sinh(t/2) = sinh(¢/2)(1 = Sn) ; ok =1 noF

Now,

1
(X2n+1 _ Yin—i—l) + Tn

2n+1" "
1 A 1 |
< mX,zln+1+(Xn—Yn)<(n2_1)XTZLH_@Xinfﬂ < g(nz—l)XfL"'H,

and (A.1) follows for ¢t > 0. Since t, sinh(t/2), X, (t), Y,(t) are odd functions, we
see from the form of the inequality (A.1) that it is also valid for negative values of
t. Applying the first part of Lemma 1, it follows that both sides of (A4.1) approach
1 when t approaches zero. Hence, the assertion 1 of Problem A is proved.

Now we shall prove assertion 3 i.e.,

t

t B _ e 1 = 1 2k—1 2k—1y , 8/ 2 2n+1 t/n
eAn(e)_lznet_ll_Sn;% (X =+ 50 - DX ~ e

-1
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for t & 4+o0. Using the second part of Lemma 1, for fixed n, we obtain

1 2%k—1 2k—1y , O/ 2 ont1 _, 8/ 2
> - 2 —1)X2H 5 22 —1) (¢ .
2 5= 1(Xn Y + 9(n )X — g(n ) (t— +00)

n
=1

Since X, = 1 —2/(et/3" 4+ 1), an easy computation shows that

2
1-8, ~ 3?n(n2 — e /" (t = +00)

and the proof is finished.
In the same manner, assertion 2 is also valid.
According to condition 4, applying Lemmas 1 and 2, we have

t 12n 1, 14Y, < 1
(eh) — _ 21 n_ y2k-1
An(€) =3 (et—l)(l—Sn)((2 I A T

n

Xn 1 _
_ (110g1+ _Z X721k 1)) +tSn+O(X72;n+1)

2 1-X, k:12k—1

"(n2+1) tX?ln_Z + 0(X72ln+1) + O(Ynln-‘rl)
@ D1 —5,)

’fL(’I'L + 1) t2n—2

2(6n)2n—2

~ n(n + 1) X2n—2 ~
n

2 (t —0).
Hence we obtain a very precise approximation

_ log x n+1
z—1 2(36)"1p2n-3

An(z) (x —1)*~2 (x = 1),

and the proof of Problem A is finished.

In the sequel we shall give two different solutions of Problem B and a form of
by (z) which is well-approximating I;OE—T from the left-hand side.

PROPOSITION 2. Let p, 0 < p < 1 be an arbitrary rational number. Then we
can take

Z—ll kl (zzpfl)zkfl
B (.CU) — B(p) (.CU) = =1 2k—1\z pp+1
" " plz —1)(1 - (Z551)>2)

n=23,...

Proof. To prove

logx
z—1

(B.1) <B,(z), x>0 n=23,...
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we proceed as before i.e., we put z = €', t € R; X, = X,(t) := tanh(pt), and
re-write (B.1) in the form

t 1
B.I’ < X2k=1,
(B.1') 2sinh(t/2) ~ 2psinh(t/2)(1 — X2" %) Z 2k— 177
Integrating again (I) over w, 0 < w < X, < 1, we get

2n—2

X 2k—1 X w
B.2 = _aw= X
(B.2) pt /0 1—w2 Z2k—1 P +/0 T

Because

Xp 202 oy [ 1 -
dw < X" dw = pt X"~
/0 T—w2®™ =" /0 1—w2®™ TP

from (B.2), by dividing with 2sinh(¢/2), ¢ > 0, we obtain (B.1’) for ¢ > 0. Since
both functions on the left and right-hand side of (B.1’) are even, we see that this
inequality is also valid for the negative values of t. Therefore (B.1) is proved.

We shall prove next that B, (x) are monotone decreasing functions of n. Evi-
dently

B, ('77) — Bpia (-T)

S X212k — 1)

_& XP1-X3) X!
plet — 1) 1-X;"7%) (1= X2)  p(2n—1)(et —1)(1 - X2)
_ in 2(1- XZ) nzl 1 x2k-1 _ Xp l_Xz%niz >0
p(et —1)(1-X" ") (1-X2") 2k—177 2n—-1 1-X?

and the proof of Proposition 2 is completed.

log T

Remark 1. The functions B (z) approximate -
point z = 1. Namely, computations show that

log n—2 4, n
BP(2) - 2% ~ (=1p" )@= (@ 1),

7 very precisely around the

1 1 1/3

One can also find B§1/4) () = — and Bél/e) = l, i.e., Karamata’s versions
N z + z'/3

of Ax(z) and As(z). Indeed, the functions B/ (z) are “almost” solutions of

Problem A. They satisfy conditions 1 and 4 (with a,, = (2n —2)/(2n —1)(2n)?"~2),

but
B (2) ~ bpzt/™ (x = 00); B (2) ~ by /" (x — 40),

with by = 5ty Ek L n=2,3,....
At this point we are able to give a form of algebraic functions b,(z) which
approximate 1;5 T from the left, i.e.,
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PROPOSITION 3. Let g, 0 < ¢ < 1, be a rational number and define

1 Z—ll 1 (zz"—l)Zk—l
bn () = bl (z) := o ;
n q(w _ 1) 1— Zn - (ziq_{_} )2n72

z>0; n=23,...

1
Og:li >bp(z), 2>0;n=2,3,...

Then by, (z) is monotone increasing with n and

The proof goes along the same lines as the previous one, exept that we estimate
the integral on the right of (B.2) by the means of Tchebychef’s theorem [5, Theorem
8, p- 39]

X 2n
‘lw q ]. qt —
d >_ 2n 2d / d :—XQn 2_
/0 1-w2™ = X, / v T—w2™ T =17

The class of algebraic functions biY (z) approximate I;OE% even better than B, (x).
Namely,

IOg.’L' q 4(” — 1) 2n 2n
ool W@~ (3geoye")E - @),

Combining the results from Propositions 2 and 3, we get
PROPOSITION 4. For p, g, BY (z), @ (x) defined as above, we have

loga:
<L 1

b () < . <HD(@) < < BP@) <. < B (@),

Remark 2. Note that for p = ¢ = 1/2 we obtain precise approximations of lﬁ—f
by rational functions.

From the manner in which we obtain our solutions of the Problems A and B it
follows that they are in no way unique. A good example for this is another solution
of Problem B which is not so precise as before but is of very simple form.

PROPOSITION 5. Let (c,), ¢, > 2/v/3 be any monotone decreasing sequence
1+ pln/4=1/3cn

zl/2+ca /4 4 p1/2-1/3cn "

of rational numbers. Then we can take B, (z) =

Proof. The assertion we have to prove is a consequence of the following
LEMMA 4. For any ¢ # 0, t € R one has

t < cosh(1/6¢c — ¢/8)t
2sinh(t/2) ~ cosh(1/6c + ¢/8)t

(B3) = f(ca t)7

and f(c,t) is monotone increasing for ¢ > 2/+/3, t € R.

Indeed, putting in (B.3) ¢t = logz, ¢ = ¢, we obtain I;OE% < B,(z) and, since
f(e,logz) is increasing and the sequence (c,) is decreasing, it follows that B, (z)
is decreasing. Therefore it can be taken as a solution of the Problem B.

We shall prove a little bit more than the assertion from Lemma 4 i.e., an
inequality which is new to the best of our knowledge.
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LEMMA 5. For any real A, B, A # B we have

sinh A — sinh B A2 + AB + B2
- >coshy/ —— — .
A—-B 3

Proof. Applying an integral variant of convex means [5, p. 12], we have

1 A 1 A L \m
- nde > (—— —-0,1,2,...
A—B/Bmdx—(A—B/dex)’n 0,1,2,

A2n+1 _ B2n+1 1 A3 _ B3
> n
(A—B)(2n+1)—(A—B 5 )

1 A2n+1 B2n+1 1 A2 + AB + B2\ 2n
(G~ @) 2 il )
A-B\(2n+1)! (2n+1)! (2n)! 3

By summing the last expression for n = 0,1,2,... we obtain the proof of Lemma 5.

Putting there A := (1/2+4¢/8 — 1/6¢)t; B := (¢/8 — 1/6¢c — 1/2)t, we obtain
the proof of Lemma 4.

Monotonicity of f(c,t) can be proved in a standard way; therefore we can
conclude that the assertion from Proposition 5 is valid.

ie.,

ie.,
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