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REGULAR VARIATION AND
THE FUNCTIONAL CENTRAL LIMIT THEOREM
FOR HEAVY TAILED RANDOM VECTORS

Mark M. Meerschaert* and Steven J. Sepanski

ABSTRACT. Multivariable regular variation is used, along with the martin-
gale central limit theorem, to give a very simple proof that the partial sum
process for a sequence of independent, identically distributed random vectors
converges to a Brownian motion whenever the summands belong to the gen-
eralized domain of attraction of a normal law. This includes the heavy tailed
case, where the covariance matrix is undefined because some of the marginals
have infinite variance.

1. Introduction

Regular variation is a powerful tool in probability theory, and in many other
areas of mathematics. Bingham, Goldie, and Teugels [2] catalog numerous applica-
tions of the one variable theory. Feller [4] gives an elegant proof of the central limit
theorem using regular variation, including the infinite variance case. In fact, the
centered and normalized partial sums of independent and identically distributed
random variables are asymptotically normal if and only if the truncated variance
function is slowly varying, so that even the statement of the central limit theo-
rem properly includes the idea of regular variation. Meerschaert and Scheffler [16,
Theorem 8.1.7] provides an extension of this result to random vectors, using mul-
tivariable regular variation. Multivariable regular variation can be traced back to
the works of Stam [25], Stadtmiiller and Trautner [24], Jakimiv [10], de Haan et al.
[5, 6], and Ostrogorski [17, 18, 19]. The theory was extended in Meerschaert [13]
and Meerschaert and Scheffler [15] to the generality needed for operator-normed
limit theorems in probability. The book [16] contains a detailed introduction to
the general theory of multivariable regular variation, independent of probabilistic
considerations.

In this paper, multivariable regular variation is used to prove the functional
central limit theorem for independent and identically distributed random vectors
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on a finite dimensional real vector space. It is assumed that the sequence of partial
sums can be centered (by subtracting the mean) and normalized (by applying an
appropriate linear operator) so that the resulting sequence converges in distribution
to a Gaussian limit. In this case, the distribution of these random vectors is said to
belong to the generalized domain of attraction of a multivariate normal law. This
includes the classical situation, in which the covariance matrix of the summands
exists, but also allows that the covariance matrix is undefined. This can occur
when some of the marginals have an infinite variance, as long as the multivariable
regular variation condition specified in [16] holds. The main idea of the proof is to
verify the conditions for the martingale central limit theorem, using multivariable
regular variation.

2. Result

Let &,&1,&2, ... be independent and identically distributed random vectors in
R?. We say that the probability distribution £(£) belongs to the generalized domain
of attraction (GDOA) of a d-variate normal law if there exist a sequence of invertible
linear operators B,, on R? and a sequence of nonrandom vectors b,, such that

(2.1) C(Bnig,- - bn>:> N(0,I).

Here = denotes weak convergence, and I is the identity matrix. Then L£(§) is
full (e.g., see Lemma 3.3.3 in [16]). That is, £(§) is not supported on any d — 1
dimensional hyperplane. Equivalently, (£, ) is nondegenerate V8. Here (-, -) denotes
the usual inner product on R?. Throughout this article all distributions will be
assumed to be full. Moreover, if £(£) is in the GDOA of the multivariate normal
law then Theorem 3 in Hudson, Veeh, and Weiner [9] shows that E||¢]| < oo.
Therefore, without loss of generality, we will assume that £ = 0, and in this case
one may take b, = 0, see Hahn and Klass [8]. According to Meerschaert [14], we
may assume that B, = n~'/2L, where L, is slowly varying, which means that
Liyg L, — I for all X > 0. Consequently, ||By|| — 0. Define the partial sum
process M, (t) =0 for t € [0,1/n), and for t > 1/n, let

[nt]
(2.2) M, = B, Z &,
i=1

where [-] is the greatest integer function. Then M,, has sample paths in the space
D([0,00),RY) = {f : [0,00) = R? : V¢ f(t+) = f(t) and f(t—) exists}. We endow
this space with the usual topology, and we let W be a realization of standard
Brownian motion on this space.

THEOREM 2.1. Suppose that &1,&2,... are independent and identically dis-
tributed mean zero random vectors in R? whose distribution belongs to the gen-
eralized domain of attraction of a d-variate normal law, so that (2.1) holds. Then
M, = W in D([0,00),R?) where M, is the partial sum process defined in (2.2)
above.
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PRrROOF. The proof of Theorem 2.1 is an application of the martingale central
limit theorem that appears in Ethier and Kurtz [3, Theorem 7.1.4a, p. 339]. In
the statement below, which is included for convenience, M} is the it* coordinate
of M, and [M], MJ] is the cross variation process. (See [3, p. 79].) O

THEOREM 2.2. (Martingale Central Limit Theorem) Forn =1,2..., let {F'}
be a filtration and let My, be an {F]'} local martingale with M (0) = 0 and sample
paths in D([0, 00), ]R‘f’). Let A, = (A9 be symmetric d x d matriz valued processes
such that AY = [M}, M?] has sample paths in D([0,00),R) and A,(t) — A,(s) is
nonnegative definite for t > s > 0. If:

(i) for each T > 0, limp 00 Esupycr || Mn(t) — My (t=)[| = 0; and
(ii) An(t) = tI in probability;
then M,, = W, a standard Brownian motion on D([0,c0), R?).
Define the empirical covariance operator

(2.3) Co=) &é&&
i=1
where T denotes the transpose, and let A4, (t) = 0 for ¢t < 1/n,
[nt]
An(t) = BuCppgBL = Y Bu&i€ BY
i=1

for t > 1/n. It is obvious that M, is a martingale adapted to the natural filtration,
FP=0o(M,(s): s <t) = (& 14 < nt) with sample paths in D([0, o), R?).
Clearly, A¥ has sample paths in D([0,00),R). Also, if t > s > 0, and 6 € R?,
then
[nt] [nt]
(An(1)6,0) = ) (Bn&it] B10,6) =Y (&7 B0, Bo)

i=1 i=1

[nt] [nt]
= (BIo)'¢:l (BY6) = (&, BL6)”
=1 1=1

[ns]

> (& Br6)* = (An()6,0)

i1
so that A, (t) — A,(s) is nonnegative definite. For 6, ¢ € R? arbitrary
8, An(t)¢) = 6T Ay (t)p = 67 BuClun By ¢ = (B 6)" Crg (B 9) € R
T
= ((Ba9) Crag(Br 9))" = (Br9)' Clry(Br8) = (B )" Crnyy (B 0)
= ¢TBnC[nt]Bz;0 = ¢TAn(t)0 = (An(t)oa ¢)

so A, (t) is also symmetric.
We now verify condition (i). First, fix 7 > 0. Without loss of generality, we
may assume that T is an integer. Furthermore, assume that n > T. Now M, (t) =
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M, (t—) except possibly at t = j/n, j = 1,2,.... In which case, M,,(t) = £=1 B,¢;
and M, (t—) = Y27~} Bp&;. Therefore, M, (t) — M, (t—) = B,&;. Now,

B [sup [134,(8) = M(t-)l| = B [ mag 15.6;1]

t<T
=F Bl :k=1,...,T
wa{ | max 1Bl k=17
T

;(k_lr)r%@nll &ll

—TE [max ||Bn§j||]
j<n

Therefore, it suffices to show that E'max;<y ||Bn&;|| = 0. The following lemma
is a significant strengthening of results in Sepanski [20] and Maller [12], where the
convergence was shown in probability. The proof is an application of multivariable
regular variation.

LEMMA 2.1. If€,&1,&, ... are independent and identically distributed random
vectors in RE with distribution in the generalized domain of attraction of a d-variate
normal law, then E max;gy, ||Bn&;|| — 0.

PRrROOF. Define T), = max;¢, ||Bp&;||. Write

ET, = / Pr[T,, > t]dt
0
[ [}
= / Pr[T,, > t]dt + Pr[T,, > t]dt
0 s

<5+ /00(1 _ Pi{T, < f])dt
)
— 5+ /5 (1= PrBagl < A7)t

oo
=4 +/ (1—(1—ep(t)™dt
s
=40+1I,
where § > 0 is small and €, (t) = Pr[||Bp&|| > t] < €,(6) — 0 uniformly in ¢t > §
as n — oo since nPr[||B,&|| > 6] = 0 by the standard convergence criteria for

triangular arrays (Theorem 3.2.2 in [16]). Note that 1 — (1 —z)" < nz for all z > 0
small, and so for all n large

L<n / en(t)dt = nE|| B I(| Buk]l > 6) = 0
J
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by the following regular variation argument. Recall that we are assuming that
E¢ = 0. Note that

1Bréll < 3~ [(Bné, ;)

j=1

where e; - - - ¢, is the standard basis for R*. Then

d
I, <nE'Y [(But, e) 11 Baéll > )
j=1
where
nE[(Bn&, e))| (|| Bré|l > 6) = J1 + Ja
with

Ji = nB|(Bu&, ) [1(|(Bu, e)] > )
Jy = nE|(Bug, e)|I(| Baéll > 8 and |(Bné,e;)| < )

Define the truncated moments Uy, V. as in Feller [4] i.e., let

Up(r,z) = EKE, )| I[(€, z)| <7,
Ve(r,z) = E|(E, )| T[[(&, z)| > r].

Since every full multivariable normal law on R? is of the same type, we can assume
without loss of generality that the limit is standard normal, with characteristic
function e~ 29" where Q(t) = ||¢]|>. Corollary 8.1.4 in [16] shows that ¢ belongs
to the generalized domain of attraction of this multivariate normal law if and only
if the truncated second moment function M(t) = E((, 2 I((E, 1) < 1)) satisfies
the regular variation condition

(2.4) nM(BEt,) = Q(t) whenever t,, — t # 0 in R?.

This condition is equivalent to regular variation of M (t) at zero with exponent — %I ,
and then Theorem 5.3.4 in [16] shows that Us(r, z) is slowly varying uniformly in
lz|| = 1 as r — oo. Write BTe; = r;'6,, where [|6,]| = 1 and 7, — oo so that

[(Bné&, ej)| = €, Bhej)| = 1, [(€,6n)]- Then
Ji = nE[(Bn&, e} 1(|(Bné, €;)| > 9)
= nr, B, 0u)|I(|(€, )| > 672)
nr Vi (01, 0n)

o Tn‘/i(éTnaen) . U2(6rn;9n)
- Uz((STn,en) Uz(?“n,en)

. nr;2U2(rn, 0,)—0

since the first factor tends to zero by Theorem 5.3.11 in [16] (a uniform version of
Feller [4, XVII.9, Theorem 2]), the second factor tends to 1 since U, is uniformly
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slowly varying, and the third factor
nr 2Us (1, 0) = niry® E|(E, 0) |21
= nE|(&r, 0n)PI([{€,r 0n) < 1)
nENE, By e;)*1({€, Brej) < 1)
= M(Byej) = Qlej) =1

(€, 0n)| < 7n)

as n — oo in view of (2.4).
Next write

Jo = nE|(Bug, e )| I(|Ball > 6 and |(Baé, ;)] < 0)
< 8- nPr[|Bal| > 6] > 0

by the standard convergence criteria for triangular arrays (Theorem 3.2.2 in [16]).
This concludes the proof of the lemma, and so condition (i) is established.

Finally we verify condition (ii). Recall that C,, is the empirical covariance
operator defined by equation (2.3). Let H, be the normalizing sequence con-
structed in Hahn and Klass [7, 8], and note that H,, = HI. Let B,, be any other
norming sequence for which the basic convergence in distribution (2.1) holds. As
shown in Sepanski [21], H,CpH, — I in probability. In fact, Sepanski [22] shows
that HnC,l/ > 5 Iin probability. However, since both sequences B, Y i, & and
Hy, Y%, & converge in law to N(0,I), Billingsley’s convergence of types theorem
[1] says that, B, = d,RnH,, where §, — I, and R,, are orthogonal transforma-
tions. But then we also have B,C, Bl — I in probability, since

|B.C,BE - 1]|
= |60 Ry H,Crn H,RT 5T — I||
= (6, R H,Cr,H,REST — 5,,) + (6, = I)||

< N0 Ry HpCro Hy REST — 6,1 + (16, — 1]
< 16all | RuHAnCrHaRy 6 — Il + (16, — I

(2.5) TeT T T
= 16l (R HnCrHn Ry, 65 — 6y,) + (65, — D) + |67 — 1]
<10l { || RnHn Cr Hn Ry 6 — b7 || + 1165 — I1I} + 16, — 1]l
< 0nll {|Rn HnCr Ho R = I|| (10511 + (167 = I1I} + (160 — I

= 10all 1311 | R HnCr Ho Ry, — R Ry |l + 16l 16 = 1l + (16, — 1|
<16l 16511 |1 Bnll |1 BE || (| HACrHn = I|| + [18al| 165 — II| + (|67 — I

tends to zero in probability. Next recall that B, = n~'/2L,, where L, is slowly
varying, so that Ly, L;" — I. Then we have

B, B;_

26) n [nt]'/? = n=2[nt)*/2 L, L}

1 -1/2
g =n"""Ln Ly [n]
= n_1/2[nt]1/2(L[nt]Ln ) = 82 =21
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while
(Biuy) "By = [nt]"* (L))" Lign /2
=[]V )T
(2.7) = [nt]'*n= V2 (L Ly )T
[ (

N t1/2(171)T — /27
Combining (2.5), (2.6), and (2.7) we see that
An(t) = BpCluy By
=B,B! B[nt]c[nt]B[{;t] . (B[;;])TBT

[nt] © n
— Y21 T2 =]
in probability, and this concludes the proof. O
3. Remarks

Theorem 2.1 was proven by Sepanski [23] using specialized Fourier analytic
methods. The proof given in this paper is considerably simpler. It may also be
possible to prove Theorem 2.1 using the more general result of Kuelbs [11], which
shows that a functional limit theorem for Banach space valued random variables
follows from the central limit theorem, under suitable conditions.
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