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ABSTRACT. Let R be a commutative ring of characteristic zero. Under certain
conditions we determine the type of derivations of a skew polynomial ring A, =
R[X1,X2,...,Xn;d1,d2,...,d,] over R, where di,ds3,...,d, are derivations
of R commuting to each other, and we examine properties of the ideals of A,,.

0. Introduction

Let R be a commutative ring with identity 1 and d a derivation of R. A skew

n .
polynomial ring R[X;d] is defined as the set of all polynomials > r; X* with usual

addition and the following multiplication: =0
Xr=rX+d(r) forallreR.
For derivations dy, ds,...,d, of R, we can also construct a skew polynomial ring

An = R[X17X2,...,Xn;dl,d2,...,dn] such that
Xir=rX; + dl(’l“) and X,X] = ‘erXz

for any r € R. The properties of these skew polynomial rings have been discussed by
many authors (see for example [C-F], [J1] and [V2]). In [V2], Voskoglou has given
the properties of the skew polynomial ring over a ring R of prime characteristic
which are connected with the D-simplicity of R with respect to a set of derivations
D of R.

In this paper, we determine the type of derivations D of the skew polynomial
ring A, and we examine properties of its ideals.

In the following, R will denote a commutative ring with identity 1, and n-1 =n
not a zero divisor in R for any integer n > 0.
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1. Preliminaries

Let d be a derivation of R and let R[X;d] be the skew polynomial ring over R
defined with respect to d. Firstly, we treat derivations of R[X;d]. The following
relation is easily obtained by X7 = rX + d(r) and by applying induction on 7.

(1.1) X" =rX" +nd(r) X" +

wcﬂ(r)xn—? +oe-+d(r).

In this paper, for R-algebras A and B, an additive map D : A — B is called a
derivation if for any x, y € A,

D(zy) = D(z)y + 2D(y) and D(R) C R.
The following lemma is elementary in our computation.
LEMMA 1.1. Let f € R[X;d] and let s € R. Assume that there exists an
element a € R such that d(a) # 0 is not a zero divisor. Then, if fa = af + s,

f=rX+ro for some ro,r1 € R and s = rid(a). In particular, if s = 0, then
f =ry € R.

ProOOF. Weset f = r, X" +r, 1 X" 1 +.-- 4+ X +7y (r; € R). Then, by
(1.1) and fa — af — s = 0, the coefficient nr,d(a) of X" ! is zero, which means
rn, = 0. Therefore, by induction, we have f = r1 X + rg and s = r1d(a). O

LEMMA 1.2. Assume that there exists an element o € R such that d(a) # 0 is
not a zero divisor. If D : R[X;d] — R[X;d] is a derivation, then D(X) =rX +rg
for some rqg, r1 € R. In particular if there exists an element & € R such that
(Dd —dD)(&) =0 and d(§) is not a zero divisor, then D(X) =19 € R.

PrROOF. We set D(X) = f = rp X"+ rp 1 X" 1+ -+ X + 19 (r; € R).
Since X7 =rX + d(r) for any r € R, we have

(1.2) D(X)r=rD(X)+ (Dd —dD)(r) for any r € R,
which shows that fr =rf + (Dd —dD)(r). Thus, the result is obtained by Lemma
1.1. O

COROLLARY 1.1. Assume that there exists an element o € R such that d(a) # 0
is not a zero divisor. If I, is an inner derivation by g € R[X;d), then g = r1 X +ry.
In particular if I,d = dI,, then d(r1)d(r) = 0 for any r € R.

ProOF. If I, is an inner derivation by g € R[X;d], then, by the definition
of derivation, I,(R) C R and so I,(r) = gr —rg € R. Then, by Lemma 1.1,
9 = 11X + ro. Moreover if I,d = dI,, then, by I,d(r) = dI,(r), we get the
result. O

2. Ideals of R[X;d]

In this section, we treat some properties of ideals of R[X;d]. Let D be a
derivation of a ring A and I an ideal of A. I is called a D-ideal if D(I) CI. If A
has no D-ideal except 0 and A, then A is said to be D-simple. For a subset S of R,

n .
we set S[X;d] = { > s X"|s;€8, n=0,1,2,--- } Then we have the following:
i=0
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LEMMA 2.1. (1) Let d be a derivation of R. If I is a d-ideal of R, then I[X;d]
is an ideal of R[X;d].
(2) If S is an ideal of R[X;d], then SN R is a d-ideal of R.

PROOF. See Lemma 1.3 (cases i and ii) of [J1]. O

LEMMA 2.2. Assume that n = n -1 is invertible in R for any integer n > 0.
Assume also that there exists an element o € R such that d(a) is invertible. If
& is an ideal of R[X;d], then SN R is equal to the set of all coefficients of all
polynomials f in .

PROOF. Let S be an ideal of R[X;d] and let f = Zn%n-X" € S. Since
i=
fa—af =rpnd(e)X™ ! + terms of lower degree
is contained in § and nd(a) is invertible, we see
P X" T s, o X" 24+ 5 X +5 €T
for some s; € R. Repeating this method, we have r, € §. Thus, f — r, X" =
a1 X" 4. 471 X 479 €. Using this process, we see that if f = Zn: riXte S,
then all the coefficients of f are contained in & and thus SN R is eqﬁz? to the set

of all coefficients of all polynomials in . O

COROLLARY 2.1. Let D be a derivation of R[X;d] and let S be an ideal of
R[X;d]. Then under the assumptions of Lemma 2.2, ¥ is a D-ideal if and only if
SN R is a D-ideal.

n . n . n .
ProOOF. Let f = > r;X* € §. Then, by D(f)=>_ D(r;)) X'+ r;D(X*) and
1=0 n 1=0 1=0
i

D
r; € § for any 4, D(f) € & if and only if > D(r;)X* € . By Lemma 2.2, this is
equivalent to D(r;) € & for any . =0 O

Let I' be the set of all d-ideals of R and let A be the set of all ideals of R[X; d].
Then we have a correspondence

®:T>5I-I[X;deA and T:A>53—»3INReT.

Under these notations, we see the following:

THEOREM 2.1. Assume that n = n -1 is invertible in R for any integer n > 0
and there exists an element o € R such that d(c) is invertible. Then there exists
an order preserving lattice isomorphism of T' and A.

Proor. If I; and I, are d-ideals of R such that I; C I, then, by Lemma 2.1,
L [X;d] C I,[X;d] is clear. Conversely, if 37 and Sy are ideals of R[X; d] such that
$1 C Dy, then, by Lemma 2.2, 3¢ N R C S N R. Since & N R is the set of all
coefficients of polynomials in &1, ¥® = I and ®V¥ = I, are clear. O
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3. Derivations and ideals of R[X;,Xa2, - ,Xp;d1,d2, - ,dy)

It is well-known (e.g., [C-F, p. 42]) that if R is a commutative Noetherian
Q-algebra with nonzero derivation d such that R is d-simple, then R[X;d] is a
simple ring. And Jordan [J2] has shown that if k£ is a field of characteristic zero
and 2 < n, then the commutative polynomial ring A = k[X1, Xa,--- , X,,] admits
a k-derivation d such that A is d-simple and d(A) contains no units.

For derivations dy,ds,--- ,d, of R commuting to each other, we consider the
skew polynomial ring A, = R[X1, Xs,...,X,;d1,dz, -+ ,dy] such that

X;r=rX; + dz(T‘) and XZ'XJ' = XjX,'

for any r € R. In this section, we characterize derivations of A4,, under the following
conditions:

(3.1) n=n-1 is not a zero divisor for any integer n > 0.

(3.2) There exist elements a; € R such that d;(a;) # 0 is not a zero divisor
and d;(a;) =0 (i #j) for any i, j =1,2,...,n.

There exists a ring which satisfies the conditions (3.1) and (3.2) as follows:
ExaMPLE 3.1. Let k be an integral domain with characteristic 0 and R =

k[Y1,Ys,...,Y,] a commutative polynomial ring of n-variables. Then d; = 6% is
a derivation such that d;(Y;) = 1 and d;(Y;) = 0 (i # j). i

Thus, the conditions (3.1) and (3.2) occur naturally.

ko
LEMMA 3.1. Let f = Y a; X’ be in A, where a; € Ap_1. If fr—rf € Ap_y

=0
for any r € R, then f = r1 X, + ag for some r1 € R and ag € Ap—1. In particular,
if fr=rf for anyr € R, then f € R.

ProOF. We note the following: if d;(r) = 0, then, by X;r = rX;, fr =rf

k .
for any f S R[Xl,. .. ;Xi—I;Xi+1;-- ;Xn] Let f = E a,-X;b be in An such that
i=0
a; € A,_1. Firstly, we show that f = a1X, + ag for some a; € A, 1. By
Xnon = an X, + dp(ay) and X;ap, = @, X; for any 1 < ¢ < n— 1, we have

(3.3) fan, —a,f = akkdn(an)Xz’l + terms of degree < k —1in X,,.

Since the coefficients of the lower term of XF~2 are in A,_; and kd,(a,) is in-
vertible, we get a; = 0. Repeating this argument, we obtain that f = a1 X, + ag
for some a; € A,,_1. Secondly, using a; for 1 < i < n — 1, we have a10; = a;a;.

¢ .

Since a; is in A,_1, we denote a; = > b; X’ _, for some b; € A, 5. Then, by
i=0

a10,_1 = Qn_1a1, we have a; = bg € A,,_2. Repeating this argument, we obtain

that f = r1 X, +ap for some r; € R and a9 € A,,_1. In particular, if fr = rf, then
r1 =0 and so f =ag € Ap—1. Thus, by induction, we have f € R. O

THEOREM 3.1. Let D be a derivation of A, such that Dd; = d;D for any
1< i< n. Then D(X;) =r; for some r; € R.
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PRrROOF. By D(X;r) = D(rX;+d;(r)) for any r € R, we see D(X;)r = rD(X;).
Since D(X;) is a polynomial in A,, then, by Lemma 3.1, D(X;) = r; for some
r; € R. O

LEMMA 3.2. Assume that n = n -1 is invertible in R for any integer n > 0 and
there exists an element o;; € R such that d;(c;) is invertible and d;(co;) = 0 for any
j#1 (1 <i,7<n). If S is an ideal of A, then SN R is equal to the set of all
coefficients of all polynomials f in 3.

k .
PROOF. Let f = > a; X! be in . By using (3.3), we have a X} 1 +--- € $
i=0 ¢ ,
and inductively we get a; € S for any 0 < i < k. Since a; = > b;X]_; and
=0
b; € Ap_2, by the similar computations, we can show that all coefficients of f are
contained in . This completes the proof of the Lemma. O

Let D be a set of derivations of a ring A. An ideal I of A is called a D-ideal if
I is a d-ideal for all d € D.

LEMMA 3.3. (1) Let D = {d1,dz,--- ,dn} be a set of derivations of R. Then,
if I is a D-ideal of R, I[X1,Xa,...,Xp;d1,ds,...,dy,] is an ideal of A,,.
(2) If S is an ideal of Ay, then SN R is a D-ideal of R.

PROOF. (1) See Lemma 3.1 of [V1].
(2) For any r € SN R, we have X;r —rX; = d;(r) € S for all 1 <4 < n. Hence,
SN R is a D-ideal. O

Let T',, be the set of all D-ideals of R and let A, be the set of all ideals of
A, = R[X1,Xs,...,Xpn;d1,da,. .., dy]. Then we have a correspondence
®:T,> II—)I[Xl,XQ,...,Xn;dl,dz,...,dn] EAn,
U:A, 58— SNReT,.

Under these notations, we see the following:

THEOREM 3.2. Assume that n = n -1 is invertible in R for any integer n > 0
and there ezists an element o; € R such that d;(cy) is invertible and d;(o;) = 0 for
any j #1i (1 <4,5 <n). Then ® and U are order preserving lattice isomorphism
of 'y, and A,, such that ¥® = Iv_ and ¥ =1, .

Proor. If Iy and I, are D-ideals of R such that Iy C I, then, by Lemma
3.4(1), we have

Il[X1;X27"' aXn;d15d2;"' Jd’n] C IQ[Xl;XQ,"' JXn;d17d27"' ;dn]

Conversely, if $; and Sy are ideals of A,, such that & C S, then, by Lemma 3.3,
we have 81 N R C 8y N R. Moreover, by Lemma 3.3, we easily see that ¥® = I,
and @¥ =1, . O
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