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ABSTRACT. One of the most important problems in solving nonlinear equa-
tions is the construction of such initial conditions which provide both
the guaranteed and fast convergence of the considered numerical method.
Smale’s approach from 1981, known as “point estimation theory”, treats
convergence conditions and the domain of convergence in solving an equa-
tion f(z) = 0 using only the information of f at the initial point z(®), A
procedure of this type is applied in this paper to the fourth order iterative
method for the simultaneous approximation of simple zeros of polynomi-
als, proposed by Sakurai, Torii and Sugiura in 1991. We have stated initial
conditions which ensure the guaranteed convergence of this method. These
conditions are of significant practical importance since they are computa-
tionally verifiable; they depend only on the coefficients of a given polyno-
mial, its degree n and initial approximations to polynomial zeros.

1. Introduction

The construction of initial conditions which provide both the guaranteed and
fast convergence of the considered numerical algorithm is one of the most impor-
tant problems in solving nonlinear equations f(z) = 0. Many results concerning
convergence analysis, published during the last fifty years, deal with unattainable
data, for example, with the sought roots of an equation, suitable (but unknown)
constants or sufficiently close approximations (without a proper estimate of their
closeness). These results are rather of theoretical importance.

From a practical point of view, initial conditions should be stated in such a
way that they depend only on available features of a given function f and initial
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approximations z(®). Such an approach, known as theory of point estimation, was
introduced by Smale in 1981 [11] who studied Newton’s method. After Smale’s
another fundamental work [12], the investigation in this field has been widely ex-
tended by many authors who dealt with methods for solving nonlinear equations
as well as simultaneous methods for finding polynomial zeros. More details may be
found in the book [5], the survey paper [4] and the references cited there.

The aim of this paper is to establish initial conditions which guarantee the
convergence of an efficient fourth order method for the simultaneous approximations
of all simple zeros of a polynomial

P()=2"4+apn12""'+---+a1z+ag (a; €C).

These conditions are computationally verifiable; namely, they depend only on the

polynomial coefficients ag,ay,...,a, 1, its degree n and initial approximations
z§0), . ,z,(lo) to the zeros (i,...,(, of P. Throughout the paper we will always

assume that the polynomial degree n is > 3.
For m =0,1,... let
m) _ o (m) (m)
d™ = min |2;™ — 2™

1<i,i<n
i#i

be the minimal distance between approximations obtained in the mth iteration,

and let
wim —

K3

(m)
Pl ) , w™ = max |Wj(m)|.
fem g

.
=N

=
According to the results of the papers [1], [3], [4], [6], [7], [8], [13], [14], it turned
out that suitable initial conditions, providing a guaranteed convergence of iterative
methods for the simultaneous determination of polynomial zeros, are of the form
of the inequality

.
-

(1.1) w® < ¢, d®),

where ¢, is the quantity which depends only on the polynomial degree n. Moreover,
Wang and Zhao [13] came to the form (1.1) in a quite natural way by applying their
improvement of Smale’s results for Newton’s method.

In Section 2 we present the convergence theorem which provides very simple
verification of the convergence of a rather wide class of iterative methods for the
simultaneous approximation of polynomial zeros under a given initial condition of
the form (1.1). This theorem is applied in Section 4 to a fourth order method for
the simultaneous determination of simple complex zeros of a polynomial, presented
briefly in Section 3. For this method an initial condition which enables a guaranteed
convergence is stated in Section 4. This condition is of a practical importance since
it depends only on available features of a polynomial and initial approximations.



GUARANTEED CONVERGENCE OF THE JAPANESE ZERO-FINDING METHOD 61

2. Point estimation theorem

Most of the iterative methods for the simultaneous determination of simple
zeros of a polynomial can be expressed in the form

2D = 2 (™2™ (i€ Ly m=0,1,..0), (2.1)
where I, = {1,... ,n} is the index set and z§m), ..., 2™ are some distinct approx-

imations to simple zeros (1, ... ,(, respectively, obtained in the m-th iterative step
by the method (2.1). In what follows the term

cim™ = ¢y (2™, 2™ (i eI,

will be called the iterative correction term or simply the correction. For simplicity,
we will omit sometimes the iteration index m and denote quantities in the latter
(m + 1)-st iteration by = (“hat”). Also, we will omit indices in the products [] and
the sums ), assuming that they run from 1 to n.

Let A((;) be a reasonably close neighborhood of the zero (; (i € I,,). Let us
assume that corrections C; appearing in (2.1) can be expressed as

P(zi)
Fi(z1,... ,2p)
where the function (z1,...,2n) — Fj(z1,-..,2,) satisfies the following conditions
for each i € I, :

10 E(Cl: s )Cn) # 07
2° Fi(z1,...,2n) #0 for distinct approximations z; € A((;),

Ci(z1,--- y2n) = (i € I,), (2.2)

3° Fi(z1,-..,2n) is continuous in C".
In our analysis we will deal with a real function ¢ — g(t) defined on (0,1) by
1
142, 0<t<=
_ 2
9 =9 1
— — 1.
1—¢ 5 <t<
The following theorem (see [4] and [7]) has the key role in the convergence
analysis of simultaneous methods for finding polynomial zeros.
THEOREM 2.1. Let the iterative method (2.1) have the correction term of the

form (2.2) for which the conditions 1°— 3° hold, and let z§°), - ,ngo) be distinct
initial approzimations to the zeros of P. If there exists a real number 8 € (0,1)
such that the following two inequalities

@ eV <Ble™] m=0,1,...),

(i) [ =27 > 9B (| +|C\V) (#3550 € L),
are valid, then the iterative method (2.1) is convergent.

Let us note that the class of iterative methods considered in Theorem 2.1 is
rather wide and includes most frequently used methods for finding polynomial zeros,

simultaneously. In Section 4 we will apply Theorem 2.1 for the convergence analysis
of the fourth order simultaneous method presented briefly in the next section.



62 PETKOVIC, RANCIC AND MILOSEVIC

3. STS simultaneous method

In this section we give a new derivation of an iterative method for the simulta-
neous approximation of simple zeros of a polynomial, already derived by Japanese
mathematicians Sakurai, Torii and Sugiura in [10] by the Padé approximation, re-
ferred in this paper to as the STS method or the Japanese method. Let P be a

monic polynomial of order n with (real or complex) simple zeros (1,...,(,. Let
Z1,--- ,2n be distinct complex numbers, for instance, some approximations to the
zeros of P.

Let us introduce the rational complex function z — W (z) defined by

P
W) = =2 e,
1 (2 = 2)
i
Evidently, the zeros of W are the same as the zeros (1, ... , (, of the polynomial P.

We will approximate the given function W at z = z; by a bilinear function f
of the form
(z—2z)+ a1
as(z — 2;) + as

f(z) = (zi,a1,02,a3 € C) (3.1)

which coincides with W at z; up through second derivatives, that is
FOz) = WP (z) (k=0,1,2 WO(2) = W(2)). (3-2)
Let Z; be a complex number such that f(2;) = 0. Then from (3.1) we obtain
21' =Z; — Q1. (33)
This means that if z; is a sufficiently good approximation to a zero of the ratio-
nal function W (and, thus, a zero of the polynomial P), then 2; is an improved
approximation to that zero.

To find the unknown complex coefficient a1, we start from the equations (3.2)
and (3.3) and get the system of equations

a_3 = W(z)
az — o102 o,
ag = W'(z)
2042(0420(1 — 043) _ ",
o3 =W'"(z).
Hence
2W (z)) W' (2:)

T AW - W)W )
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Now (3.3) can be written in the form

NW! (25
= TG~ T &4
where we put
/ "
U= e
With the abbreviations
Ok,i = M, Sk, =i# (k=1,2),
T P(z) ’ (2i — zj)*

j=1
Jj#i

we find by means of the logarithmic derivative

Wi(2))'
Ui: % :6171-_81,1.7
Wi ! d‘i_62'+si
v W) g Bt S
(Wi(2)) |._.. 01, — S1,i

Then from (3.4) the following iterative method for the simultaneous approximation
of all simple zeros of a polynomial P can be constructed:

P 2(S1,i — 01,4)
YT 62— 203 ;4 251,01, + B2 — S}

i=1,...,n). (3.5)

5

As mentioned above, this iterative formula was derived (in a different way) by
Sakurai, Torri and Sugiura in [10] (see, also, [9]). For this reason, the iterative
method (3.5) will be called the STS-method or the Japanese method, for brevity.

It was proved in [10] that the order of convergence of the iterative method (3.5)
is equal to four. In this paper we will establish computationally verifiable initial
conditions which provide the guaranteed convergence of the STS-method (3.5), a
very important subject of any iterative process.

4. Initial conditions and guaranteed convergence

In this section we apply Theorem 2.1 and initial conditions of the form (1.1)
to state the convergence theorem for the STS iterative method (3.5). Before estab-
lishing the main results, we give some necessary assertions.

The following theorem was proved in [5, Ch. 1].
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THEOREM 4.1. Let z1, . .. , 2z, be distinct numbers satisfying the inequality w <
¢nd, cn < 1/(2n). Then the disks

D, := {znﬁ},...,Dn:: {z Wl }

n
1—ney "1 —ney,

are mutually disjoint and each of them contains one and only one zero of the poly-

nomial P, that is
1
1—nc,

G € {zi; |Wi|} (i € Ip). (4.1)

REMARK 1. Two disks Z; = {mid Z;rad Z1} and Z; = {mid Z»;rad Z»} are
disjoint if and only if

| mid Z; — mid Z5| > rad Z; + rad Z».

Let

w=z= G A=Y O R L

7 T )z = 25)’ v G2 (2 — 2)*

n
Starting from the factorization P(z) = [] (2 — (;) and using the logarithmic deriv-
ative, we find J=1

TG =1
Hence 1 1
51’,' — Slﬂ' = — — A’i7 (5271' — (Sii + SQJ =B; — — - (42)
Uj; u;

In the sequel, we will assume that the following condition

1
T 3n+1

w < cpd, Cn (4.3)

is fulfilled. The inequality (4.3) is stronger than w < d/(2n) so that the assertions
of Theorem 4.1 hold.
From (4.1) we obtain

Cn

1
|us| = [z — G| < mm’d <7nd, where y, = ¢ e

Then
lzi = Gl 2 [2i — 25| — |25 — G| > d — yd = wpd, (4.5)

where w, = (1= (n 4 1)¢n) /(1 — ney).
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According to (4.4), (4.5) and the definition of the minimal distance d, we esti-
mate:

| (n —1)ynd (n—1)cy an
Al € = = — 4.
MY gl < e T E-GeDedd 4O
and
|l |uj|
|Bi| < ( . +
; lzi = Gil2l2i — 2] |2 — Gillzi — 252
(47 < (n—1)cn[2 = (2n + 1)cy) _ba
[1—(n+ en]*d? a2’
where

4= m=Dew - (n=Den[2= @0+ e

[1—(n+ 1))’ " [1-(n+ l)cn]2

Let us introduce

H; =

1( - M) =1 &7 ; — 02, — Sa,s — (01,6 — S1,4)°
2 (61,0 — S14)2 /7 2(61, — S1,4)? ’

Using (4.2) we find

'1,1,1(214Z - 'U,,B, - u,Af)
2(1 - ’LI,zA,)2

Hi=1+ =1+t;,

where

= u,(ZAZ - uiBi - uzAf)
v 2(1 — u,-Ai)Q ’

Then the iterative formula (3.5) can be rewritten in the form

6("?)—5("?) -1
zzgmﬂ):zzgm)—M(i:l,...,n;m:O,l,...), (4.8)

where the abbreviations H™ 5&?), 51(,7?) are related to the m-th iterative step.
Let
Yn(Yna2 + Ynbn + 2an)
2(1 — ypay,)?

According to (4.4), (4.6) and (4.7) we estimate

dn =

a
1 —w;Ai| > 1 — |ui]| A4 >1—’ynd-7n=1—'ynan (4.9)
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and
a? b, 2an
|t|<Iudﬂudh4d2+¢udLBd-%2L4d)<:7ﬁd(7"d R by D),
s 2|1 — uiA,-|2 2(1 - ’7nan)2
=qn < ]._6 )

where the denominator is bounded using (4.9). By using this inequality we find

17
|Hil <1+t <1+an < 15, (4.10)
15
|Hi| >1—|ti] >1—gn > 16 (4.11)
By the inequalities (4.4) and (4.9) we obtain
) Wi
81— S1:) 1 < [ui] < Wi < 1.51|W5|. 4.12
(O =S IS T ] S T e =gy < HHTEE (44D
Using (4.11) and (4.12) we estimate
5 01— S1,6)
|2 — 2| = |Ci| = % < 35 - LBUWi| < 162Wil, (4.13a)
whence 1.62
|2i - Z,| <And, A= 3n'+ 1 (4.13b)

LEMMA 4.1. If (4.3) holds, then
() |2i — 2] > (1 = An)d;
(1) 12 — 251 > (1 —2A,)d;

An n—1
(i41) ]I;[z<1+z-—z])| (1+1—2)\ ) ’
ProOF. First, we note that A\, < 1/2if (4.3) holds. The assertions (i)—(iii) are
proved by using the triangular inequality. By (4.13b) we estimate
|2 — 2| = |2 — 2z + 20 — 25| 2 |2 — 25| — |2 — 23] > d— Apd = (1 = A\p)d,
then
|2 — 25| 2 |21 — 2] — |2 — 25| — |35 — 2] > d — And — And = (1 — 2),)d,
and finally

y
22 - I(+2 _ZJ)\<H<1+—|Z. )

i i i~ 4|
An n—1
<H(1+ 1—2/\ )d)_(1+1—2)\n) =

Using the abbreviations introduced above, let us define for n > 3

f= 1.62[% (14 (0= en)| (145 —/\gx\n)n_l'
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LEMMA 4.2. If (4.3) is valid, then for alli=1,... ,n we have
(i) fn<0.29;
(1) |W;| < ]fn|W,~|;
(791) W < cpd, ¢ =1/(3n+1).
PRroOF. For distinct points 21, ... , 2, let us define the polynomial @ of degree
n by

O
—~~
N
~—
Il
jam b
—~~
N
|
N
<.
~—

Q(?) SE
where P(:)—Q(z) _ Plz) _ P(z)
YETO) @) T T —w

Hence we obtain the following representation of the polynomial P:

P(z) = (Z Z?/].Zj + 1) H(z —2j) .
j=1

=1

Putting z = 2; in the last relation, we obtain

Wi W, \ 1
5.) = 1 J 2i — 2).
P(%) (zz SRR D D Zj) [1Gi -2
J#i Jj=1
After dividing by [] (2; — 2;) we find
i#i
v P(z;) N Wi Wi Zj — %
- = (3 — 2 1 1 . (4.14
Wi [1(2 — %) (& ZZ)<§i—Zi+ +Z§z—Z])H< +2i_2j) (4.14)
) JFi J#i
J#i
In our consideration we will use the identity
Wi
((51,1' — Sl,i)Wi =1+ Z P =:G; (4.15)
g#i Tt

(see [2] and [5, Ch. 6]).
Having in mind the definitions of w and d and the inequality

S ILANPYCERIT

lei —z;] = d

< (n—1)ey,
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we bound
W; 4
G-+ ey Bl i one <3, w
— |2; — 2] 3
J#i J#i
and
W W; 2
|Gd:h+§: — E:uhl| 1= (n=1)en> 3. (4.17)
i G 12T R
Starting from the iterative formula (4.8), by virtue of (4.15) we find
W; W;
- = —(61,s — S1,))W;H; = (—1 - Z 5 )(1 +t:) = =Gi(1 + t;).
Zi — Z; — i T Zj
J#i
According to this we have
w.
Wi +14+) W =-1-)_ W; +1-tGi+ Y —
Zi i i — Zj #izi—zj #izz—zj
W
=— ; —t,G
(Zz Zz) ; (zz — Zj)(éz — z]) [ACE]

Hence, by (4.3), (4.13b), Lemma 4.1 and the inequality |¢;| < ¢, derived above, we
estimate

1
P +Zz2_z]

l

. W;
< |zi—z,~|;|zz%+|tine,~|

i — 2zjll2i — zj]

(n —Dw

: W +qn(1+(n— l)cn)

<—" 2 4 (14 (n—1)cn).

Wil < |3 — 2l g

+1+Z —
J

( —DAncn
1-\,

<16qu[

that is,
Wil < falWil, (4.18)
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The sequence {f,}, defined in front of Lemma 4.2, can be represented as f, =
R(n)E(n), where

_ Us(n)

 Ve(n)

_ 119.75n° — 27.3456n" — 86.8644n° — 0.2916n° — 2.6244n — 2.6244
© 144n8 4 90.24n5 + 80.2n* + 23.3n% + 5.7n® — 0.1n — 0.62

R(n)

and

By - (1 25) ™ = (0 5250)

The degree of the polynomial V5(n) is higher than the degree of Us(n); besides,
the dominant coefficients of Vs(n) are positive while the coefficients of Us(n) are
negative (except the leading one). These facts cause that the sequence {R(n)} is
monotonically decreasing for n > 3. Let us note that {R(n)} behaves asymptoti-
cally as the sequence {0.83/n} (which can be checked by using the programming
package Mathematica 4.1).

Furthermore, it is easy to prove that the sequence {E(n)} is monotonically
increasing and E(n) — €°-%* = 1.716 ... when n — +00. Therefore, E(n) < %% =
1.716... for all n > 3. Having in mind that the sequence {R(n)} is monotonically
decreasing, we obtain

fn=Em)R(n) < e’*R(n) < e***R(4) = 0.268. ..

for all n = 4,5,.... According to this and the fact that f3 = 0.281... < 0.29, we
conclude that f, < f3 < 0.29 for n > 3, which completes the proof of (i).

Using (i), from (4.18) we immediately obtain

|W;| < 0.29|W;|

for all ¢ =1,...,n and the assertion (ii) is proved.
Since
fn 1
-<1

1—2xn, S2°5©

we have
B < faw < faend < 5 _fg)\n < end < cpd,

which proves (iii) of Lemma 4.2. O

Now we are able to give the main result concerning the initial conditions which
guarantee the convergence of the STS method (4.8).
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THEOREM 4.2. The STS iterative method (4.8) is convergent under the condi-

tion
d©

3n+1°

0)

w (4.19)

PROOF. From Lemma 4.2(iii) we have the implication

~ - 1
w < cpd = W< cpd, Cn:3n+1'

Similarly, we prove by induction that the condition (4.19) implies the inequality
w™ < ¢,d™ for each m = 1,2,.... Therefore, the inequalities (4.13a) and
(4.13b) and all assertions of Lemmas 4.1 and 4.2 hold for each m = 1,2, ... if the
initial condition (4.19) is valid. In particular, the following inequalities

(Wit | < 0.209|W™) (4.20)
and
0| = |2+ _ ) < 1 6oy (™) (4.21)

hold for i =1,... ,n and m =0,1,....

Using the definition of the minimal distance d(™), the identity (4.15) and the
inequalities (4.11) and (4.17), for the function F; appearing in Theorem 2.1 we
prove by induction (under the condition (4.19)),

m m PV(z) m m m
LICIETE ’>|=‘1+ZW“H5 IEREE
i#i % T i

2 15 n—1
> = [d™]" >0
3 16 11"
for each i € I, and m = 0,1,.... Therefore, the iterative method (4.8) is well
defined in each iteration.
From the iterative formula (4.8) we see that the corrections C’i(m) are expressed

by
(a1 —si)

H™

cim = (4.22)

Now we prove that the sequences {|Cz~(m)|} (i € I,) are monotonically decreasing.
Omitting the iteration index for simplicity, from (4.22) we find by (4.15), (4.20)
and (4.21)

IC;| < 1.62|W;| < 1.62-0.29|W;| < 0.47|W;|

L N—1
= 0.47] Bri =S H‘?l*’)

H; (1 +3° ziu_f"z)

J#i

“(51,1' — S1,:)WiH;|

= 0.47|C4|

?
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that is, R

Using (4.10) and (4.16) we estimate
|Hi||Gil < (14 an)(1+ (n—Dep) < —- 2=
From (4.23) we now obtain
=~ 17 2

Therefore, the constant 8 which appears in Theorem 2.1 is equal to 8 = 2/3. In
this way we have proved the inequality

2
™ < 3le™),

which holds for each i =1,... ,n and m =0,1,....
The quantity g(8) appearing in (ii) of Theorem 2.1 is equal to ¢g(2/3) =1/(1—
2/3) = 3. It remains to prove the disjunctivity of the inclusion disks

S1 = {zfo);3|C£0)|},... ,{z(o) 3|C 0)|}

(assertion (ii) of Theorem 2.1). By virtue of (4.13a) we have |C’z-(0)| < 1.62w® for
every correction |Ci(0)| (i € I,). If we choose the index k € I, such that

1) = max |C”)],

1<ign
then by (4.13a) we find

n+1

d® > (3n+ D@ > 2107 > S (100 +107)

> 9(2/3)(1CV| + |c§-°’|>

since
n+1

3.24
for all n > 3. This means that

> 3.086... > g(2/3) =3

2 =271 > d© > g(2/3)(10{| +|C}”) = rad S; +rad S;.

Hence, following Remark 1, we conclude that the inclusion disks Si,...,S, are
disjoint, which completes the proof of Theorem 4.2. [
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