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AN ASYMPTOTIC FORMULA
FOR A SUM INVOLVING ZEROS
OF THE RIEMANN ZETA-FUNCTION

Yuichi Kamiya and Masatoshi Suzuki

ABSTRACT. E. Landau gave an interesting asymptotic formula for a sum in-
volving zeros of the Riemann zeta-function. We give an asymptotic formula
which can be regarded as a smoothed version of Landau’s formula.

1. Introduction

Let ((s) be the Riemann zeta-function. It is important to study non-trivial
zeros p = 3+ iy of ((s). Weil’s explicit formula is one of useful formulas for the
study of p. Roughly speaking, it connects certain sums involving p with sums
involving prime numbers in terms of test functions and those Mellin transforms.
We can refer to Lang [6] or Patterson [7] for the details of Weil’s explicit formula.

In this paper, as an application of Weil’s explicit formula with a certain test
function, we shall study the asymptotic behaviour of a quantity involving p, that
is,

(1.1) 3wt
p

Some suitable choice of the test function enables us to get asymptotic formulas for
(1.1).

THEOREM 1.1. (i) For v =u or v =0 we have

. 1 1 log(167?) +C
et TP = log— — ——=—+0(1), u— +0,
Z V16mu & u V16mu M)

where C is the Fuler constant, and the sum p Tuns over all non-trivial zeros p
counting with multiplicity.
(ii) For any integer m > 2 we have

p
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where A(m) = logp if m is a power of a prime p and A(m) = 0 otherwise. The
implied constant depends on m.

(ii)" Let K be a closed interval contained in (—oo,0) — J,, {—logm}, where m
is a power of a prime. Then we have

S e Z 0, w40,
P

uniformly for v in K.
(iii) For any integer m > 2 we have

2 A(m)
eup —(logm)p _ +0(1), u— +0.
Z myv4nru (1)

p

The implied constant depends on m.
(iii)’ Let K be a closed interval contained in (0,00) — Uy {logm}, where m is
a power of a prime. Then we have

Zeup2_vp — 0(1)’ u — +0,
p

uniformly v in K.

We can see asymptotic behaviours different from each other for the quantity
(1.1) and the difference depends on the choice of v. The first and second terms
on the right-hand side of the asymptotic formula in (i) come from the logarithmic
derivative of the gamma factor appeared in the functional equation of ((s). On the
other hand, the first terms on the right-hand sides of the asymptotic formulas in
(ii) and (iii) come from the logarithmic derivative of ((s).

The asymptotic formula in (ii) is related to the results of Landau [5], Gonek
[3] [4], and Fujii [2]. Landau [5] proved that, for fixed z > 1,

d o oaf= —QEA(:E) + O(logT)
0<y<T g

holds. Gonek [3] [4] gave uniform versions of Landau’s result, and Fujii [2] gave a
refined formula for it under the Riemann Hypothesis. The asymptotic formula in
(ii) may be regarded as a smoothed version of Landau’s with the measure given by
the Gaussian function.

The asymptotic formula in (i) may be regarded as a smoothed version of the
asymptotic formula for N(7T'), number of non-trivial zeros p with 0 < v < T. To
see this, let us consider the case v = u in (i) under the Riemann Hypothesis. Then
the asypmtotic formula in (i) is

_ 2 1 1 log(1672) +C
St o Lo L loallor) +C
e = o) + O(1).
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The sum on the left-hand side is written as an integral form, and, by integration
by parts, it follows that

>~ CuT? 1 1 log(167?) +C
— N(TMd(e T )= ———log -~ — —=>=—~2_" " 1+ O(1).
/0 ( ) (e ) 2y 16mu ogu 2v/16mu ( )
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2. An explicit formula for a sum involving zeros
of the Riemann zeta-function

In this section we give an explicit formula, which is a variant of Weil’s explicit
formula.

LEMMA 2.1. For any positive u and any real v we have

Zeupzfvp — UV _ 10g7‘(‘ 67v2/4u +1
5 ATy

1 - A —(v+logn)?/4u 1 S A(n) —(v—logn)?/4u
B Viru nz:; (ne - \/47ruTZ:2 n
u/4—v/2 oo 1 t ]
* T/ log|§ +ig| -t — (B GL)(w),
-0

where the functions E and G, are defined by

1 1 1
E(x) = ( = 4 1>ef\w|/2—z/2, Gulr) = /4

el =1 2z dru

and E x G, means the convolution of E and G, that is,

(ExGy)(v) = / E(x)Gy(v — x)dx.
PRrROOF. Since
> 1 2 dx 2
—(v+logz)®/4u s _ us" —wvs
—— rT—=¢e ,
/0 Vamu T

we have
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We also have
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The first term on the right-hand side can be expressed in the following form by the
functional equation of ¢(s):

(S R G) 3R

27 ) 5 oo ¢ 2T 2T 2
1 — A n) —(v—logn)?/4u log 7 —v?/4u
= e + ——e¢ -1
Vanmu z:: 4dmu

L[ 1\ I/l ot . |
- e e v (. w(l/2414t)* —v(1/2+1it)
ir OO(F<4+7’2)+ F(4 Z2))6 dt.

Hence we have

Zeupzfvp —etY IOgﬂ- 67v2/4u +1
P

(v—logn)?/4u

ZA 7('¢+logn 2/4u Z

u/4— v/2 IN t 1IN t 2 .
67 i v (. —ut*+it(u—v)
Rl /OO(F(4H2)+ F(4 22))6 dt.

This formula is a special case of Weil’s explicit formula (with the test function
4m —(vtlog2)*/ 4wy but we supply a proof to make the paper self-contained.

Let us denote the last term on the right-hand side by H. By the expression
(see, for example, [1, p. 28, 1. 16])

T/ & 1 1
—(z)zlong/ ( f—+1>e*”dm, Rez > 0,
0

T et —1 =

we have
u/d—v/2

e > 1 t 1 t 2, .
H=_— 1 (7 -7) 1 (7 - -7> —ut +zt(u7v)dt
Ar /m<0g4+’2 tloely'3))°
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u/4 v/2 2 in( )
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o / 08|71
> 1 1 1 >
_ L 1) —lal/2—w/2__ 1 —(v—a)’/4ugy,
[w(e2|x‘ -1 2|z] e \/47rue !

Hence we obtain the lemma. O

3. Proof of Theorem

To obtain the estimates in the theorem we consider separately each term on
the right-hand side of Lemma 2.1.

LEMMA 3.1. We have 0 < (E *G,,)(v) < 1.
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PROOF. It is easy to verify that 0 < < 1. Hence
0< (B ) < / Gl 0

Here, we remark on the convolution (E * Gy, )(v). The assertion of Lemma 2.1
is enough for the proof of the theorem, but we can obtain a more precise behaviour
of the convolution. It is not hard to verify that the function E has the property
|E(v —2) — E(v)| < C|z|, where C' is a positive absolute constant. Hence we have

(B+Gu)(w) = B < [ 1B - 0) - )G (a)ds

<C / elGu(a)de = €y 22,
that is, (E * G,)(v) = E(v) + O(J/u).

The next lemma is the key for the proof of the theorem.

LEMMA 3.2. For 0 < u < 1 we have
e 1 t 2, .
1 ‘7 -7‘ . —ut +zt(u7v)dt
[m og 1 +12 [

_ O(ﬁ) ifv#u and v # 0,
ViElogl— /T (4log2+C)+O(1), ifv=wuorv=0,

where the implied constants are absolute.

PRrROOF. Firstly, we consider the case v # u and v # 0. We have

o1t ,
(3.1) /_oo log‘Z +Z§‘ -e_Utz-Ht(u_v)dt

= /Ooolog(% + i—Z) et cos(t(u\/av))%
T Tu i v /0 ( ( 4_> t2> Sin(t(u\/ﬂv)>dt
L

Vu t2+u/4) 2 t(u—v)
:‘<u—v>2{/o e G

<8t e t(u—v)
—/0 o e cos( T )dt

= _#{Il + I + I3},

say. As for I; and Iy we easily have
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| 2 g [V | 1
3.2 L] <2 —— e tdt< = dt +2 —dt =10—,
(3:2) I /0 2 +u/d” u/o * /\/a t2 Vu
(33) || < 8/ e dt = 4/
0

As for I3 we have

2

e 1 t 2
34) |4 < ’1 (— —)‘ (442 4 2)dt
B4 BI< [ fos(qg+ ) e " +2)

1 %) 2 , t2

<log - - / e (442 + 2)dt +/ ‘log(i + —) ‘e*tz (462 + 2)dt
u A 161
e u 3 2

1 (— —)’ (442 + 2)dt
+/2 ’ og(15t 7)) (4t +2)

1 > —2, .2 1

< log — + logt-e™" (4t° + 2)dt < log —.
u 2 u

Substituting (3.2), (3.3), and (3.4) into (3.1), we obtain the first estimate of this
lemma.

Next, we consider the case v = u. We have

© 1 ¢
(3.5) [mlog‘z +z‘§’-e*“t2dt

[

)y 2\16 T 1 Ja

logi o u t2 2

= —u *dt 1 eVt

Vu +\/_/ Og 16 4) c
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\/_log—

say. As for Jo we have

\/a 2 o0 2
_ —t —t
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< log( 1+ dt + — / dt
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— Vaulog 2 el 2
\/aog4+/0 42+ u +4/ﬂt
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For J; we have

oo d oo
(3.7) J1 = / logt-e '——~ —log4- / eVt
0 2 0

_§r'( ) \flogQ——g(éllogQ—l—C).

Substituting (3.6) and (3.7) into (3.5), we obtain the second asymptotic formula in
this lemma in the case v = u.
Finally, we consider the case v = 0. We have

* 1 t .
(3.8) / log‘ -+ z'—‘ Ceut Fitugy
BT
o 1 2 dt
= A ]og(lG + > . 67t2 COS(\/Et)T
logl g e
= e " cos(Vut)dt + —= \/_ log — e ¥ cos(yut)dt

+ LYt
/ log 4t2) e " cos(v/ut)dt

l(igfaKl + \}Kz + \}K
say. As for K3 we have
(3.9) |K3| < Jo < V.
For Ky and Ky we use
(3.10) cos(vut) = 14 O(ut?).

From (3.10) it follows that

(3.11) K, :/ e_t2dt+0(u/ e_t2t2dt> = ? + O(u),
0 0

e8] t2 o] t2
(3.12) Ky = / log — - e~ Cdt + O(u/ log — - e_t2t2dt>
0 4 0 4

= fg(leogZ +C) +O(u).

Substituting (3.9), (3.11), and (3.12) into (3.8), we obtain the second asymptotic
formula in this lemma in the case v = 0. O

To obtain the theorem we now consider the asymptotic behaviour of the quan-
tity

(3.13)

1 o0
— A
Varu T; ( 47ru

n)ef(v+logn)2/4u 1 i Tl (v—logn)?/4u
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in Lemma 2.1. The behaviour of this quantity depends on the choice of v. For the
casev=0and 0<u<1

ef(logn)2/4u — ef(logn)z/Suef(logn)Q/Su < ef(logn)2/867(log2)2/8u,

and hence (3.13) is of exponential decay as u — +0. For the case v = —logm,
m > 2 is an integer, and 0 < u < 1 we have

e 41u (— log m+log n)2 < 67ﬁ(7 log m+log n)2efﬁ(f log 1’n+log(m+l))2

logm

1 2 2 1 2
< e*g(logn) (17—1‘)%" ) 675(7 log m+log(m+1)) , n 7& m,
and 2 2 2 2
1 (_ _ R _1 J
e 1u (— log m—logn) <e W (logn) <e’s (logn) e 5u (log 2) ,

and hence (3.13) i

s
— 1 (lo 2 oo

LA (T SNty
VAmu Vu =

— & (— log m-+log(m+1))?
|

For other v we can similarly consider the asymtotic behaviour of (3.13).
Combining the above arguments and Lemmas 2.1, 3.1, and 3.2, we obtain the
assertion of the theorem.

=

QN

+

mi A+ > A(n)eéﬂogn%)).

m#n=2 n>m?2
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